Earthquake Engineering by the Beach II Capri 8 10 June, 2013 Elia Voyagaki, Ioannis Psycharis & George Mylonakis

Σχετικά έγγραφα
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Homework 8 Model Solution Section

Section 8.3 Trigonometric Equations

Sampling Basics (1B) Young Won Lim 9/21/13

PARTIAL NOTES for 6.1 Trigonometric Identities

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Forced Pendulum Numerical approach

Spherical Coordinates

Operational Programme Education and Lifelong Learning. Continuing Education Programme for updating Knowledge of University Graduates:

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Lifting Entry (continued)

Areas and Lengths in Polar Coordinates

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Τοίχοι Ωπλισμένης Γής: υναμική Ανάλυση Πειράματος Φυγοκεντριστή. Reinforced Soil Retaining Walls: Numerical Analysis of a Centrifuge Test

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

derivation of the Laplacian from rectangular to spherical coordinates

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

1 String with massive end-points

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

6.4 Superposition of Linear Plane Progressive Waves

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Solution to Review Problems for Midterm III

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Areas and Lengths in Polar Coordinates

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Modelling the Furuta Pendulum

Section 8.2 Graphs of Polar Equations

Περίπτωση Μελέτης Θαλάσσιας Κατασκευής με χρήση λογισμικού και με βάση Κώδικες (Compliant Tower) (8.1.10)

Solutions - Chapter 4

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Dr. D. Dinev, Department of Structural Mechanics, UACEG

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Graded Refractive-Index

4.4 Superposition of Linear Plane Progressive Waves

If we restrict the domain of y = sin x to [ π 2, π 2

Θωμάς ΣΑΛΟΝΙΚΙΟΣ 1, Χρήστος ΚΑΡΑΚΩΣΤΑΣ 2, Βασίλειος ΛΕΚΙΔΗΣ 2, Μίλτων ΔΗΜΟΣΘΕΝΟΥΣ 1, Τριαντάφυλλος ΜΑΚΑΡΙΟΣ 3,

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Strain gauge and rosettes

Reminders: linear functions

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Section 9.2 Polar Equations and Graphs

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Κριτήρια Ανατροπής Στερεού Σώµατος σε Σεισµικές Κινήσεις Κοντινού Πεδίου

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Differential equations

Math 6 SL Probability Distributions Practice Test Mark Scheme

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Chapter 6 BLM Answers

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Απόκριση σε Αρμονικές και Περιοδικές Διεγέρσεις. Απόστολος Σ. Παπαγεωργίου

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

Trigonometric Formula Sheet

D Alembert s Solution to the Wave Equation

Matrices and Determinants

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Lecture 26: Circular domains


Geodesic Equations for the Wormhole Metric

ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΜΟΡΦΩΝ ΛΥΓΙΣΜΟΥ ΣΤΙΣ ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ

Technical Data for Profiles. α ( C) = 250 N/mm 2 (36,000 lb./in. 2 ) = 200 N/mm 2 (29,000 lb./in 2 ) A 5 = 10% A 10 = 8%

10.7 Performance of Second-Order System (Unit Step Response)

Second Order RLC Filters

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

The Simply Typed Lambda Calculus

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ

Second Order Partial Differential Equations

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

CRASH COURSE IN PRECALCULUS

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Variational Wavefunction for the Helium Atom

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Monolithic Crystal Filters (M.C.F.)

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο, εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευτεί ότι αντιπροσωπεύουν τις

Derivation of Optical-Bloch Equations

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Ηλεκτρονικοί Υπολογιστές IV

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Approximation of distance between locations on earth given by latitude and longitude

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

BEHAVIOR OF MASSIVE EARTH RETAINING WALLS UNDER EARTHQUAKE SHAKING Comparisons to EC-8 Provisions

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. «Θεσμικό Πλαίσιο Φωτοβολταïκών Συστημάτων- Βέλτιστη Απόδοση Μέσω Τρόπων Στήριξης»

Numerical Analysis FMN011

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

What happens when two or more waves overlap in a certain region of space at the same time?

ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ

Transcript:

Earthquake Engineering by the Beach II Capri 8 10 June, 013 Elia Voyagaki, Ioannis Psycharis & George Mylonakis Chair in Geotechnics & Soil-Structure Interaction University o Bristol, U.K.

m g.. R α (+)θ(t) α-θ.. I o θ m u g Ο.. u g

I & θ + mgr sin( α θ) = + mu& R cos( α θ), θ( t ) > 0 o g I θ& mgr sin( α + θ) = + mu & R cos( α + θ), θ( t ) < 0 o g Non-linearities Geometric, due to: (1) change o pivot points () trigonometric terms in D.E. Geometric & Material : Energy loss during impact

sin( α θ) ± α ± θ cos( α ± θ) 1 θ& p θ = + p u& / g p g α sgn( θ) p = 3 g /4 R ( characteristic requency )

Rocking Initiation Ground Acceleration Amplitude Frictional Coeicient Overturning Criteria Number o Impacts beore Overturning Role o Pulse Shape Eect o Number o Pulse Cycles Peak Rocking Response (Rocking Spectra) Comparison to Actual Near-Fault Records Solving the Non-Linear Rocking Equation

Overturning criterion or hal-cycle sine pulse A g t d A g Io π = + 1 α g mgr t η= d +π η=α g/a g, = ptd Approximate solution assuming that θ(t d ) =α, tanh[ (1-t up )] = 1

Equations o motion Period o ree rocking Geometric coeicient o restitution or rigid base Overturning criterion or hal- cycle box pulse η= 1 e A g t d

β β + u(t) & g d 1 β e, 0 t t/t d Ag = β (1 e ) 1 e β(1 t/t d ), d t t t t Jacobsen & Ayre 1958 d

.. u g A g t d t d t -A g.. u g (t)=a g [1-H(t-t d )+H(t-t d )]

Dimensionless Variables = p x t d η = α / α g normalized pulse duration uplit strength τ = t / t d θ/α normalized time normalized rocking angle

Analytical Solution θτ ( ) x1+ xh( τ 1/ ) + x3h( τ 1) = 1 α η β ( β )( 1 e 4 ) 1 1 β β + τ β β τ βτ x = β( + β)[1 η(1 e )] e β( β)[1 η(1 e )] e + (1 e ) 4β 1 x e e e e e βτ β (1 τ ) β ( τ 1/) ( τ 1/) = ( ) β ( ) x e e e β(1 τ) ( τ 1) ( τ 1) 3 = ( 4 β ) + β[( β) ( + β) ]

Special Cases β θτ () 1 1 = 1 cosh( τ) 1 cosh ( τ 1) 1 H( τ 1) α η η β 0 θτ ( ) 1 η 1 4 1 1 = 1 (τ sinh[ ( τ )]) ( 4τ + sinh[ ( τ )]) H( τ ) α η η 1 (( τ 1) sinh[ ( τ 1)]) H( τ 1) η

Overturning Criterion θ a θ = α? Inadequate!

Overturning Criterion θ a & θτ ( ) = 0 (immobility) c θτ & ( ) = 0 (equilibrium) c θ& ( τc ) > 0 144444444443 strictly increasing point o inlexion! or, equivalently, θ = a at τ c

Areas o Saety & Overturning 1.0 1.0 η = α /α /α g 0.8 0.8 0.6 0.6 0.4 0.4 0. 0. S saety wall τ c τ c =1 O τ c =1/ 0.0 0.0 0 0 4 6 8 10 10 = p t d β = π

Analytical Solution (all pulse shapes) w β β 1 e (+ β) 1 1 e β +β e ( β) η =

Analytical Solution (special cases) β - η = 1 e w Housner (1963) β = 0 η w = ln[e 1] β + η = w 0

Overturning Criterion ΑΝΤΙΣΤΑΣΗ UPLIFT STRENGTH ΣΕ ΛΙΚΝΙΣΜΟ η = α / α g 1.0 0.8 0.6 0.4 0. β -π 0 π 0.0 0.0 0. 0.4 0.6 0.8 1.0 -π -π 0.8 0.6 β=0 π 0.4 π 4π 0. + 0.0 = p t d ΔΙΑΡΚΕΙΑ PULSE DURATION ΠΑΛΜΟΥ 1 /

Areas o Saety & Overturning θ cr = a 1.0 0.8 S 1 1 t c η = α /α g 0.6 t m = t d 0.4 O 3 O t c = t d / S 0. O 1 0.0 0 4 6 8 10 = p t d t c = t d β = π

Õ «œ œàà««uplift STRENGHT η = α /α g 1.0 0.8 0.6 0.4 0. 0.0 Limits o Overturning Ûˆ ÎÂÈ saety Ì ÙÒÔapplei appleôı 1 td<ti<td ti>td Mode 1 Mode 0 Ì ÙÒÔapplei appleôı 0 0 1 3 4 5 ƒ Àà œ PULSE DURATION = p t d

Rocking Response O S 0 1 time rocking angle θ/α pulse acceleration uplit peak response θ=α impact

Examples o Rocking Response ΛΙΚΝΙΣΤΙΚΗ NORMALIZED ΑΠΟΚΡΙΣΗ ANGLE : θ (t)/α 1 0 1 0 1 όριο ανατροπής saety wall 0 0 1 Ο 1 Ο Ο 3 saety wall.. θ 0 θ α. θ 0 τ up τ cr τ m 0 1 0 1 TIME : ΧΡΟΝΟΣ : τ = t / t d S S 1 τ i 0 1

1 τ < τ < 1 up m Peak Response θ &( t ) = 0 m 1 1 β τ β + β β m τm ( + β)[1 η(1 e )] e + ( β)[1 η(1 e )] e = = + + β(1 τm) β ( τm 1/) ( τm 1/) e e ( e e ) τ m 1 τ m + β + β 1+ ( ) ( )[1 (1 )] β β β + e e + β e + β η e 1 = ln + β 1 β β β 4 e e ( β) ( + β)( β + e )[1 η(1 e )]

Rocking Spectrum saety wall 1.0 overturning θ max / α β = π 0.8 0.6 0.4 0. 0.0 0.1 0.1 0.3 0.4 0.4 0.5 0.5 0.6 τ m =1 0.7 η = 0.8 0 4 6 8 10 = p t d 0.6 η=0.7 0.8

τ m < τ < 1 i ( )( ) Time o Impact θ ( t ) = 0 i 1 1+ β β β τ β β i τi η 1 e 4 β = β[( + β)[1 η(1 e )] e ( β)[1 η(1 e )] e ] + + e e e e β(1 τi) β ( τi 1/) ( τi 1/) 4β β ( ) τi 1 η y = 1 e 4 1 β β ( )( β ) τ i = 1 ln + β 1+ β ( ) ( )[1 (1 )] β = + + β + β η y e e e yy+ y y 3 1 1 y 3 + β 1 β ( ) ( )[1 (1 )] β = + β + + β η 3 y e e e

Time o Impact (Special Cases) β τ i 1 ( e 1) e (1 η) η = ln 1 η e β 0 η 1 η sinh ( τi ) sinh ( τi ) + ( τi + 1) = 0 τ = η η η η ( e e + e )( e e + e ) + 1 ln e e + e i η

8 8 Ù i = t i / t d β = π 0.1 6 0.3 0.4 4 0.5 0.6 1 0.7 0 η = 0.8 0 4 6 8 10 6 0.3 0.6 4 0.8 0.9 0.95 0.97 1 η = 0.99 0 0 1 3 4 5 β Ù i = t i / t d 8 6 4 8 0.3 0.3 0.4 6 0.4 0.5 0.5 0.6 0.6 4 0.7 0.7 1 1 η = 0.9 β 0 β = π 0 0 4 6 8 10 0.8 0.8 η = 0.9 0 0 1 3 4 5 = p t d = p t d

1.6g PCDa EMOb E04b 0.38g E05b E06b 0.705g 0.463g E07b 0.96g 0.594g NPSa 0.36g DOWa 0.1g 0.455g PTSa 0.439g STGa 0.51g 0.515g ERZb LUCa 0.571g JFAa RRSa 0.897g SCGb 0.89g 0.77g 0.455g 0.838g 0.416g SCHa NWSa 0.46g TCU068b 1 g 0.333g TCU075a TCU076b 10 s

η w =-/ ln[e / -1] Õ UPLIFT œ «STRENGTH œ œàà««η = α /α g 1.0 0.8 η w =3/4 0.6 0.4 0. 0.0 0 4 6 8 10 η = α /α g, rect 6 5 4 3 1 rectangular pulse ÔÒËÔ ÌÈÍ Ú apple ÎÏ Ú 0 0 4 6 8 10 PCDa EMOb E04b E05b E06b E07b NPSa DOWa PTSa STGa ERZb LUCa JFAa RRSa SCGb SCHa NWSa TCU068b TCU075a TCU076b w =3/4 ƒ PULSE DURATION Àà œ = p t d ƒ Àà œ = p t d PULSE DURATION

t I θθ && dt+ mgr sin[ α θ] dθ = mr u& cos[ α θ] & θdt o θ to θo to 14 43 1 4 44 4 4 43 1 4 4 4 4 4 4 3 change in kinetic energy change in potential energy t g work o base acceleration 1 t [ & ] t + [cos[ ]] t = & cos[ ] o to to g t I θ mgr α θ mr u α θ & θdt critical system t = t, t, θ = 0, θ = α, & θ = & θ = 0 o up o cr o cr mgr(1 cos α) = mr u& cos[ ] & g α θ θdt t up o

α η = (, )cos[ (1 )] 1 cos & & w ψ g β τ α χ χdτ α τ up ψ& ( β, τ ) = u& / A, (,,,, ) = ( )/ g g g η, lin = ψ & ( β, τ) & χdτ w τ up g χβτη α θτ α α cos[ α(1 % χ)] η, = w non lin ψ & g( β, τ) & χdτ 1 cosα w τ up

ηw, non lin α α χ η wlin, = cos[ (1 %)] (1 cos α) ηw,non-lin / ηw,lin 1.0 0.95 0.9 0.8 0.7 0.6 α 0 10 o 0 o 30 o 45 o 0.5 0.0 0. 0.4 0.6 %χ %χ lim 0.59 1.0 0.9 0.8 0.7 0.6 0.5 0 10 0 30 40 α : ÏÔlÒÂÚ degrees %χ lim 0.59 0. 0.3 0.4 0.5 %χ = 0.1

ηw, non lin α α η w, lin = cos[9 /10] (1 cos α) η w, non lin η w, lin = 1 α 5 ηw,non-lin/ηw,lin 1.00 0.95 0.90 0.85 =0.5 1 4 6 β 0.80 0 5 10 15 0 5 30 35 40 45 0 5 10 15 0 5 30 35 40 45 α : ÏÔlÒÂÚ degrees β = 0 β = π 0 5 10 15 0 5 30 35 40 45

Νovel analytical solutions or rocking o rigid blocks were derived They cover an ininite number o pulse shapes ranging rom a perect spike (β + ), to a perect rectangle (β - ). Rocking response was ound to exhibit complex patterns even or highly idealized pulses like the ones at hand. Response is controlled by two dimensionless pulse: dimensionless pulse duration and dimensionless uplit strength η

Analytical ormulae were derived or distinguishing between Sae (S) and Overturning (O) regions Regions O may be divided into : O 1 corresponding to instability in response during rising pulse, O corresponding to instability in response during decaying pulse, and O 3 where critical angle is attained ater pulse. Regions S may be subdivided into:s 1 or peak rocking response attained during pulse and S or peak response attained ater pulse. O 1 & O are applicable to ground motions with time histories that extend beyond the end o the pulse.

A complete overturning criterion was established by means o a simple closed-orm expression Simple solutions or peak rocking response were derived in terms o peak angular displacement and corresponding time. The ull non-linear equations o motion were investigated; they always lead to more stable systems than the linearized equations.

Voyagaki E., Psycharis I.N., Mylonakis G. (013) Rocking response and overturning criteria or ree standing rigid blocks to single lobe pulses Soil Dynamics & Earthquake Engineering, 46: 85 95.