Resilient static output feedback robust H control for controlled positive systems

Σχετικά έγγραφα
Estimation of stability region for a class of switched linear systems with multiple equilibrium points

Research on model of early2warning of enterprise crisis based on entropy

Probabilistic Approach to Robust Optimization

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

New conditions for exponential stability of sampled-data systems under aperiodic sampling

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

ER-Tree (Extended R*-Tree)

Approximation Expressions for the Temperature Integral

Quick algorithm f or computing core attribute

Fragility analysis for control systems

A summation formula ramified with hypergeometric function and involving recurrence relation

High order interpolation function for surface contact problem

Control Theory & Applications PID (, )

Motion analysis and simulation of a stratospheric airship

ADT

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Research on real-time inverse kinematics algorithms for 6R robots

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Congruence Classes of Invertible Matrices of Order 3 over F 2

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

CorV CVAC. CorV TU317. 1

Research on Economics and Management

CAP A CAP

,,, (, ) , ;,,, ; -

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

Single-value extension property for anti-diagonal operator matrices and their square

Buried Markov Model Pairwise

PACS: Pj, Gg

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

A research on the influence of dummy activity on float in an AOA network and its amendments

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

The straight-line navigation control of an agricultural tractor subject to input saturation

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

The optimization of EV powertrain s efficiency control strategy under dynamic operation condition

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

Arbitrage Analysis of Futures Market with Frictions

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

A new practical method for closed-loop identification with PI control

Prey-Taxis Holling-Tanner

Trajectory tracking of quadrotor based on disturbance rejection control

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

Reading Order Detection for Text Layout Excluded by Image

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

[4-7] Rosenbrock ( ) Runge-Kutta(RK)

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Numerical Analysis FMN011

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Algebraic state space approach to logical dynamic systems and its applications

1 h, , CaCl 2. pelamis) 58.1%, (Headspace solid -phase microextraction and gas chromatography -mass spectrometry,hs -SPME - Vol. 15 No.

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

A System Dynamics Model on Multiple2Echelon Control

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

1 Εισαγωγή. 1.1 Ιστορικά. 1.2 Πλαίσιο

Tridiagonal matrices. Gérard MEURANT. October, 2008

Research on vehicle routing problem with stochastic demand and PSO2DP algorithm with Inver2over operator

6.003: Signals and Systems. Modulation

The toxicity of three chitin synthesis inhibitors to Calliptamus italicus Othoptera Acridoidea

X g 1990 g PSRB

Anomaly Detection with Neighborhood Preservation Principle

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Uniform Convergence of Fourier Series Michael Taylor

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Accounts receivable LTV ratio optimization based on supply chain credit

Identificatio n of No n2uniformly Perio dically Sa mpled Multirate Syste ms

= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f

. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

Relative dynamic modeling and formation control of multiple unmanned helicopters

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Octretide joint proton pump inhibitors in treating non-variceal gastrointestinal bleeding a Metaanalysis

Reminders: linear functions

Ανάλυση Προτιμήσεων για τη Χρήση Συστήματος Κοινόχρηστων Ποδηλάτων στην Αθήνα

Homomorphism in Intuitionistic Fuzzy Automata

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

Lecture 21: Properties and robustness of LSE

(II) * PACS: a, Hj 300. ) [6 9] ) [10 23] ) [26 30]. . Deng [24,25] Acta Phys. Sin. Vol. 61, No. 15 (2012)

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

O ( = η T (t)(e 1 e 2 ) T R 1 (e 1 e 2 )η(t) where. O η T (t)π 1 η(t) where. Π 1 = (e 1 e 2 ) T R 1 (e 2 e 1 )+(e 2 e 3 ) T R 2 (e 3 e 2 )

ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ

SOME PROPERTIES OF FUZZY REAL NUMBERS

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

c Key words: cultivation of blood, two-sets blood culture, detection rate of germ Vol. 18 No

Transcript:

31 5 2014 5 DOI: 10.7641/CA.2014.30666 Control heory & Applications Vol. 31 No. 5 May 2014 H,, (, 250100), (LMI),, H,,,,, H,, ; H ; ; ; P273 A Resilient static output feedback robust H control for controlled positive systems SONG Shi-jun, FENG Jun-e, MENG Min (School of Mathematics, Shandong University, Jinan Shandong 250100, China) Abstract: Firstly, by means of a small scalar, a sufficient condition of resilient static output feedback robust H control for controlled positive systems is obtained via linear matrix inequality (LMI) and bounded real lemma, which is useful for the design of resilient static output feedback controller because the controller parameter is separated from the unknown parameter. hen, based on the above condition, an inference for the special case of the control matrix is given and a sufficient condition of resilient static output feedback robust H control for more general controlled positive systems is established. Furthermore, the desired controller gain matrix can be derived via the cone complementarity linearization techniques directly. Finally, a numerical simulation to show the validity of the results is presented. Key words: positive systems; robust H control; resilient static output feedback; cone complementarity linearization; linear matrix inequality 1 (Introduction), [1 3]., [4 8].,,, H,.,. [9] [10], H [11 13]., H [14 15].,, [16 17].,, [18 19], H,, H,, H,, 2013 07 04; 2014 01 15. E-mail: fengjune@sdu.edu.cn. (61174141, 61374025); (JQ201219); (BS2011SF009, BS2011DX019).

672 31 R n n x 1 c 11 x 1 c 12 x 1 c 1n, R m n m n, I x XC = 2 c 21 x 2 c 22 x 2 c 2n, L 2 [0, ) [0, )..., ; [A] ij A i j x n c n1 x n c n2 x n c nn, A Metzler, A, XC, XC 0., A 0(A 0) A XA Metzler ( ), A B A B 0, A [A m, A M ] A m A A M, A > 0(A < ẋ(t) = Ax(t) + Bw(t) + B 1 u(t), 0) A ( ) ; µ(a) z(t) = Cx(t) + D 1 u(t), A, µ(a) = max{re λ : λ σ(a)}, (3) y(t) = C 1 x(t), σ(a) A x(0) = x 0, 2 (Problem formulation and preliminaries) ẋ(t) = Ax(t) + Bw(t), z(t) = Cx(t) + Dw(t), x(0) = x 0, (1) x(t) R n, w(t) R p, w(t) L 2 [0, ), z(t) R s, A, B, C, D, 1 [2] x 0 0, w(t) 0, x(t) 0, z(t) 0, t > 0, (1) 1 [2] (1)A Metzler, B 0, C 0, D 0. 2 [3] Metzler M, N R n n, M N, µ(m) µ(n). 3 [10] γ > 0, (1) (s) = C(sI A) 1 B + D (s) < γ, P > 0, P A + A P P B C B P γi D < 0. (2) C D γi 4 X, C 0, A Metzler, XC 0, XA Metzler x 1 c 11 c 12 c 1n x X = 2..., C = c 21 c 22 c 2n..., xn c n1 c n2 c nn x 1, x 2,, x n > 0, c ij 0, 1 i, j n, x(t) R n, u(t) R m, w(t) R p, w(t) L 2 [0, ), z(t) R s, y(t) R q, A [A m, A M ], A m, A M, B 1, C 1, D 1, B, C (3) u(t) = (K + K)y(t), (4) K, K [K m, K M ], K m K M (4), { ẋ(t) = A c x(t) + Bw(t), z(t) = C c x(t), A c = A + B 1 KC 1 + B 1 KC 1, C c = C + D 1 KC 1 + D 1 KC 1. (5) (4), (5) zw (s) = C c (si A c ) 1 B zw (s) < γ, (6) γ > 0, 1 K m = K M, K M 0. 1, 1 K m, K M, K m K M, K = K M + K m, k = K M K m, 2 2 (4) u(t) = (K + K + K K )y(t) = (F + F )y(t), (7) F = K + K, F = K K, F [ k, k ],, (4) (7) 3 (Main results), B 1, D 1

5 H 673 B 1, D 1, B 2 0, B 3 0, D 2 0, P A d + A d P P B Cd D 3 0 B 1 = B 2 + B 3, D 1 = D 2 + D 3, γi 0 < 0, (18) 1 γ > 0, ε > 0 (3), A [A m, A M ], B 0, C 0, C 1 0, K P > 0, Q > 0, ε 1 P I + εa d P B Cd εq 0 0 < 0, (8) 0 P Q = I, (9) [A f ] ij 0, 1 i j n, (10) [C f ] ij 0, 1 i, j n, (11) A d = A M + B 1 KC 1 + B 2 K M C 1 + B 3 K m C 1, C d = C + D 1 KC 1 + D 2 K M C 1 + D 3 K m C 1, A f = A m + B 1 KC 1 + B 2 K m C 1 + B 3 K M C 1, C f = C + D 1 KC 1 + D 2 K m C 1 + D 3 K M C 1, (4), (5) zw (s) (6). A [A m, A M ], K [K m, K M ], B 2 0, B 3 0, D 2 0, D 3 0, C 1 0 A d A c A f, (12) C d C c C f. (13) (10)--(11), A f Metzler, C f 0, A c, A d Metzler, C c, C d 0, 1, (5) (8) (9), Schur, ε 1 P + (I + εa d )ε 1 P (I + εa d ) + γ 1 P BB P + γ 1 C d C d < 0, (14) P A d + A d P + εa d P A d + γ 1 P BB P + γ 1 C d C d < 0. (15) P, ε > 0, (15) (16), A d P A d 0. (16) P A d + A d P + γ 1 P BB P + γ 1 C d C d < 0. (17) Schur,, P A d + A d P P B Cd µ γi 0 < 0. (19), A c, A d Metzler, B 0, P, 4, P A c P A d Metzler, P B 0. A d A c, P A d P A c. (11)(13), P A c + A c P P B Cc γi 0 P A d + A d P P B Cd γi 0 (20) Metzler 2 P A c + A c P P B Cc µ γi 0 P A d + A d P P B Cd µ γi 0, (21) P A c + A c P P B Cc µ γi 0 < 0, (22) P A c + A c P P B Cc γi 0 < 0, (23) 3, (5) zw (s)(6). 2 1 (3) H, 1, LMI, 1, K P, 1, (3), B 1, D 1, B 1 0, D 1 0, 1 γ > 0, ε > 0 (3), A [A m, A M ], B 0, B 1 0, C 0, D 1 0, C 1 0, K

674 31 P > 0, Q > 0, ε 1 P I + εa d P B Cd εq 0 0 < 0, (24) 0 P Q = I, (25) [A f ] ij 0, 1 i j n, (26) [C f ] ij 0, 1 i, j n, (27) A d = A M + B 1 KC 1 + B 1 K M C 1, C d = C + D 1 KC 1 + D 1 K M C 1, A f = A m + B 1 KC 1 + B 1 K m C 1, C f = C + D 1 KC 1 + D 1 K m C 1, (4), (5) zw (s) (6). 1, B 2 = B 1, B 3 = 0, D 2 = D 1, D 3 = 0, 3 B 1 0, D 1 0, B 1 0, D 1 0, B 1 0, D 1 0,,, (3), B 1, C 1, D 1, B 1 [B m, B M ], C 1 [C m, C M ], D 1 [D m, D M ], B m 0, C m 0, D m 0, (3) H K,, K = K 1 + K 2, K 1 0, K 2 0, (4), u(t) = K 1 y(t) + K 2 y(t) + Ky(t), (28) 2 γ > 0, ε > 0 (3), A [A m, A M ], B 1 [B m, B M ], C 1 [C m, C M ], D 1 [D m, D M ], B m 0, C m 0, D m 0, B 0, C 0, K 1 0, K 2 0, P > 0, Q > 0, ε 1 P I + εa d P B Cd εq 0 0 < 0, (29) 0 P Q = I, (30) [A f ] ij 0, 1 i j n, (31) [C f ] ij 0, 1 i, j n, (32) A d = A M +B M K 1 C M +B m K 2 C m +B M K M C M, C d = C +D M K 1 C M +D m K 2 C m +D M K M C M, A f = A m +B m K 1 C m +B M K 2 C M +B M K m C M, C f = C +D m K 1 C m +D M K 2 C M +D M K m C M, (28), (5) zw (s) (6). A [A m, A M ], K [K m, K M ], B 1 [B m, B M ], C 1 [C m, C M ], D 1 [D m, D M ], K = K 1 + K 2, K 1 0, K 2 0, B m 0, C m 0, D m 0, A d A c A f, (33) 1, 4 C d C c C f, (34) 2(3) H, [20], ( 2)K. 1 1 (29)(31) (32), ( ˆP 0, ˆQ 0, ˆK 10, ˆK 20 ). i = 0, ˆP 0, ˆQ 0 2 ( ˆP i, ˆQ i ), min {tr( ˆP ˆQ i + ˆP i ˆQ)}, ˆP, ˆQ, ˆK 1, ˆK 2 (29)(31) (32). ( ˆP, ˆQ, ˆK 1, ˆK 2 ). 3 (31) (32) ˆP A s + A ˆP ˆP s B Cs γi 0 < 0, A s =A M +B M ˆK1 C M +B m ˆK2 C m +B M K M C M, C s =C +D M ˆK1 C M +D m ˆK2 C m +D M K M C M, u(t) = ˆK 1 y(t) + ˆK 2 y(t) + Ky(t), 4 i > N 0, N 0,., i = i + 1, ( ˆP i, ˆQ i ) = ( ˆP, ˆQ), 2. 5 1, ε > 0 (29) (32),,, ε, (29) (32),

5 H 675 (28) K 3.7406 63.8913, K, K m K 1 = 0.7670, K 2 = 0.0001, K M, 0.1418 0.0689 2 1 1K m, K M. 2 X R m q,, X, K m = K m X, K M = K M + X, K m, K M 2 (29) (32) 3, K m + X, K M X K, K m + X K, K M X K,, 2. 6 2 K, K, 4 (Numerical simulation) (3), 0.342 1.94 1.45 A m = 0.1 3.87 0, 0.1 0 2.91 0.158 2.06 1.55 A M = 0.142 3.73 0, 0.2 0 2.55 0.22 0 0 0.19 0 0 B = 0 0.32 0, B m = 0 0.18 0, 0 0 0.42 0 0 0.17 0.21 0 0 B M = 0 0.22 0, C = [1 0 0], 0 0 0.23 C m =[0.9 0 0], C M =[1.1 0 0], D m =[0 0.5 0], 0.1 0.1 D M = [0 1 0], K M = 0.1, K m = 0.1. 0.1 0.1, H γ = 0.2, ε = 0.1., A M Metzler, A m Metzler, (3) A M 0.0393, 2.6616, 3.8157, (3) 2, MALAB LMI 2.0155 0 0 P = 0 2.0155 0, 0 0 2.0155 0.4962 0 0 Q = 0 0.4962 0, 0 0 0.4962, K = 60.1507 0.7669 0.0729. x(0) = [1 2 3], 1, 2,,, 1 Fig. 1 State variables of open-loop system 2 Fig. 2 State variables of close-loop system, 0.001 X = 0.001, 2, 0.001 315, 2,, 314 K m, K M K, 0.414 0.414 K m = 0.414, K M = 0.414. 0.414 0.414 5 (Conclusions) H, H,

676 31, (References): [1] BERMAN A, NEUMANN M, SERN R J. Nonnegative Matrices in Dynamic Systems [M]. New York: Wiley, 1989. [2] FARINA L, RINALDI S. Positive Linear Systems: heory and its Applications [M]. New York: Wiley, 2000. [3] BERMAN A, PLEMMONS R J. Nonnegative Matrices in the Mathematical Sciences [M]. Philadelphia, PA: SIAM, 1994. [4] MASON O. Diagonal Riccati stability and positive time-delay systems [J]. Systems & Control Letters, 2012, 61(1): 6 10. [5] LIU X, YU W, WANG L. Stability analysis of positive systems with bounded time-varying delays [J]. IEEE ransactions on Circuits and Systems, 2009, 56(7): 600 604. [6] GURVIS L, SHOREN R, MASON O. On the stability of switched positive linear systems [J]. IEEE ransactions on Automatic Control, 2007, 52(6): 1099 1103. [7], [J]. (), 2011, 41(3): 46 52. (LI Zhenbo, ZHU Shuqian. Resilient static output feedback stabilization for controlled positive time-delay systems [J]. Journal of Shandong University (Engineering Science), 2011, 41(3): 46 52.) [8] FENG J, LAM J, LI P, et al. Decay rate constrained stabilization of positive systems using static output feedback [J]. International Journal of Robust and Nonlinear Control, 2011, 21(1): 44 54. [9] DOYLE J C, GLOVER K, KHARGONEKAR P P, et al. State-space solutions to standard H 2 and H control problems [J]. IEEE ransactions on Automatic Control, 1989, 34(8): 831 847. [10] GAHINE P, APKARIAN P. A linear matrix inequality approach to H control [J]. International Journal of Robust and Nonlinear Control, 1994, 4(4): 421 448. [11],,,. H [J]., 2007, 24(4): 587 593. (ZHU Shuqian, ZHANG Chenghui, LI Zhenbo, et al. Delaydependent robust resilient H control for uncertain singular timedelay systems [J]. Control heory & Applications, 2007, 24(4): 587 593.) [12] FENG J, XU S. Robust H control with maximal decay rate for linear discrete-time stochastic systems [J]. Journal of Mathematical Analysis and Applications, 2009, 353(1): 460 469. [13] YANG G, WANG J. Non-fragile H control for linear systems with multiplicative controller gain variations [J]. Automatica, 2001, 37(5): 727 737. [14] ANAKA, LANGBOR C. he bounded real lemma for internally positive systems and H structured static state feedback [J]. IEEE ransactions on Automatic Control, 2011, 56(9): 2218 2223. [15] LI P, LAM J, SHU Z. H positive filtering for positive linear discrete-time systems: an augmentation approach [J]. IEEE ransactions on Automatic Control, 2010, 55(10): 2337 2342. [16] RAMI M A. Solvability of static output-feedback stabilization for LI positive systems [J]. Systems & Control Letters, 2011, 60(9): 704 708. [17] CUI P, ZHANG C. Observer design and output feedback stabilization for linear singular time-delay systems with unknown inputs [J]. Journal of Control heory and Applications, 2008, 6(2): 177 183. [18],, H [J]. (), 2011, 46(1): 35 41. (SUN Lin, ZHENG Yu, YAO Juan. Robust non-fragile H state feedback control for uncertainty discrete singular systems [J]. Journal of Shandong University (Nature Science), 2011, 46(1): 35 41.) [19],,,. [M]., 2008. (LU Renquan, SU Hongye, XUE Anke, et al. Robust Control heory of Singular Systems [M]. Beijing: Science Press, 2008.) [20] EI GHAOUI L, OUSRY F, RAMI M A. A cone complementarity linearization algorithm for static output-feedback and related problems [J]. IEEE ransactions on Automatic Control, 1997, 42(8): 1171 1176. (1988 ),,,, E-mail: songshijun1210@hotmail.com; (1971 ),,,, Itô, E-mail: fengjune @sdu.edu.cn; (1988 ),,,, E-mail: mengmin52111@163.com.