21 世纪经济管理精品教材 金融学系列 金融经济学原理 [ 美 ] 马成虎著 清华大学出版社

Σχετικά έγγραφα
Σε αυτό το πλαίσιο, η κεντρική ερώτηση που δίνει κίνητρο σε αυτήν την εργασία είναι... 据此背景, 写这篇论文要解决的核心问题是... Συγκεκριμένο επιχείρημα που εξηγεί το θ

" " (495)

Do I have to show copies Χρειάζεται of the original να φέρω documents or the original τα αντίγραφα; documents themselves? 询问你是否需要提供原件还是复印件 μαζί μο Wha

本产品仅拟用于工业环境 须由合格人员执行安装 调试和维护 如需额外产品信息和详细安装说明, 包括并下载和 注意事项, 请访问

Πεκίνο, 30 Μαΐου 2016 Α.Π.: Φ. 2430/695

希腊语 页面

Ms. Celia Jones TZ Motors 47 Herbert Street Floreat Perth WA 6018 澳大利亚地址格式 : 收信人公司名街道号码 + 街道名省名城市名 + 邮编 Miss L. Marshall Aquatechnics Ltd. 745 King St

页面

Din acest considerent, Σε întrebarea αυτό το πλαίσιο, centrală η înκεντ jurul căreia se articulează κίνητρο întreaga σε αυτήν lucrare την εργασ este..

我 国 春 播 小 麦 淀 粉 糊 化 特 性 研 究

Ms. Celia Jones TZ Motors 47 Herbert Street Floreat Perth WA 6018 澳大利亚地址格式 : 收信人公司名街道号码 + 街道名省名城市名 + 邮编 Miss L. Marshall Aquatechnics Ltd. 745 King St

Ms. Celia Jones TZ Motors 47 Herbert Street Floreat Perth WA 6018 澳大利亚地址格式 : 收信人公司名街道号码 + 街道名省名城市名 + 邮编 Miss L. Marshall Aquatechnics Ltd. 745 King St

Συγχαρητήρια για τον αρραβώνα Συγχαρητήρια Έχετε για τον αρραβ ήδη αποφασίσει την ημέρα αποφασίσει του γάμου την σας; ημέρα του γ 用于恭喜你很熟悉的最近刚订婚的夫妇并询问

cont personal cont comun contul pentru copii προσωπικός λογαριασμός κοινός λογαριασμός παιδικός λογαριασμός cont curent în monedă străină συναλλαγματι

我需要提供材料原件还是复印件? Tôi phải trình bản sao hay tài liệu gốc? Ερώτηση αν χρειάζεται να φέρετε τα πρωτότυπα έγγραφα ή τα αντίγραφα 请问该所大学的入学要求是什么? Những yêu

Tengo que presentar los Χρειάζεται documentos να φέρω μαζί μο originales o es sufuciente τα αντίγραφα; con sus fotocopias? 询问你是否需要提供原件还是复印件 Cuáles son

Σε αυτό το πλαίσιο, η κεντρική ερώτηση που δίνει κίνητρο σε αυτήν την εργασία είναι... 据此背景, 写这篇论文要解决的核心问题是... Afirmația specifică care expune tema st

文件 - 个人信息 Πώς σας λένε; 询问某人的名字 What is your name? Μπορείτε να μου πείτε τον Could τόπο you και please tell me y ημερομηνία γέννησης σας; 询问某人的出生日期和地点

Σας γράφουμε σχετικά με... We are writing to you rega 正式, 代表整个公司 Σας γράφουμε αναφορικά We με... are writing in connecti 正式, 代表整个公司 Σχετικά με... 正式,

黄 河 断 流 对 黄 河 三 角 洲 生 态 环 境 的 影 响

I refer to your advertisement Αναφέρομαι in dated στη διαφήμιση. σ 用于解释在何处看到招聘信息的标准格式 I read your advertisement Διάβασα for an την αγγελία σας γι expe

Σας γράφουμε σχετικά με... Chúng tôi xin viết 正式, 代表整个公司 Σας γράφουμε αναφορικά Chúng με... tôi viết thư 正式, 代表整个公司 thư liê này để Σχετικά με... 正式, 以

επιπλωμένο 公寓条件 μη επιπλωμένο 公寓条件 amueblado sin amueblar Επιτρέπονται τα κατοικίδια; Se permiten mascotas? 询问是否可以养宠物 Πώς μπορώ να αλλάξω ενέργειας; 询

正式, 代表整个公司 Chúng tôi viết thư này Σας để liên γράφουμε hệ với αναφορικά ông/bà με. về... 正式, 代表整个公司 Liên quan tới việc/vấn Σχετικά đề... με... 正式, 以所联

...μου ζήτησε να γράψω...has μια συστατική asked me to write a επιστολή για την αίτηση accompany του για... his και application χαίρουμε πολύ που έχω

Συγχαρητήρια για τον αρραβώνα Congratulations σας! Έχετε on your en ήδη αποφασίσει την ημέρα decided του γάμου upon σας; big day yet? 用于恭喜你很熟悉的最近刚订婚的夫

Nous vous écrivons concernant... Σας γράφουμε σχετικά με... 正式, 代表整个公司 Nous vous écrivons au sujet Σας γράφουμε de... αναφορικά με. 正式, 代表整个公司 Suite à

IDEAL ITT130W(CE-BC100-S) 希腊文说明书. 重量 (g) WEIGHT. 比例 scale 0 1:1 第页 NO. OF SHEETS

Συγχαρητήρια για τον αρραβώνα σας! Έχετε ήδη αποφασίσει την ημέρα του γάμου σας; 恭喜你们订婚, 大喜之日确定了吗? Συγχαρητήρια για ένα νεοαρραβωνιασμένο ζευγάρι, που

Συγχαρητήρια για τον αρραβώνα Felicitaciones σας! Έχετε por ήδη αποφασίσει την ημέρα fecha του para γάμου el σας; gran 用于恭喜你很熟悉的最近刚订婚的夫妇并询问婚礼何时举行 su c

Συγχαρητήρια για τον αρραβώνα Parabéns σας! pelo Έχετε noivado. Voc ήδη αποφασίσει την ημέρα será του o γάμου grande σας; dia? 用于恭喜你很熟悉的最近刚订婚的夫妇并询问婚礼何

Sra. Celia Jones TZ Motors 47 Herbert Street Floreat Perth WA 6018 澳大利亚地址格式 : 收信人公司名街道号码 + 街道名省名城市名 + 邮编 Srta. L. Marshall Aquatechnics Ltd. 745 King

bab.la 手册 : 个人 祝福 英语 - 希腊语

Van harte gefeliciteerd Συγχαρητήρια met jullie verloving. για τον αρραβ Hebben jullie al een datum αποφασίσει voor de την trouwdag ημέρα του γ geprik

ήδη αποφασίσει την ημέρα Blahopřejeme του γάμου σας; k vašemu zasn rozhodli, kdy se bude kona 用于恭喜你很熟悉的最近刚订婚的夫妇并询问婚礼何时举行 祝福 - 生日和纪念日 Χρόνια πολλά! Vše

Tillykke med jeres forlovelse. Συγχαρητήρια Har I για besluttet τον αρραβ je for en dato endnu? αποφασίσει την ημέρα του γ 用于恭喜你很熟悉的最近刚订婚的夫妇并询问婚礼何时举行

Celia Jones 47 Herbert Street Floreat Perth WA 6018 Αυστραλέζικη γραφή διεύθυνσης: Αριθμός οδού + όνομα οδού Όνομα επαρχίας Όνομα πόλης + ταχυδρομικός

Μπορείτε να μου δώσετε Puede απόδειξη darme για un αυτή resguardo την αίτηση; 询问你是否能拿到申请表的回执 文件 - 个人信息 Πώς σας λένε; 询问某人的名字 Cómo se llama usted? Μπορ

Mouse anti-double stranded DNA antibody (IgM)ELISA Kit

Ms. Celia Jones TZ Motors 47 Herbert Street Floreat Perth WA 6018 澳大利亚地址格式 : 收信人公司名街道号码 + 街道名省名城市名 + 邮编 Miss L. Marshall Aquatechnics Ltd. 745 King St

文件 - 个人信息 Πώς σας λένε; 询问某人的名字 Vad heter du? Μπορείτε να μου πείτε τον Kan τόπο du berätta και för ημερομηνία γέννησης σας; 询问某人的出生日期和地点 mig var Πού

Puede darme un resguardo Μπορείτε de la να solicitud? μου δώσετε από 询问你是否能拿到申请表的回执 文件 - 个人信息 Cómo se llama usted? 询问某人的名字 Πώς σας λένε; Me puede deci

10th Annual Capital Link Shipping, Marine Services & Offshore Forum

Ms. Celia Jones TZ Motors 47 Herbert Street Floreat Perth WA 6018 澳大利亚地址格式 : 收信人公司名街道号码 + 街道名省名城市名 + 邮编 Miss L. Marshall Aquatechnics Ltd. 745 King St

ERC at "Summer Davos" meeting, Tianjin, China. Media coverage from 10/09/2014 to 26/09/2014

...μου ζήτησε να γράψω...m'a μια συστατική demandé de rédiger επιστολή για την αίτηση recommandation του για... και pour χαίρουμε accomp πολύ που έχω


文件 - 个人信息 Πώς σας λένε; 询问某人的名字 Mikä sinun nimesi on? Μπορείτε να μου πείτε τον Voisitko τόπο και kertoa minulle sy ημερομηνία γέννησης σας; syntymäai

Bạn tên gì? 你叫什么名字? Για να ζητήσετε το όνομα ενός ατόμου Cho tôi biết nơi ở và ngày sinh của bạn được không? Για να ζητήσετε τον τόπο και ημερομηνία γ

超越摄动 同伦分析方法导论 廖世俊著 陈晨徐航译

页面

古希腊文化 古希腊对西方文化影响 : 历史 / 哲学 / 科学 / 文学 / 数学 / 圣经 / 艺术 / 单词. Homer Ὅμηρος Iliad Ιλιάς :

Ms. Celia Jones TZ Motors 47 Herbert Street Floreat Perth WA 6018 Αυστραλέζικη γραφή διεύθυνσης: Όνομα παραλήπτη Όνομα εταιρίας Αριθμός οδού + όνομα ο


海员健康检查及证书颁发 11 及 12 条规定, 就海员健康检查及证书颁发行使权力发出如下通告 :

柳 敬 亭 从 历 史 人 物 到 戏 曲 人 物

Felicitaciones por su compromiso. Ya tienen una fecha para el gran evento? 恭喜你们订婚, 大喜之日确定了吗? Συγχαρητήρια για ένα νεοαρραβωνιασμένο ζευγάρι, που ξέρετ

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x

古希腊文化. Ὅμηρος. Homer. Iliad Ιλιάς : Ἕκτωρ 赫克托耳. Odysseia Ὀδύσσεια : 历史 / 哲学 / 科学 / 文学 / 数学 / 圣经 / 艺术 / 单词. Ἀχιλλεύς 阿基琉斯 Ἀγαμέμνων, 阿伽门农 Ελένη Πάρις

第三课 Μάθηµα 3. 替换练习 Αλλάξτε τις υπογραµµισµένες λέξεις µε τις λέξεις που βρίσκονται στα πλαίσια 他 她 他们 你们 王力 杨尼斯 他 她 他们 我们 王力 杨尼斯

CTN1D AK3 2016/

ConstructionofSeveralDeterministic Quantum Channels

The News of Window Display WINTER COLLECTION. Window 2 10/03/2014 PAGE 1

1 分社接到下列审核申请后, 应及时将申请传真总部认证处, 由总部认证处上报主管当局申请授权, 经主管当局授权后才能安排审核

...μου ζήτησε να γράψω... μια bat συστατική mich um ein Empfeh επιστολή για την αίτηση Bewerbung του για... als και... χαίρουμε. Ich fr πολύ που έχω α

HDVG1 070-A

FIXA. Design and Quality IKEA of Sweden

Życie za granicą Dokumenty. chiński

新约希腊语基础语法 习作簿. Basic Grammar of New Testament Greek Workbook

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

DVG1 070-A

AVG1 070-A

Βύσμα Ταχείας Σύνδεσης x 2 Στερεώστε το Κλιπ AMD (E) στη βάση του Waterblock (A) με τις βίδες (C).

Ταξίδι Γενικά. κινεζικά

...ένα διπλό δωμάτιο. (...éna a double dipló room. domátio.) 供两个人居住的房间...ένα μονό δωμάτιο. (...éna a single monó domátio.) room. 供一个人居住的房间...ένα δωμάτ

2 25/08/2015 PAGE

07/03/2017 PAGE

BSD5500 ΗΛΕΚΤΡΙΚΟ ΚΑΤΣΑΒΙΔΙ. Owner s manual. Μετάφραση του πρωτοτύπου των οδηγιών χρήσης

2 12/01/ PAGE

The News of Window Display SUMMER COLLECTION. Window 1 11/03/2013 PAGE 1

25/10/ PAGE


ΕΠΙΗΜΗ ΕΦΗΜΕΡΙΔΑ ΣΗ ΚΤΠΡΙΑΚΗ ΔΗΜΟΚΡΑΣΙΑ

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Art Art Art Art Art Art Art Art Art Art

1 10/11/2015 PAGE

26/07/2016 PAGE

06/09/2016 PAGE

The News of Window Display SUMMER COLLECTION. Window 1 13/05/ PAGE 1

07/02/2017 PAGE

24/01/2017 PAGE

CRV1A 2016/

d 2 y dt 2 xdy dt + d2 x

Εκτυπωτής παραγωγής Designjet T ιντσών. Νομικές πληροφορίες

08/11/2016 PAGE

Transcript:

21 世纪经济管理精品教材 金融学系列 金融经济学原理 [ 美 ] 马成虎著 清华大学出版社 北京

内容简介本书较为系统地介绍了金融经济学基础理论及其在资产定价建模中的应用, 从投资者风险偏好和跨期偏好特征出发, 探讨了不同偏好下的投资者交易行为, 以及由不同投资者构成的 完全竞争市场均衡状态下的证券定价机制 从 Markowitz 静态组合投资理论, 到 Epstein-Zin 递归效用下的动态最优交易策略 ; 从 Sharpe-Lintner 单期均衡资产定价模型 (CAPM) 到影子 -CAPM 动态资产定价模型 ; 从期望效用设定下以社会总消费增长率为定价因子的基于消费的资产定价模型 (C-CAPM) 到非期望效用设定下的跨期多因子资产定价模型 ; 从不依赖于偏好的无套利定价方法到基于偏好的均衡定价理论 ; 从风险偏好到风险测量再到风险管理 ; 从错综复杂的多人经济到基于代表性投资者的单人经济 ; 从股票定价到利率期限结构再到衍生品定价 ; 从股票溢价到无风险利率之谜, 再到期权价格的信息含量贯穿始终的是作者对经典资产定价理论的理解 思考和综合, 其中不乏作者本人在该领域的一些最新研究成果 本书封面贴有清华大学出版社防伪标签, 无标签者不得销售 版权所有, 侵权必究 侵权举报电话 :010-62782989 13701121933 图书在版编目 (CIP) 数据金融经济学原理 /[ 美 ] 马成虎著. 北京 : 清华大学出版社,2016 (21 世纪经济管理精品教材 金融学系列 ) ISBN 978-7-303-44315-5 Ⅰ.1 金 Ⅱ.1 马 Ⅲ.1 金融学 - 高等学校 - 教材 Ⅳ.1F830 中国版本图书馆 CIP 数据核字 (2016) 第 164365 号 责任编辑 : 杜星 封面设计 : 汉风唐韵 责任校对 : 王荣静 责任印制 : 出版发行 : 清华大学出版社 网 址 :http://www.tup.com.cn,http://www.wqbook.com 地 址 : 北京清华大学学研大厦 A 座 邮 编 :100084 社总机 :010-62770175 邮 购 :010-62786544 投稿与读者服务 :010-62776969,c-service@tup.tsinghua.edu.cn 质 量 反 馈 :010-62772015,zhiliang@tup.tsinghua.edu.cn 课 件 下 载 :http://www.tup.com.cn,010-62770175 转 4506 印刷者 : 店装订者 : 店 经 销 : 全国新华书店 开 本 :185mm 260mm 印 张 :16 插 页 :1 字 数 :385 千字 版 次 :2016 年 8 月第 1 版 印 次 :2016 年 8 月第 1 次印刷 印 数 :0~3000 定 价 :39.00 元 产品编号 :063302-01

(Adam Smith, 1776)

ii 20 60 Sharpe-Lintner (Sharpe 1964 Lintner 1965) (CAPM) 70 Black-Scholes (Black and Scholes 1973) 80 90 Ho and Lee (1986) Heath Jarrow and Morton (HJM 1992) 2010 (#71271058) 2015 12

1...1 1.1...1 1.1.1...1 1.1.2...2 1.1.3...2 1.2...8 1.3...10 1.4...13 1.5...14 1.6...15 1.7...17 1.8...19 1.8.1...20 1.8.2...24 1.8.3...25 1.8.4...27 1.9...28 2...29 2.1...29 2.2...33 2.2.1 -...33 2.2.2 1...34 2.2.3...35 2.2.4 - -...37 2.2.5 2...38 2.2.6...39 2.3 CRR...42 2.3.1...42 2.3.2 CRR...42

iv 2.3.3 Laplace...43 2.3.4 Black Scholes...44 2.3.5...46 2.3.6...47 2.3.7...49 2.4 Ho Lee...51 2.4.1...51 2.4.2...52 2.4.3...54 2.4.4 Ho Lee...54 2.4.5...56 2.4.6...57 2.4.7...57 2.4.8...58 2.4.9...58 2.4.10...59 2.5 APT...60 2.6 β...61 2.7...63 3...64 3.1 Stone...64 3.2...65 3.3...66 3.3.1 VaR...66 3.3.2 C-VaR...68 3.4...70 3.4.1 Arrow Pratt...71 3.4.2 Arrow Pratt...71 3.4.3...72 3.5...74 3.6...75 3.6.1 VaR...76 3.6.2...76 3.6.3 C-VaR...78 3.6.4...80 3.7...82 3.8...84

v 4...85 4.1...85 4.1.1...85 4.1.2...86 4.1.3...87 4.2 MPS...89 4.2.1...89 4.2.2...91 4.2.3...91 4.2.4 Black...92 4.2.5...93 4.2.6...95 4.2.7 Tobin...96 4.2.8 HJ...96 4.2.9...98 4.2.10...100 4.3...102 5 MPS CAPM...103 5.1...103 5.2 CAPM...104 5.3 CAPM...105 5.4 CAPM...106 5.4.1 CRR CAPM...107 5.4.2 CAPM...108 5.4.3 CAPM...109 5.5...112 5.6 CAPM...113 5.6.1 CAPM...113 5.6.2 CAPM...114 5.6.3 CAPM...114 5.6.4 APT CAPM...114 5.6.5 CAPM...116 5.7...117 6...118 6.1...118 6.2...121 6.2.1...121 6.2.2...121

vi 6.2.3...125 6.2.4...127 6.2.5...128 6.2.6...132 6.3...134 7 MPS...135 7.1...135 7.2 I-CAPM...136 7.3...138 7.3.1...139 7.3.2...140 7.3.3...141 7.3.4...141 7.3.5 W-CAPM I-CAPM...142 7.3.6 Kreps-Porteus...143 7.4 I-CAPM...144 7.5 I-CAPM...144 7.6...145 8...146 8.1...146 8.2...148 8.3...149 8.3.1...150 8.3.2 Markov...156 8.4 MPS...162 8.4.1...163 8.4.2...165 8.4.3...165 8.5...166 9...167 9.1 MPS -CAPM...167 9.1.1...167 9.1.2...168 9.1.3 -CAPM...170 9.1.4 -CAPM CAPM...171 9.2...172 9.2.1...172 9.2.2...173

vii 9.2.3...175 9.2.4...176 9.2.5 C-CAPM EZ...177 9.3...177 10...178 10.1...178 10.2...179 10.3...181 10.3.1...181 10.3.2...186 10.3.3...189 10.4...191 10.4.1...192 10.4.2...193 10.4.3 Black Scholes...194 10.4.4...195 10.4.5...198 10.4.6...201 10.4.7...203 10.5...203 A...205 A.1...205 A.2...205 A.3...206 A.3.1...206 A.3.2...207 A.3.3...209 A.3.4...209 A.3.5 L p -...210 A.4...210 A.4.1...210 A.4.2 Markov Markov...212 A.4.3 Markov...213 B...214 B.1...214 B.2...215 B.3...216 B.4 Hilbert...217

viii B.5 Riesz...217 B.6...218 B.7...219 B.8 Schwartz...220 B.8.1 S (R) L p (R)...221 B.8.2 Dirac...221 B.8.3...222 B.8.4...222 C...223 C.1 Weierstrass...223 C.2...224 C.3 Kuhn-Tucker...225 C.4...226 D Laplace...228 D.1...228 D.2 Laplace...229 D.3 L{ } L 1 { }...229 D.4 Laplace...230 D.5...231...233

1.1 1.1.1 M1 M2

2 1.1.2 Ω ω Ω T T = {0, 1,,T} T =[0,T] 0 T< F = {F t } t T F t Ω t ( t ) t ω F t (ω) t ω P ( ) Ω T Ω {x t } t T x t t F t - t x t F t - {x t } t T F x P E P [x] = x (ω)dp(ω) t F t E P [x F t ] E [x] E t [x] 1.1.3 ( ) Ω

1 3 T Ω F P j J { δ j (t, ω) } P1 P2 P3 P4 (P1) (P2) (P3)

4 1.1 u (c 0,c 1 )=u (c 0 )+βe [u (c 1 )] (1.1) u > 0 u < 0 0 <β<1 c 1 Ω u (c 0,c 1 ) >u(c 0,c 1) (c 0,c 1 ) (c 0,c 1) β β c 0 c 1 c 0 c 1 u 0 (c 0,c 1 ) u 1 (c 0,c 1 ) ɛ u 0 (c 0,c 1 ) ɛ + o (ɛ) (c 0,c 1 ) MRS u (c 0,c 1 )= u 1 (c 0,c 1 ) u 0 (c 0,c 1 ) u(c0,c 1)= (1.2) (c 0,c 1 ) ɛ MRS u (c 0,c 1 ) ɛ + o (ɛ) (c 0,c 1 ) ρ = dlnmrs u (c 0,c 1 ) dlnc 0 /c 1 u(c0,c 1)= (1.3) ɛ ρɛ + o (ɛ) (c 0,c 1 ) c 1 (c 0, E [c 1 ]) (c 0,c 1 ) 1.1 c 1 E [c 1 ] c 1

1 5 Kreps and Porteus (1978) Epstein and Zin (1989) Chew and Epstein (1989) Kahneman and Tversky 1979 Gul (1991) 1.2 c = {c t } t 0 {V t (c)} V t (c) =A (c t, CE [V t+1 (c)]), t =0, 1, (1.4) A (, ) CE t A (, ) CE[ ] A (c, v) =(c γ 0 + βvγ ) 1/γ, CE [x] =(E [x α ]) 1 α (1.5) β (0, 1), 0 α, γ < 1 KP David Kreps Evan Porteus KP ( ) (1) ρ =1 γ (2) α 1 α KP γ α 1.3 A (c, v) CE[c 1 ] H : R R R H (1) H (x, x) 0 (2) H C 2,1 (R R) H 1 > 0 H 2 < 0 H x CE[x] E [H (x, CE [x])] = 0 (1.6) CE [x] H (x, y) x ( ) x H (x, y) =x δ α α yα α ( [ ] ) 1/α E x α+δ CE [x] = E [x δ ] δ =0 KP dq dp (ω) (ω) =xδ Q E [x δ Q ] CE [x] =(E Q [x α ]) 1/α

6 δ<0 Q x<e [ 1/δ x δ] 1.4 Kahneman Tversky 1979 { x X, x X u (x) = (1.7) λ (x X ), x < X λ 1 X z =1 {x X } Q λp (z =0) Q (z =0)= P (z =1)+λP (z =0) =1 Q (z =1); Q ( z) =P ( z),z {0, 1} λ 1 Q {z =0} λ a = P (z =1)+λP (z =0) [1,λ] E [u (x)] = a (E Q [x] X ) ae Q [x]+(1 a) X, E Q [x] X CE [x] = a ( λ E Q [x]+ 1 a ) (1.8) X, E Q [x] <X λ a [1,λ] CE[x] E Q [x] X Q E Q [x] X [ E P [x]+(λ 1) E P (x X )1 {x<x }], EQ [x] X CE [x] = E P [x]+ 1 λ λ E [ (1.9) P (x X )1 {x X }], EQ [x] <X CE[x] E P [x] Frank Gul 1.5 CE[c 1 ] H H (x, y) = { u (x) u (y), x y λ [u (x) u (y)], x < y (1.10)

1 7 λ 1 u (x) = xα,α 1 α z =1 {x CE[x]} Q λp (z =0) Q (z =0)= P (z =1)+λP (z =0) =1 Q (z =1) Q ( z) =P ( z),z {0, 1} {z =0} Q P λ E [H (x, CE [x])] = 0 CE [x] =(E Q [x α ]) 1 α E Q [x]. (1.11) {z =0} {x <CE [x]} 1.11 Q - 1.11 {x <CE [x]} E Q [x] E [x] CE [x] E [x] K- 1.6 K- K- P Δ Δ Savage 1954 Gilboa and Schmeidler 1989 K- Gilboa-Schmeidler ) CE [x] =u 1 (min Q Δ E Q [u (x)] =min Q Δ CE Q [x] (1.12) CE Q [x] =u 1 (E Q [u (x)]) u Q x Savage Q CE [x] =u 1 (E Q [u (x)]) (1.13)

8 1.3 1.4 1.5 Savage 1.6 1.4 1.5 P λ Λ λ Q Δ={Q (λ) :λ Λ} 1.12 x ) CE [x] =u (min 1 E Q(λ) [u (x)] (1.14) λ Λ Allais [Allais (1953)] Ellsberg [Ellsberg (1961)] Crawford (1986) Epstein (1992) Machina (1992) 1.2 J +1 j =0, 1,,J ( ) 0 δ t = [ ] δt 0,δt 1,,δt J t δ j t (ω) t ω j δ = {δ t } t 1 F p t = [ p 0 t,p1 t, ],pj t t p = {pt } t 0 F t φ t = [ ] φ 0 t,φ 1 t,,φ J t t F φ = {φ t } t 0 j φ j t 0 φ j t Φ

1 9 φ d φ 0 = φ 0 p 0 φ d φ t = φ t 1 (p t + δ t ) φ t p t (1.15) t =1, 2,,n d φ t = φ t 1 (p t p t 1 + δ t ) }{{} [φ t p t φ t 1 p t 1 ] }{{} φ t 1 (p t p t 1 + δ t ) + φ t p t φ t 1 p t 1 d φ t 0 d φ t < 0 φ d φ t =0 φ t t φ t p t = φ 0 p 0 + φ s 1 (p s p s 1 + δ s ) (1.16) s=1 t t D (p, δ) D (p, δ) = { d φ Φ d φ = d } (1.17) D d D d D d D d =(d 0,d 0 ) d 0 M (p, δ) d 0 M φ Φ d φ 0 = d 0 1.7 t =1 {a, b, c} δ 1 = [110, 110, 110] δ 2 =[50, 100, 150] p 1 = p 2 = 100 M δ 1 δ 2

10 e = {e t } t 0 ( ) e 1.1 e c e φ t c t = e t + d φ t (1.18) c φ B (p, δ; e) 1.1 B (p, δ; e) c B (p, δ; e) c e D c φ Φ φ t p }{{} t = t φ s 1 (p s p s 1 + δ s ) + }{{} s=1 t (e s c s ) }{{} s=0 (1.19) 0 t =0, 1,,n =0 s=1 (1.19) t 1.3 c c c c V (c) 0 sup {V (c) :c B (p, δ; e)} (1.20) V (c) =u (c 0,c 0 ) c 0 t =1, 2,,n (c 0,c 0 ) u (c 0,c 0 ) c φ 0 c 0 ɛ j ɛ p j ( ) 0 δj ɛ c 0 ɛ, c 0 + δj ɛ p j 0 p j 0

( ) 0 u c 0 ɛ, c 0 + δj ɛ x y p j 0 u ( c ) 0,c 0 { } ( = u 0 c 0,c ( 0) u 0 c 0,c ) δ j 0 ɛ + o (ɛ) t y t x t y t = t T {0}x ω Ω ( c 0,c 0) p j 0 1 11 x t (ω) y t (ω) ɛ p j 0 = π (c ) δ j (1.21) j π t (c )= u ( t c 0,c 0) ( ) u 0 c 0,c t 0 0 d D d 0 + π (c ) d 0 = 0 (1.22) (1.21) D S1 ψ = {ψ t } t 1 d D d 0 = ψ d 0 (1.23) j =0, 1,,J p j 0 = ψ δj S1 1.1 V (c) =u (c 0,c 0 ) S1 c π (c ) ψ M (1.24) c (1.20) V c B (p, δ; e) 1.24 c B (p, δ; e) c c =(c e) (c e) D S1 c 0 c 0 = ψ ( c 0 c 0) V (c) =u (c0,c 0 ) V (c) V (c ( ) u 0 c 0,c 0) (c0 c ( 0)+u 0 c 0,c ( 0) c 0 c ) 0 ( = u 0 c 0,c 0)[ c0 c 0 + π (c ) ( c 0 c )] 0 ( = u 0 c 0,c 0)[ c0 c 0 + ψ ( c 0 c 0)] =0

12 1.24 c 1.1 S1 S1 ψ ψ max {u (c 0,c 0 ):c 0 e 0 + ψ (c 0 e 0 )=0} (1.25) c (ψ) π (c (ψ)) = ψ c (ψ) e D S1 ψ c = c (ψ ) φ 1.8 t =1 {l, m, h} δ 1 = [110, 110, 110] δ 2 =[50, 100, 150] p 1 = p 2 = 100 e 0 = 1 000 u (c 0,c 1 )=lnc 0 +0.3(lnc 1l +lnc 1m +lnc 1h ) S1 2 ψ l 11 1 ψ m = 12 + ψ h ψ h 11 2 (1.26) 1 0 ψ h 2 11 6 11 1.25 c 1l = 0.3c 0 ψ l,c 1m = 0.3c 0 ψ m,c 1h = 0.3c 0 ψ h (1.27) c 0 = 1000 1.9 [c 1l,c 1m,c 1h ] 0.3c 0 ψ l 0.3c 0 ψ m 0.3c 0 ψ h 110 = x 1 110 + x 2 110 50 100 150 (1.28)

1 13 1 1 1 ψ l 1 1 2 = 0 (1.29) ψ m 1 1 3 1.26 1.29 ψ h = 8+2 ( 7 2 33 11, 6 ) 11 1.27 c 1l = 825 ( 7 1 ),c 1m = 275 ( 5+ 7 ),c 1h = 550 ( 4 7 ) ; 3.8 3.8 1.9 1.28 1 2 x 1 = 11 7 17 0.8 1.9,x 2 = 11 ( ) 11 5 7 4 1.9 ψ h 1.4 S1 1.2 φ t 0 d φ t 0 1 M1 M2 M3 M3 φ d φ t 0 t 1 p φ 0 = φ 0 p 0 t 1 d φ t 0 pφ 0 {r t } t 0 1.2 M3 φ T 1 [ ] p φ 0,pφ T =[ φ 0 p, φ T p T ] 0

14 M3 φ d φ t 0, 1 t T pφ 0 = φ 0p 0 0 φ φ d φ t 0( ) T T T (1 + r t ) (1 + r T 1 ) d φ t S1 1.2 M3 S1 S1 M3 M3 S1 M3 D C + = {c : c t 0, t 0} c = C + = R m + m D ( B.4 A) ϕ R m c C + d D ϕ c ϕ d c = d = c = d D ϕ d 0 d D ϕ d =0 c ϕ c>0 ϕ t ψ t = ϕ t ϕ 0 d 0 = ψ t d t, d D φ p φ 0 = ψ t d φ t t 1 t 1 6 6.1 1.2 ( ) D t=1 1.5 ( E = {Ω, F,δ} ; { ) u i,φ i 1,ei} (1.30) i I Ω δ I i u i i φ i 1 e i δ p φ i c i e i u i F- 1.3 E p { c i} i I { φ i} i I (1) i I φ i = i I φ i 1

1 15 (2) (p, δ) W0 i = p 0 φ i 1 + e i 0 i φ i c i c i max { u i (c) :c B ( p, δ; W i 0,e i)} (1.31) (1) (2) ( c i t e i ( t) = c i 0 e i ) 0 =0 i I i I φ i 1δ t i I 1.3 E F ( W0 i,ei) i I Magill and Quinzii (1996, 10.5) Magill and Quinzii (1996) 1.3 1.1 p ψ S1 p j 0 = ψ δj,j=0, 1,,J (1.32) ( 1.10) 1.6 E = ( {Ω, F,δ} ; { ) u i,φ i 1,ei} i I 1.4 { c i} i I ( c i 0 e i ( 0) 0 c i 0 e i 0) φ i 1 δ i I i I i I { c i} Pareto (P.O.) i i I { d i} ( i I ui d i) u ( i c i) i Pareto { d i} ( i I i ui d i) >u ( i c i) { c i} Pareto i I

16 1.4 { c i} i I ( Pareto i I c i MRS i c i 0,c 0) i ψ i I ( MRS i c i 0,c i 0) = ψ 0 (1.33) ( π i =MRS i c i 0,c 0) i i k (t, ω) πt i (ω) >α>πk t (ω) i k i ɛ k ɛ α t ω ɛ i ( u i c i 0 ɛ, ci 1,,ci t + ɛ ) α,ci t+1, u i ( c i ) 0,ci 0 = u i c 0 ( c i ) ɛ + 1 α ui c t(ω) ( c i ) ɛ + o (ɛ) > 0 k Pareto Pareto ψ 0 D R M F 0 ξ M ψ 0 = ψ+ ɛξ ɛ ɛ ψ 0 0 d M ψ d = ψ 0 d ψ 0 i π i ξ i M π i = ψ+ ξ i 1.4 Pareto c i e i i I Pareto Pareto Pareto 1.5 { c i} Pareto i I { } d i i I (1) d i e i D, i I (2) i u ( i d i) u ( i c i) i 1.5 { c i} i I Pareto ψ 0 ξ i M i MRS i ( c i 0,c i 0) = ψ + ξ i 0 (1.34) { d i} 1.5 i I (1) (2) 2 i

1 17 p { c i} i I S1 ψ 0 1 d i e i D φ i d i 0 = φ i δ + e i 0 0 ψ ( d i 0 e 0) i d i 0 + ψ ( d i 0 ( 0) ) ei u d i >u ( c i) c i d i 0 + ψ ( d i 0 0) ei >p0 φ i 0 + ei 0 = ψ ( φ i δ ) + e i 0 i ( d i 0 e i ( 0) + ψ d i 0 e i 0 φi δ ) i I = i I i I ( d i 0 e i ( 0) + ψ d i 0 e i 0 φ i 1 δ ) > 0 i I { d i} i I ( (1.24) i π i =MRS i c i 0,c 0) i p d 0 M ξ i d 0 = π i d 0 ψ d 0 = p φ 0 pφ 0 =0 φ Φ d 0 i ( MRS i c i 0,c i 0) = ψ + ξ i,ξ i M 1.4 Pareto 1.2 Pareto ψ Pareto 1.5 Pareto 1.7 E = ( {Ω, F,δ} ; { u i,φ i 1,e i} ) i I p u e = i I E r =({Ω, F,δ} ; {u, φ 1,e}) e i φ 1 = i I φ i 1

18 1.6 E p p E r E E r u E E r ( E ) 1.6 { c i} { c i} Pareto i I i I ( Magill and Quinzii 1996) 1.6 (p, δ) { c i} Pareto i I u : C R c C u (c) = max c i C, i { i I 1 u i ( c i) : } c i = c λ i i I (1.35) ( λ i = u ) i c 0 c i > 0 i 0 C ( S1 ψ i π i =MRS i c i 0, c1) i i I ( c i 0, 1) ci (e 0,e 0 + φ 1 δ) MRS u (e 0,e 0 + φ 1 δ) ψ c (e 0,e 0 + φ 1 δ) (1.35) { c i} i I φ 1 (e 0,e 0 + φ 1 δ) (1.35) (1.24) 1.1 (e 0,e 0 + φ 1 δ) { c i} i I (1.35) (e 0,φ δ + e 0 ) Pareto (1.35) (1.35) Pareto Pareto (1.35) 1.7 (p, δ ) { c i} E ψ S1 i I π i = ψ+ ξ i 0 i ξ i M u : L + R

u (c) = max c i C, i { i I 1 u i ( c i) ξ i c i 0 : } c i = c λ i i I 1 19 (1.36) ( λ i = u ) i c 0 c i > 0, i I (1.36) C c C c { c i} c i I (1.36) d D d d i I ξ i d 0 =0 c c + d c + d C u (c + d) i I = i I i I 1 u i ( c i + d ) ξ i ( c i 0 λ + d ) 0 i 1 λ i u i ( c i + d ) ξ i c i 0 1 λ i u i ( c i) ξ i c i 0 = u (c) d 0 u : C R S1 ψ 1.1 c e D (e 0,e 0 + φ 1 δ) π i ξ i = ψ 0 (e 0,e 0 + φ 1 δ) (1.24) 1.1 p (1.20) (e 0,φ 1 δ + e 0 ) φ 1 p ψ Pareto (1.36) ξ =0 (1.35) ψ 1.8 ( )

20 (1) (2) (3) 1.8.1 ( E = Ω,δ, { ) F i,u i,φ i 1,ei} i I i {Ω, F i, P i } ω Ω F i (ω) Ω ω i ( ) F i ω ω F i (ω) =F i (ω ) F i (ω) F i (ω )= i Ω P i F G ω F (ω) G(ω) F G G F ω p (ω) F p (ω) ={ω : p (ω )=p (ω)} ( ) p (ω) =p (F 1 (ω), F 2 (ω),, F I (ω)) i ( 1.1) F i (ω) =F i (ω) F p (ω) A Ω i I A = ω AF i (ω ) A ω A A A ω

1 21 1.1 1.7 ω p (ω) ω F i (ω) F i (ω) i ω F i (ω) =F i (ω) i ω Ω F p (ω) = i I F i (ω) ( ) F i (ω) =F p (ω) = i I F i (ω) p (ω ) p (ω) i F i (ω) F i (ω ) ( 1.2) 1.2

22 1.8 ω p (ω) {F i } i I 1.9 i =1, 2 u (c 0,c 1 ; ω) =c 0 + ω ln c 1 ω {0.5, 1} t =0 1 2 F 1 (ω) ={ω}, F 2 (ω) ={0.5, 1} (t =1) 1 t =0 ω p (ω) ω p (ω) p c 1i i t =0 c 0i = p (1 c 1i ) t =0 c 11 (ω, p) =ω/p c 12 (ω, p) =0.75/p c 11 (ω, p)+c 12 (ω, p) =2 ω p (ω) =3/8+0.5ω p =5/8 2 ω =0.5 p =7/8 ω =1 F 1 (ω) =F 2 (ω) =F p (ω) ={ω} ω c 11 [ω, p (ω)] = c 12 [ω, p (ω)] = ω/p (ω) p (ω) =ω ω {0.5, 1} 1.9

1 23 F (ω) = i I F i (ω) F (ω) F 1.8 {F i } i I ω p (ω) F p (ω) = i I F i (ω) F i (ω) =F i (ω) F p (ω) = i I F i (ω) ω p (ω) {F i } i I 1.8 1.10 1.9 u 1 (c 0,c 1 ; ω) =c 0 + ω ln c 1, u 2 (c 0,c 1 ; ω) =c 0 +(2 ω)lnc 1 ω {0.5, 1} 1 2 c 11 (p, ω) =ω/p (ω), c 12 (p, ω) =(2 ω) /p (ω) p (ω) =1,ω {0.5, 1} 2 p =1 c 12 (p, ω) =1.25 ω +1.25 2 2 c 12 (p, ω) =1.25/p 1 c 11 (p, ω) =ω/p p (ω) =5/8+0.5ω ω {0.5, 1}

24 1.8.2 - REE -REE 1.10 p =1 c 11 (ω) 1 = 1 c 12 (ω) = ω 1 q (ω) ={p (ω), vol (ω), } ω ω F q (ω) ={ω : q (ω )=q (ω)} F i = F i F q i F i F q 1.9 ω F i (ω) F i (ω) ω q (ω) i ω F i (ω) =F i (ω) i ω F q (ω) = i I F i (ω) ω q (ω) 1.10 -REE ω q (ω) {F i } i I ω 1.9 -REE REE -REE 1.11 1.10 -REE p (ω) =1 vol (ω) = ω 1 q (ω) =(p (ω), vol (ω)) -REE ω

1 25 ω c 11 = ω c 12 =2 ω p =1 ω 1 ω vol (ω) (1, ω 1 ) c 11 (p, ω) =ω/p c 12 (p, ω) =1.25/p ( ) 4ω +5 4ω 5, 8 4ω +5 (1, ω 1 ) -REE -REE ( ) 1.11 p =1 -REE 0 0.5 REE 0.25 REE -REE 1.8.3 1.9 1.11 1.9 Fama (1970) ( ) F F

26 S1 1.11 F F ω p (ω) F - ψ j p j (ω) = ψ (ω ) δ j (ω ) (1.37) ω F(ω) F φ ω F (ω) φ (ω )=φ(ω), ω F(ω) ( 1.10) 1.10 F F J ω p (ω) = [ p 1 (ω),p 2 (ω),,p J (ω) ] F- (1.37) F φ p φ (ω) = j φ j (ω) p j (ω) =φ (ω) p (ω) F - d φ (ω )= j φj (ω) δ j (ω ) ω (1.37) ψ (ω ) d φ (ω )=φ(ω) ψ (ω ) δ (ω )=φ(ω) p (ω) ω F(ω) ω F(ω) ω p φ (ω) F F F 1.3 F G F G φ G F G φ F 1.10 F G Fama (1970) Fama

1 27 i I F i 1.10 ( ) i I F i F i F p 1.9 1.8.4

28 ( ) 1.9 Ross (1978) (Dybvig and Ross 1989) Magill and Quinzii (1996) Arrow and Debreu (1954) Debreu (1959) Radner (1972) Arrow Debreu Hart (1975) Duffie and Shafer (1986) Hirsch, Magill and Mas-Colell (1990) Magill and Quinzii (1991) Hart (1975) Duffie and Shafer (1986) Hirsch, Magill and Mas-Colell (1990) Magill and Shafer (1991) Grossman (1977a) Pareto Pareto Gorman (1953) Nigishi (1960) Magill and Quinzii (1996) Ma and Zhang (2013) Pareto Hirshleifer (1973) Grossman and Stiglitz (1976 1980) Grossman (1977b 1981 1989) Kreps (1977) Allen (1986) He and Wang (1995) Blume Easley and O Hara (1994) Hirshleifer and Riley (2002) Brunnermeier (2001)

- - 2.1 ψ φ Φ p φ ψ d φ p (1) d M φ Ψ 0 (d) =ψd (2) 0 d M Ψ 0 (d) 0 Ψ 0 (d) > 0 d 0 (3) d, d M Ψ 0 (d + d) =Ψ 0 (d)+ψ 0 (d ) (4) d M α R Ψ 0 (αd) =αψ 0 (d) (5) d M t 0 t Ψ t (d) F t ψ s d s 1 {Ft(ω)} Ψ t (d, ω)= s t+1 ω F t(ω) (2.1) ψ t (ω )

30 = ψ t+1 [d t+1 +Ψ t+1 (d)] 1 {Ft(ω)} ψ t (ω ) ω F t(ω) Ω x y xy1 {Ft(ω)} ω F t(ω) x (ω ) y (ω ) (2.2) φ φ d φ t ( ) F t (ω) F t (ω) d d s = d [ ] s 1 1{s t} Ft(ω) +[dt +Ψ t (d)] 1 {t}ft(ω) 1 {t}e 1 {s t}e T Ω { 1 s = t, ω E 1 {t}e (s, ω) = 0 { 1 s t, ω E 1 {s t}e (s, ω) = 0 t F t (ω) t +1 t d (2.2) d s = d s ( 1 1{s t+1}ft(ω)) +[dt+1 +Ψ t+1 (d)] 1 {t+1}ft(ω) Ψ 0 (d) =Ψ 0 (d )=Ψ 0 (d ) ψ s d s = ψ s d s + ψ s d s 1 {Ω Ft(ω)} s 1 1 s t + = ω F t(ω) 1 s t s t+1 ψ t (ω )Ψ t (d, ω) ψ s d s + s t+1 ψ s d s 1 {Ω Ft(ω)} + ψ t+1 [d t+1 +Ψ t+1 (d)] 1 {Ft(ω)} (2.1), (6) (Ω, F) Q (t, ω) A F t (ω) Q (A F t (ω)) = ψ t+1 (ω ) ω A ω F t(ω) ψ t+1 (ω ) (2.3)

2 31 Q (Ω, F) t t +1 1 R f t (ω) =1+r t (ω) ω 1 1+r t (ω) = ω F t(ω) ω F t(ω) ψ t+1 (ω ) ψ t (ω ) > 0 (2.4) 2.3 2.4 2.2 d M t 0 Ψ t (d) = 1 E Q [d t+1 +Ψ t+1 (d) F t ] (2.5) 1+r t t Q (7) Rt+1 d = d t+1 +Ψ t+1 (d) t t +1 Ψ t (d) 2.5 Q d E Q [ R d t+1 F t ] =1+rt (2.6) 2.1 ( ) M3 S1 (5) (6) (7) (1) (2) (3) (4) S1 (1) (2) (3) (4) M3 S1 (5) (6) (7) M3 (7) Ψ 0 (d) =E Q d t (2.7) (1 + r 0 )(1+r 1 ) (1 + r t 1 ) t 1 T Ψ T (d) =d T =0 1.2 M3 S1 Q P ψ P S1 ψ 2.1 {a, b, c} δ 1 = [110, 110, 110] δ 2 =[50, 100, 150]

32 p 1 = p 2 = 100 S1 ψ ψ a 2/11 1 ψ b = 12/11 + k 2 0 1 ψ c k (2/11, 6/11) r = 10% q a 1/5 1 q b = 6/5 + q c 2 0 1 q c q c (0.2, 0.6) 2.1 p a = p b = p c =1/3 2.1 δ 3 =[0, 0, 50] k (2/11, 6/11) p 3 =50k p 3 (100/11, 300/11) ( ) p 3 = 200/11 3 3 [x a,x b,x c ] p 3 = 200/11 2.1 k =4/11 [x a,x b,x c ] p x =(2x a +4x b +4x c ) /11 Cox, Ross and Rubinstein (1979) Ho and Lee (1986)

2 33 2.2 ( ) 2.1 1 10% 2 100 δ 3 =[0, 0, 50] p 3 =9 100 10 ( 1) 100 11 9 11 [550, 0, 0] 10 100 11 (100 9) = 1 ( ) 2.2.1 - S 0 d = {d t } T t=1 C 0 (X, T) P 0 (X, T) X T T B 0,T 2.1 T X S 0 + P 0 (X, T) =Ψ 0 (d)+xb 0,T + C 0 (X, T) (2.8) - - {d t } T t=1 X T 2.1 0 T T d T + S T +(X S T ) + (S T X) + X = d T

34 2-1 S 0 d 1 d T 1 d T + S T P 0 (X, T ) 0 0 (X S T ) + C 0 (X, T ) 0 0 (S T X) + XB 0,T 0 0 X Ψ 0 (d) d 1 d T 1 d T Ψ 0 (d) =S 0 + P 0 (X, T) C 0 (X, T) XB 0,T (2.9) - (1) T X (2) X T T X T A S T +(X S T ) + S T T X +(S T X) + B T A B S 0 + P 0 (X, T) =XB 0,T + C 0 (X, T) T d ( S 0 + P 0 (X, T) =Ψ 0 (d)+ψ 0 (S T )+Ψ 0 (X S T ) +) ( =Ψ 0 (d)+ψ 0 S T +(X S T ) +) ( =Ψ 0 (d)+ψ 0 X +(S T X) +) =Ψ 0 (d)+xb 0,T + C 0 (X, T) - 2.3.7 2.2.2 1-2.8 2.9 [T,T ] d (T,T ] Ψ 0 ( d(t,t ]) = P0 (X, T ) C 0 (X, T ) P 0 (X,T)+C 0 (X,T) (2.10) +X B 0,T XB 0,T

2 35 X X (2.10) X = XB 1 0,T B 0,T 2.2 T >T 0 ( Ψ 0 d(t,t ]) = P0 (X, T ) C 0 (X, T ) P 0 (X,T)+C 0 (X,T) (2.11) X 0 T T X 2.9 T B 0,T = P 0 (X,T) P 0 (X, T) C 0 (X,T)+C 0 (X, T) X X (2.12) X X 2.12 X X 2.3 B 0,T = P 0 (X, T) X C 0 (X, T) X (2.13) X>0 2.2.3 2.2 30 5% 33 33 33 33 5% 3 000 30 100 33 100 33 100 3 000 1.05 = 150( ) 31.5 31.5 100 100 31.5 =30 1.05( )

36 S 0 T B 0,T 2.2 2.4 T {d t } T t=1 F 0,T =(S 0 Ψ 0 (d)) B 1 0,T (2.14) F 0,T = S 0 B 1 0,T S T T T S T F 0,T t T 2.1 S T F 0,T Ψ 0 (S T F 0,T )=0 Ψ 0 (S T )=Ψ 0 (F 0,T )=F 0,T B 0,T F 0,T =Ψ 0 (S T ) B 1 0,T (2.15) {d t } T t=1 S 0 =Ψ 0 (d)+ψ 0 (S T ) Ψ 0 (S T )=S 0 Ψ 0 (d) (2.15) (2.14) d t > 0 d t < 0 2.14 Ψ 0 (d) = T d t B 0,t t=1 2.3 T X c i T i T T<T t =0 S 0 = cx B 0,Ti + i XB 0,T Ψ 0 (d) =cx i B 0,Ti 1 {0 Ti T } 2.14 ( F 0,T = XB 1 0,T c ) B 0,Ti 1 {Ti>T } + B 0,T i (2.16) F 0,T = XB 1 0,T B 0,T ETF (d t+1 /S t = κ) (d t+1 /S t+1 = l) 2.4 t 0 d t+1 = κs t S t = κ 1+r S t +Ψ t (S t+1 ) Ψ 0 (S t+1 )= 1+r κ Ψ 0 (S t ) 1+r

2 37 ( ) t 1+r κ Ψ 0 (S t )= S 0 2.15 1+r F 0,T =(1+r κ) T S 0 2.5 2.4 t 0 d t+1 = ls t+1 S t =(1+l)Ψ t (S t+1 ) Ψ 0 (S t )=(1+l)Ψ 0 (S t+1 ) Ψ 0 (S t )=(1+l) t S 0 2.15 2.2.4 - - F 0,T = ( ) T 1+r S 0 1+l S 0 Ψ 0 (d) F 0,T B 0,T - - - 2.2 S T - - P 0 (X, T) C 0 (X, T) =(X F 0,T ) B 0,T (2.17) - - - - S T F 0,T T (X S T ) + (S T X) + X F 0,T T P 0 (X, T) C 0 (X, T) X F 0,T T (X F 0,T ) B 0,T - -

38 F 0,T S T T (S T X) + (X S T ) + F 0,T X T C 0 (X, T) P 0 (X, T) =(F 0,T X) B 0,T - - 2.2.5 2 - - 2.1 F 0,T = X + B 1 0,T [C 0 (X, T) P 0 (X, T)] (2.18) F 0,T X (2.18) {d t } T t=1 (2.18) (2.18) (2.18) X = F 0,T C 0 (F 0,T,T)=P 0 (F 0,T,T) (2.19) 2.19 2.5 C 0 (X, T) =P 0 (X, T) X = F 0,T

2 39 (2.18) X = S 0 F 0,T = S 0 + B 1 0,T [C 0 (S 0,T) P 0 (S 0,T)] (2.20) 2.6 - F 0,T S 0 P 0 (S 0,T) C 0 (S 0,T) 1 F 0,T S 0 - P 0 (S 0,T) C 0 (S 0,T) P 0 (S 0,T) C 0 (S 0,T) 2.12 2.12 (2.18) [ F 0,T = X + 1 C 0 (X,T) P 0 (X ] 1,T) (X X) (2.21) C 0 (X, T) P 0 (X, T) X X X X 2.7 - C 0 (X, T) P 0 (X, T) [ ] 1 dln C0 (X, T) P 0 (X, T) F 0,T = X (2.22) dx X>0 X = F 0,T 2.22 2.22 dln C 0 (X, T) P 0 (X, T) dx F 0,T F 0,T X = F 0,T 2.19 X = F 0,T 2.2.6 2.1 ( )

40 ( ) 2.6 100 20% 120 10% 90 2% 100 102 100 ( ) [0.5 (120 100) + 0.5 0]/1.02 = 9.80( ) C 0 =9.80 9 700 113 170 t = 0 170 9.8 + 9 700 113 100 = 66 ( ) 170 20 9 700 1.02 + 113 120 = 266 170 0 9 700 1.02 + 113 90 = 276 C 0 =9.80 Q Q (2%) q h > 0 q l =1 q h > 0 Q 1.20q h +0.90q l =1.02 q h =0.4 q l =0.6 Q 0.4 (120 100) + 0.6 0 C 0 = =7.84 1.02 Ω={h, l} ( ) Ω={h, l} h l ( ) R T R f =1+r h>1+r>l q h = Q ({h}) =1 q l q h h +(1 q h ) l =1+r q h = 1+r l h l =1 q l (2.23)

2 41 X T Ψ 0 (X T )=(1+r) 1 (q h X h + q l X l ) (2.24) X C 0 =(1+r) 1 [ q h (hs 0 X) + + q l (ls 0 X) +] (2.25) S 0 (2.25) (2.24) 1 d T = κs 0 h + κ>1+r>l+ κ q h (h + κ)+(1 q h )(l + κ) =1+r q h = 1+r l κ h l 2 d T = κs T h> 1+r 1+κ >l (1 + κ)[q h h +(1 q h ) l] =1+r (1 + r) / (1 + κ) l q h = h l (2.25) ( ) (1) r (2) (3) (4) h l μ + σ μ σ σ>0 σ C 0 (5) μ (1) (2) (3) h μ σ (4) (5) μ h

42 2.3 CRR Cox, Ross and Rubinstein (CRR 1979) 2.3.1 CRR Ω Bernoulli {ξ t } t=1 ξ t {0, 1} Ω {ξ t } t=1 ω Ω F t (ω) t ω {ξ t } t=1 ξ t t R f =1+r ( ) {R t } t 1 {ξ t } t=1 R t = l +(h l) ξ t,t=1, 2,,n (2.26) h l h>1+r>l T 0 S 0 S T X (S T ) 2.1 2.1 2.3.2 CRR Q E Q [R t+1 F t ]=1+r E Q [ξ t+1 F t ]= 1+r l h l

2 43 q h (t, ω) =Q [ξ t+1 =1 F t (ω)] = 1 q l (t, ω) (t, ω) q h (t, ω) =E Q [ξ t+1 F t (ω)] = 1+r l (2.27) h l q h q l =1 q h X T 2.8 T X (S T ) T ( ) Ψ 0 (X) =(1+r) T T q m m h qt l X ( h m l T m ) S 0 m m=0 ( ) ( ) T T! T m m!(t m)! 1 0 Ψ 0 (X) =(1+r) T E Q [X (S T )] (2.28) ω Ω ω h l ω m h T m l ω S T (ω) =h m l T m S 0 h l Q T,m T h m ( ) T Q T,m = q m m h qt l, 0 m T m Ψ 0 (X) =(1+r) T T m=0 Q T,m X ( h m l T m S 0 ) 2.28 2.3.3 Laplace C X f X ( ) Laplace m : Z Z ln R t Q m- R t m (s) =q h h s + q l l s,s Z (2.29) z =ln X S 0 z z {, 0, +}

44 2.9 0 X T { C 0 = X (1 + r) T m L 1 T } (s) (z) (2.30) s (s +1) Re (s) =σ< 1 X (S T )=(S T X) + (2.30) CRR (2.28) (2.30) m T (s) = ( q h h s + q l l s) T = { m L 1 T } (s) (z) = s (s +1) = = T m=0 T m=0 T m=0 (m ln h+(t m)lnl)s Q T,m e { } e Q T,m L 1 [m ln h+(t m)lnl]s (z) s (s +1) } + Q T,m {e z+m ln h+(t m)lnl 1 T ( Q T,m h m l T m S 0 X ) + /X m=0 Laplace F (s) = L 1 {F (s)} (x) = ( e x 1 ) + L 1 { F (s)e as} (x) = ( e a x 1 ) + 1, Re (s) < 1 s (s +1) Laplace CRR ( 10 ) Laplace 2.3.4 Black Scholes CRR Black Scholes T>0 [0,T] n T n Rn f =e rt n +o(n 1 ) { } n R (n) k k=1 h n =e μt n +σ T n +o(n 1 ), ln =e μt n σ T n +o(n 1 )

2 45 μ σ σ σ μ n h n >Rn f >l n q (n) h = Rf n l n h n l n (2.31) Q n R (n) k ( ) m n (s) =q (n) h h s n + 1 q (n) h ln s (2.32) Q n m n n ( ) n k=1 R (n) k n CRR { 2.3 CRR (2.30) Laplace C BS 0 = Xe rt L 1 { m T BS (s) s (s +1) C (n) 0 } n=1 } (z) (2.33) m BS (s) =e (r 0.5σ2 )s+0.5σ 2 s 2 Re (s) =σ< 1 z =ln X S 0 Black Scholes C BS 0 = S 0 N (d 1 [z]) Xe rt N (d 2 [z]) (2.34) ( ) r ± 0.5σ 2 T z N (x) d 1,2 [z] = σ T h s n l n s q (n) h h s n l s n q (n) h =e μs T n σs T n +o( 1 n ) =1 ( μs 0.5σ 2 s 2) T n σs =e μs T n +σs T n +o( 1 n) T n + o ( n 1) =1 ( μs 0.5σ 2 s 2) T T n + σs n + o ( n 1) = 1 2 μ r +0.5σ2 T ( 2σ n + o n 1/2) 2.32 m n (s) m n (s) =1 {( r 0.5σ 2) s 0.5σ 2 s 2} T n + o ( n 1) n m n n (s) lim n mn n (s) =e (r 0.5σ2 )Ts+0.5Tσ 2 s 2 = m T BS (s)

46 m T BS (s) N [( r 0.5σ 2) T,σ 2 T ] ( Rn) f n m n n (s) ( ) (2.30) n e rt m T BS (s) lim R f n n n (s) (2.33) 2.33 Laplace (2.34) lim n mn n κ m BS ( ) (2.33) m BS (s) =e (κ r+0.5σ2 )s+0.5σ 2 s 2 (2.35) Black Scholes C BS 0 = S 0 e κt N (d 1 [z]) Xe rt N (d 2 [z]) (2.36) ( ) r κ ± 0.5σ 2 T z d 1,2 [z] = σ z =ln X T S 0 2.3.5 ψ Q CRR (2.30) Laplace m (s) { } m (s) g (z) =L 1 (z),z R s (s +1) mt (s) s (s +1) g g r S 0 T X g G (s) =L{g (z)} (s) m (s) =s (s +1)G (s),s Z 2.10 g m (s) 2.11 X (S T ) Ψ 0 (X) m T (s) Laplace Ψ 0 (X) =(1+r) T R L 1 { m T (s) } (x ln S 0 ) X (e x )dx (2.37)

2 47 Ψ 0 (X) (2.28) m T ( )] Ψ 0 (X)=(1+r) T E Q [X T R t f ( ) =(1+r) T =(1+r) T R R S 0 t=1 X ( e ln S0+x) f (x)dx f (x ln S 0 ) X (e x )dx (2.38) T ln R t Q m (s) R t t=1 T R t m T (s) t=1 f f (x) =L 1 { m T (s) } (x) (2.38) (2.37) m g m g r Ψ 0 ( ) ψ Q m g Rietz Laplace Fourier ( ) 2.3.6 ( ) t CRR ζ t (ω) = ξ s (ω) t ω ζ t {0, 1,,t} t Ψ t ζ t Ψ t {ζ t } Ψ t t ζ t Ψ t =Ψ(t, ζ t ) s=1 Ψ t = 1 1+r E Q [Ψ t+1 F t ] CRR Breeden and Litzenberger (1978) Ma (1992)

48 {Ψ t } t =0, 1,,T Ψ(t, ζ t )=(1+r) 1 [q h Ψ(t +1,ζ t +1) +q l Ψ(t +1,ζ t )] (2.28) T 0 m T Ψ(T,m)=X ( h m l T m S 0 ) 0 t<t 0 m t Ψ(t, m)=(1+r) 1 [q h Ψ(t +1,m+1)+q l Ψ(t +1,m)] Ψ 0 (X) Ψ(0, 0) 0 1. {h, l} t r t t r t r t = r (t, ζ t ) t 0 m {0, 1,,t} h>1+r (t, m) >l t ζ t q h (t, ζ t )= 1+r (t, ζ t) l =1 q h l l (t, ζ t ) (2.39) {Ψ t } {ζ t } Ψ t =Ψ(t, ζ t ) Ψ(t, ζ t )= q h (t, ζ t )Ψ(t +1,ζ t +1) +q l (t, ζ t )Ψ(t +1,ζ t ) 1+r (t, ζ t ) (2.40) {q h (t, ζ t )} X (S T ) T m =0, 1,,T Ψ(T,m)=X ( ) h m l T m S 0 0 t<t m =0, 1,,t Ψ(t, m)= q h (t, m)ψ(t +1,m+1)+q l (t, m)ψ(t +1,m) 1+r (t, m) (2.41) Ψ 0 (X) Ψ(0, 0)

2 49 2. CRR {h, l} {r t } {κ t } {ζ t } r t = r (t, ζ t ) κ t = κ (t, ζ t ) t 0 m {0, 1,,t} h>1+r (t, m) κ (t, m) >l t q h (t, ζ t )= 1+r (t, ζ t) κ (t, ζ t ) l =1 q h l l (t, ζ t ) t m {0, 1,,t} h> 1+r (t, m) 1+κ (t, m) >l q h (t, ζ t )= (1 + r (t, ζ t)) / (1 + κ (t, ζ t )) l =1 q l (t, ζ h l t ) (2.42) {Ψ t } (2.40) 2.3.7 {S t } R f =1+r {X t } T t=0 (t, ω) (t, ω) X t (ω) S X (t, ω) X t (ω) =S t (ω) X T T t ω F t (ω) ω t Ψ t (X; ω) (t, ω) Q 2.4 {Ψ t (X)} T t=0 τ (1) (t, ω) Ψ t (X; ω) =max { } X t (ω), (1 + r) 1 E Q [Ψ t+1 (X) F t (ω)] (2.43)

50 (2) τ (ω) =t Ψ s (X; ω) >X s (ω), s<t Ψ t (X; ω) =X t (ω) τ (ω) =inf{t {0, 1,,T} :Ψ t (X; ω) =X t (ω)} (2.44) τ ( τ F t - ) ω Ω τ (ω) {0, 1,,T} ω τ (ω) =t τ d t [ (ω) =X t (ω) τ (ω) t d t (ω) =0 E Q (1 + r) τ X τ ] d Q [ ] Ψ 0 (X) sup E Q (1 + r) τ X τ 0 τ T ( τ ) [ Ψ 0 (X) sup E Q (1 + r) τ X τ ] 0 τ T τ ] Ψ 0 (X) = max E Q [(1 + r) τ X τ (2.45) 0 τ T (t, ω) [t, F t (ω)] Ψ t (X; ω) T t T τ (ω) >t Ψ t (X; ω) = 1 1+r E Q [Ψ t+1 (X) F t (ω)] τ (ω) =t s<t Ψ s (X; ω) >X s (ω) Ψ t (X; ω) =X t (ω) (1) (2) T X 2.12 T τ = T (t, ω) S t (ω) X (t, ω) ] C t (ω) (1 + r) (T t) E Q [(S T X) + F t (ω) (1 + r) (T t) E Q [S T X F t (ω)] (T t) = S t (ω) X (1 + r) r>0 t<t Ψ t (X; ω) >S t (ω) X t<t S T (ω) >X

2 51 S t (ω) X t >t S t (ω) X {S t } T t=0 {h, l} - r t = r (t, ζ t ) κ t = κ (t, ζ t ) Q (2.42) Ψ t,m t {X t (S t )} T t 0 t m t m t X t,m = X t (h m l t m S 0 ) CRR {Ψ t } T t=0 T m =0, 1,,T Ψ T,m = X T,m 0 t<t m =0, 1,,t { Ψ t,m =max X t,m, q } h (t, m)ψ t+1,m+1 + q l (t, m)ψ t+1,m 1+r (t, m) Ψ 0 (X) Ψ 0,0 τ {Ψ t,m,m (0, 1,,t)} T t=0 ω Ω t [ τ (ω) =t] (1) Ψ (t, ζ t (ω)) = X t (ζ t (ω)) (2) s<t Ψ(s, ζ s (ω)) >X s (S s (ω)) 2.4 Ho Lee 1 B t,t t T ( T + t) T B t,t Ho Lee Ho Lee 2.4.1 y t,t = 1 T ln B t,t y t,t T T y t,t

52 T s t+1,t s t+1,t =lnb t+1,t ln B t,t +1 ln R f t =lnb t+1,t ln B t,t +1 +lnb t,1 (2.46) T s t+1,t T t π t,t = E t [s t+1,t ] s t+1,t = π t,t + ξ t+1,t E t [ξ t+1,t ]=0 y t+1,t y t,t +1 t y t,t +1 y t,1 T Irving Fisher (1930) Fisher Fisher EH-a 1 T (y t,s+1 y t,s ) y t+1,t y t,t +1 T s=1 E t [y t+1,t y t,t +1 ]= y t,t +1 y t,1 (2.47) T EH-b ln R f t t T π t,t =0 ln R f t = E t [ln B t+1,t ln B t,t +1 ] (2.48) 2.4.2 y t+1,t y t,t +1 y t,t +1 y t,1 s t,t

2 53 2.5 t 0 T 1 y t+1,t y t,t +1 = y t,t +1 y t,1 T s t+1,t T (2.49) E t [ξ t+1,t ]=0 y t+1,t y t,t +1 = y t,t +1 y t,1 T π t,t T + ξ t+1,t (2.50) ln B t+1,t ln B t,t +1 ln R f t = Ty t+1,t +(T +1)y t,t +1 y t,1 = T (y t,t +1 y t+1,t )+(y t,t +1 y t,1 ) (2.49) (2.50) (1) y t+1,t y t,t +1 y t,t +1 y t,1 EH-a T (2) EH-a EH-b (3) {s t,t } {y t,t } {y t,t } {s t,t } (4) y t+1,t y t,t +1 (2.50) 1 ( ) (5) σ t [y t+1,t ]= 1 T σ t [s t+1,t ]

54 2.4.3 Fisher Sola and Driffill (1994) Gerlach and Smets (1997) Campbell and Shiller (1991) Backus, Foresi, Mozumdar and Wu (2001) Duffee (2003) y t,t +1 y t,1 y t+1,t y t,t +1 = α 0 + α 1 + ε t+1,t (2.51) T y t+1,t y t,t +1 y t,t +1 y t,1 T EH-a EH-b π t,t 0 (2.51) y t+1,t y t,t +1 = α 0 + α 1 y t,t +1 y t,1 T H 0 : α 0 =0,α 1 =1,α 2 = 1 + α 2 π t,t T + ε t+1,t (2.52) (2.52) π t,t π t,t 2.4.4 Ho Lee CRR {ξ t } t=1 t ξ t 1 0 1 0 Ω {ξ t } t=1 ω Ω F t t ω {ξ t } t=1 ξ t t u : {1, 0} T R + t T B t+1,t = B 1 t,1 B t,t +1u (ξ t+1,t) (2.53) t {B t,t } T =0 F t- B t,0 =1 B t,t t t ζ t ζ t = ξ s 2.2 s=1

2 55 2.2 B t,t = B t,t (ζ t ) t m B t,t (m) t m t T +1 t R t+1,t = B 1 t,t +1 B t+1,t R t+1,t = R f t u (ξ t+1,t) (2.54) R f t = Bt,1 1 t u (ξ,t) F t (1,T)=Bt,1 1 B t,t +1 (t +1 ) T B t+1,t = F t (1,T) u (ξ t+1,t) (2.55) t +1 u (ξ,t) {u (0,T),u(1,T)} 2.13 q (0, 1) γ (0, 1) u u(1,t)= ( q +(1 q ) γ T ) 1, u(0,t)=γ T u(1,t) (2.56) (t, ω) q 1 (t, ω) =Q (ξ t+1 =1 F t (ω)) = 1 q 0 (t, ω) u j (T )=u(j, T ),j =0, 1 (t, ω) T q 1 (t, ω) q 1 (t, ω) u 1 (T )+[1 q 1 (t, ω)] u 0 (T )=1 q 1 (t, ω) = 1 u 0(T ) u 1 (T ) u 0 (T ) =1 q 0 (t, ω) q 1 (t, ω) q {u 1 (T ),u 0 (T )} q = 1 u 0(T ) (0, 1) T =0, 1, (2.57) u 1 (T ) u 0 (T )

56 B 1 t,1 (m) B t,t +1 (m) u 0 (T )=B 1 t,1 (m 1) B t,t +1 (m 1) u 1 (T ) B t+1,t (m) B t,t +1 (m) B t,t +1 (m 1) = B t,1 (m) u 1 (T ) B t,1 (m 1) u 0 (T ) u 1 (T +1) u 0 (T +1) = u 1(1) u 1 (T ) u 0 (1) u 0 (T ) γ = u 0(1) (0, 1) (2.58) u 1 (1) (2.58) u 1 (T )=γ T u 0 (T ) (2.59) (2.57) (2.59) u 1 (T ) u 0 (T ) 2.4.5 2.13 u (0, 1) q γ 2.13 2.14 {B 0,T } T =0 q (0, 1) γ (0, 1) ln B t,t =lnb t,t +(t ζ t ) T ln γ (2.60) { } B t,t t T =0 Δ B 0,T +t u 1 (T + t 1) u 1 (T + t 2) u 1 (T ) B t,t = B 0,t u 1 (t 1) u 1 (t 2) u 1 (0) (2.61) {B 0,T } T =0 u (2.56) t 1,T 0, m =0, 1,,t ζ t = B t,t (m) =B t,t γ (t m)t (2.62) t ξ s t (2.62) s=1 (2.60) B t,t = B t,t γ tt

2 57 {B 0,T } T =0 (2.60) u 1 (T )=[q +(1 q ) γ T ] 1 u 0 (T )=u 1 (T ) γ T Q Q {ξ t =1} = q =1 Q {ξ t =0} T (2.60) t ξ t (q, 1; 1 q, 0) t T (2.60) 2.4.6 E 0 [ln B t,t ]=lnb t,t +(1 q) tt ln γ σ 0 [ln B t,t ]=T ln γ q (1 q) t (2.62) (T =1) R f t R f t (m) =B 0,t B 1 0,t+1 u 1 1 (t) γ m t (2.60) = B 1 t,1 ln R f t =lnrf t +(ζ t t)lnγ, t 1 (2.63) R f t = B 1 t,1 = B 0,t B 1 0,t+1 u 1 1 (t) t R f 0 = B 1 0,1 2.4.7 T t Y t,t = B 1/T t,t [ ( ) ] 1 B t,t = E Q R f t Rf T +t 1 = Y T t,t (2.60) {Y t,t } ln Y t,t = 1 T ln B t,t +(ζ t t)lnγ =lny t,t ln R f t +lnr f t (2.64) Y t,t = B 1/T t,t T ln Y t,t ln Y t,t 1 Ho Lee

58 2.4.8 t Δ 0 T 1 F t (T,Δ) t T +Δ T ( t + T ) T t + T t + T +Δ ft Δ (T,Δ) = Δ F t (T,Δ) Y t,t = f t (0,T) R f t = f t (0, 1) {B t,t } B t,t +Δ = B t,t F t (T,Δ) f t (T,Δ) ln f t (T,Δ) = ln B t,t ln B t,δ+t Δ f t (, ) T =0 B t,δ = f T t (0, Δ) (2.60) ln f t (T,Δ) = ln R f t ln Rf t + ln B t,t ln B t,t +Δ Δ (2.65) 2.4.9 Δ=1 T f t,t Δ = ft (T,1) ln f t,t =lnr f t ln R f t +lnb t,t ln B t,t +1 (2.66) 2.4.1 f t,t ln R f t+t ] EH-c ln f t,t = E t [ln R f t+t Ho Lee EH-c 2.63 2.66 ln R f T ln f 0,T =ln [ q +(1 q ) γ T ] +(ζ T T )lnγ ] E 0 [ln R f T ln f 0,T =ln [ q +(1 q ) γ T ] T (1 q)lnγ 0 2.23 q q ] q q T > 0 E 0 [ln R f T ln f 0,T > 0 q <q ] T > 0 E 0 [ln R f T ln f 0,T > 0 T>T

2 59 2.3 A q q; B: q <q 2.4.10 {X t (m),m (0, 1,,t)} T t=1 (t, m) X t (m) T [ ( ) ] 1 Ψ 0 (X) =max E Q R f 0 τ 0 Rf 1 Rf τ 1 Xτ (2.67) R f 1 =1 2.14 { } Q R f t q,γ (0, 1) q,γ (0, 1) (2.67) Ho Lee q,γ (0, 1) CRR T m {0, 1,,T} Ψ T (m) =X T (m) 0 t<t m {0, 1,,t} R f t (m) = B 0,t γ m t B 0,t+1 u 1 (t) { } Ψ t (m) =max X t (m), q Ψ t+1 (m +1)+(1 q )Ψ t+1 (m) R f t (m) Ψ 0 (X) =Ψ 0 (0) 2.7 980 3 1 000 q =0.5 γ =0.997

60 [B 0,1,B 0,2,B 0,3,B 0,4,B 0,5 ]=[0.982 6, 0.965 0, 0.947 4, 0.929 6, 0.911 9] B 0,t 3 t t =4 m 3 $1 000 B 4,1 (m) T =4 Ψ 4 (m) =X 4 (m) = [980 1 000 B 4,1 (m)] + B 4,1 (m) = B 0,5 u 1 (4)γ 4 m,m=0, 1,, 4 B 0,4 t =0 (2.56) Ψ t (m) = Ψ t+1 (m +1)+Ψ t+1 (m) 2 m =0, 1,,t B 0,t+1 u 1 (t)γ t m B 0,t [u 1 (4),u 1 (3),u 1 (2),u 1 (1)] = [1.006, 1.004 5, 1.003, 1.001 5] [Ψ 4 (0), Ψ 4 (1), Ψ 4 (2), Ψ 4 (3), Ψ 4 (4)] = [4.944, 2.00, 0, 0, 0] 0.75 [Ψ 3 (0), Ψ 3 (1), Ψ 3 (2), Ψ 3 (3)] = [3.39, 0.98, 0, 0] [Ψ 2 (0), Ψ 2 (1), Ψ 2 (2)] = [2.14, 0.48, 0] [Ψ 1 (0), Ψ 1 (1)] = [1.28, 0.24] Ψ 0 (0) = 0.75 2.5 APT APT APT Ross (1976) APT (1) m {f k } m k=1 m r j = μ j + β jk f k + ε j (2.68) k=1 μ j = E [r j ] j ε j j β jk = σ 2 [f k ]Cov(r j,f k ) f k

2 61 {f k } m k=1 {ε j} J j=1 E [ε j f 1,,f m ]=0 (2) dq dp = ξ (f 1,,f m ) (2.69) 2.1 (1) Fama and French (1992) (1) (1) E [ε j ]=0 j m σ 2 [r j ]= βjkσ 2 2 [f k ]+σ 2 [ε j ] (2.70) k=1 σ 2 [ε j ] ε j j σ 2 [f k ] β jk k j (2) Q ε j Q E Q [ε j ]=E [ξ (f 1,,f m ) ε j ]=E [ξ (f 1,,f m ) E [ε j f 1,,f m ]] = 0 (2.71) 2.1 Q r ( 5.21) m r = μ j + β jk E Q [f k ] APT k=1 E [r j ]=r + m β jk λ k (2.72) λ k = E Q [f k ] 2.72 μ j r {β jk } λ k k APT ε j k=1 2.6 β APT β APT

62 (Ω, P) {r j } S1 S2 π>0 j 1 +r π = 2.73 π - 2.6 S2 E [π (1 + r j )] = 1 (2.73) π E [π 2 ] > 0 r j = r + β j [π](r π r)+ε j π (2.74) β j [π] =σ 2 [r π ]Cov(r j,r π ) E [ ( επ] j =Cov rπ,επ) j =0 E [r j ]=r + β j [π](e [r π ] r) (2.75) 2.73 E [r j ] r = Cov (r j,r π ) 1+E [r π ] (2.76) π E [r π ] r = σ2 [r π ] 1+E [r π ] < 0 (2.77) 2.75 j (2.75) (2.74) ε j π Δ = r j r β j [π](r π r) E [ ( επ] j =0 Cov rπ,επ) j =Cov(rπ,r j ) β j [π] σ 2 [r π ]=0 2.74 2.74 APT 2.75 β j [π] E [r π ] r π π 2.74 2.74

2 63 2.7 - - - Cox Ross and Rubinstein (1979) Ho and Lee (1986) Black and Scholes (1973) CRR Heath Jarrow and Morton (HJM 1992) Ho Lee Musiela and Rutkowski (1997) Hull (2000) Sercu and Uppal (1997) APT Ross (1976) APT Fama and French (1992) Fama French Campbell, Lo and MacKinlay (1997) β 2004 2010 Q {r t } Ho Lee (0, 1) q γ Ho and Lee (1986) Campbell, Lo and MacKinlay (1997)

(VaR) (C-VaR) 3.1 Stone Stone (1973) X R ( k, X,X ) = ( ]) E [ X X k 1 k 1 {X X} (3.1) k X X X X X k =2 X = E [X] X = Stone ( ]) E [(X E [X]) 2 1 [ 2 1 {X E[X]} E (E [X] X) +] ( ]) E [ X E [X] k 1 k 1 {X E[X]} Stone

3 65 3.1 X Y 5 000 X X = {0.5, 0; 0.5, 10 000} ; Y f Y (x) = 1 5 000 e x 5 000,x 0 Y X Y X Y X 50% 5 000 Y 5 000 Y Stone 3.2 (Ω, F) A x, y A x + y A a>0 c R,ax+ c A R A R : A R x R (x) x (1) R (ax) =ar (x), a [0, ) (2) x y R (x) R (y) (3) R (x + c) =R (x)+c c R (4) R (x + y) R (x)+ R (y) (5) R [αx +(1 α) y] αr(x)+(1 α) R (y), α [0, 1] c Artzner, Delbaen, Eber & Heath (1999) (1) (4) (5)

66 Artzner 3.1 R (Ω, F) Δ R (x) =supe Q [x] (3.2) Q Δ 3.1 (2012) 3.1 Δ Δ P Δ P Stone 3.2 3.3 Stone ( 3.1) VaR C-VaR Stone J.P. RiskMetrics 3.1 3.3.1 VaR VaR W α (0, 1) VaR(α) α u VaR(α) P {W W 0 u} α (3.3) W 0 X = W 0 W

3 67 VaR VaR 3.2 X Y p F 1 p G { F, α (0,p) VaR X (α) =VaR Y (α) = G, α (p, 1) X + Y 2F, α (0,p 2 ) VaR X+Y (α) = F G, α (p 2, 2p p 2 ) 2G, α ( 2p p 2, 1 ) α ( p, 2p p 2) VaR X+Y (α) =F G> 2G =VaR X (α)+var Y (α) F W (x) = P {W x} F W (α) =inf{x Δ : F W (x) α} VaR VaR (α) =W 0 F W (α) (3.4) α F 1 W (α) VaR (α) =W 0 F 1 W (α) =W 0 E [W ]+c W,α σ [W ] (3.5) { } W E [W ] c W,α P c W,α = α α - σ [W ] E [W ] σ [W ] c W,α c W,α c W,α = c α α- 3.3 W 0 = 10 000, μ =1.1 σ =0.2 α =0.025 c α =1.96 VaR = 10 000 (1 1.1+1.96 0.2) = 2 920 2.5% 2 920

68 VaR 3.1 X Y { 5 000, α (0, 0.5) VaR X (α) = 5 000, α (0.5, 1) VaR Y (α) = 5 000 [1 + ln (1 α)],α (0, 1) α (0, 0.5) ( 1 e 2, 1 ) VaR X (α) > VaR Y (α) α ( 0.5, 1 e 2) VaR X (α) < VaR Y (α) 3.3.2 C-VaR VaR α VaR (α) VaR (α) α (0, 1) α C-VaR C-VaR (α) Δ = E [X X VaR (α)] (3.6) C-VaR (α)=var(α)+e[x VaR (α) X VaR (α)] =VaR(α)+ 1 { E [X VaR (α)] +} (3.7) α + Δ [ α + = FW F W (α)] α x = F W (α) VaR C-VaR α VaR C-VaR 3.1 { 5 000, α (0, 0.5) C-VaR X (α) = 5 000 (1/α 1), α (0.5, 1) C-VaR Y (α) = 5 000 (1 1/α)ln(1 α),α (0, 1) C-VaR X (α) >C-VaR Y (α) α ( 0, 1 e 1) α VaR C-VaR α (0, 0.5) C-VaR X > C-VaR Y VaR X > VaR Y α ( 0.5, 1 e 1) C-VaR X > C-VaR Y VaR X < VaR Y α ( 1 e 1, 1 e 2) C-VaR X < C-VaR Y VaR X < VaR Y α ( 1 e 2, 1 ) C-VaR X < C-VaR Y VaR X > VaR Y

3 69 VaR C-VaR X Y VaR (1) (3) C-VaR C-VaR (4) VaR C-VaR 3.2 VaR C-VaR 3.1 W E [ W ] < α (0, 1) g g (x) Δ = x + E [(X x) +] g VaR(α) C-VaR(α) α +, x R (3.8) C-VaR (α) =ming (x) =g [VaR (α)] (3.9) x R C-VaR(α) =g [VaR (α)] g g (x) =1 P {X x} α + g (x) =0 x =VaR(α) g C-VaR (α) =g (VaR (α)) = min x R g (x) X = W 0 W Y = W 0 W 3.1 X Y α (0, 1) C-VaR X+Y (α) C-VaR X (α)+c-var Y (α)

70 F W +W [ F W +W (α)] [ α = F W F W (α)] [ = F W F W (α)] α (0, 1) α (0, 1) 3.1 x, y E [(X + Y x y) +] C-VaR X+Y (α) x + y + [ F W +W F W +W (α)] E [(X + Y x y) +] x + y + [ α E (X x) +] + E [(Y y) +] x + y + α E [(X x) +] E [(Y y) +] = x + [ F W F W (α)] + y + [ F W F W (α)] x =VaR X (α) y =VaR Y (α) 3.1 C-VaR X+Y (α) C-VaR X (α)+c-var Y (α) 3.4 W W 0 W C E [W ] C W CE [W] W CE[W ] W ζ [W ] W E [W ] ζ [W ] ζ [W ]=E[W] CE [W ] (3.10) CE[W ] < E [W ] u ζ [W ]=E[W] u 1 {E [u (W )]} (3.11) 3.3 u ( )

3 71 3.3 3.4.1 Arrow Pratt x W = x + ε ε 0 σε 2 W ζ [W ]=ζ a [x, σ ε ]+o ( σε 2 ) ζ a [x, σ] = σ2 2 ARA u (x) ARA u (x) = u (x) u (x) ARA u u Arrow Pratt ζ a Arrow Pratt x ε ε ζ a x ζ a [x, σ] x IARA ARA (x) > 0 ζ a [x, σ] x CARA ARA (x) =0 ζ a [x, σ] x DARA ARA (x) < 0 x IARA DARA CARA 3.4.2 Arrow Pratt x W = x (1 + ε) ε 0

72 σ 2 ε x ζ [W ] x = ζ r [x, σ ε ]+o ( σε 2 ) (3.12) ζ r [x, σ] = σ2 2 RRA u (x) RRA u (x) = xu (x) u Arrow-Pratt (x) ζ r Arrow-Pratt x ε ε x ζ r [x, σ] x IRRA RRA u (x) > 0 ζ r [x, σ] x CRRA RRA u (x) =0 ζ r [x, σ] x DRRA RRA u (x) < 0 x ( ) x 3.4.3 i j i j i j 3.1 i( i ) j( j ) W ζ i [W ] ζ j [W ] CE i [W ] CE j [W ] (3.13) i j x i j x i j i j Arrow-Pratt 3.2 u i i u j j x σ 3.2 ζa i [x, σ] ζj a [x, σ] (3.14) (1) x σ ζ i a [x, σ] ζj a [x, σ] (2) x ARA ui (x) ARA uj (x)

(3) u i u j 3 73 (4) W ζ i [W ] ζ j [W ] ( (1) (2) (3) f (z) =u i u 1 j (z) ),z R ζ i a [x, σ] ζ j a [x, σ], x, σ ARA ui (x) ARA uj (x), dln u i (x) u j (x) u j x 0, x dx u i (x) u x j (x) [ f (z) = u i u 1 j (z) ] [ ] u 1 z j (z) f (z) < 0, (3) (4) f z f E {f [u j (W )]} f {E [u j (W )]} E [u i (W )] f {E [u j (W )]} u 1 i {E [u i (W )]} u 1 j {E [u j (W )]} ζ i [W ] ζ j [W ] 3.2 x i j i j i j x i j Arrow-Pratt 3.4 (3) (4) 3.4 u i (x) [0, 2] u j (x) [0, 1] [1, 2] x {0, 1, 2} u i (x) u i u j x [0, 2] u i u j u i u j u i u j u i = f (u j ) u i (0) = f [u j (0)], u i (1) = f [u j (1)], u i (2) = f [u j (2)] u i (0) = u j (0), u i (1) = u j (1), u i (2) = u j (2) f {u i (0),u i (1),u i (2)} 45 f [u i (0),u i (2)] f (x) x [0, 2] u i (x) u j (x) u i u j

74 3.4 3.5 VaR VaR C-VaR C-VaR VaR (α) VaR (α) K = W 0 VaR(α) max {W, K} c [W, K] c [W, K] max {W, K} c [W, K] W CE [max {W, K} c [W, K]] = CE [W ] (3.15) ( ) W W W K W c [W, K] >c[w,k] W W K VaR C-VaR CE[W ] c [W, K] CE [max {W, K} c [W, K]] E [max {W, K}] c [W, K] VaR C-VaR

3 75 c [W, K] E [max {W, K}] CE [W ] = E [max {W, K}] E [W ] }{{} + ζ [W ] }{{} ζ [W ] c [W, α] α 3.5 [ 1 X = 3, 0.2; 1 3, 2; 1 ] 3, 3 [ 2 Y = 3, 0.6; 1 ] 3, 4 E [X] =E [Y ]= 5.2 u (x) = 3 ln x K =2 X Y X Y ζ [X] = 5.2 3 1.2 1 3 > 5.2 3 1.44 1 3 = ζ [Y ] X Y K =2 2ln(2 c [X, 2]) + ln (3 c [X, 2]) = 3 2ln(2 c [Y,2]) + ln (4 c [Y,2]) 3 ln 0.2+ln2+ln3 3 = 2ln0.6+ln4 3 c [X, 2] 1.186 5 <c[y,2] = 1.273 3 K =2 X Y 3.6

76, VaR ( C-VaR) α (0, 1) 3.1 X Y X Y 3.6.1 VaR FSD VaR 3.3 x F X (x) F Y (x) X Y X FSD Y F X (x) =P {X x} X X Y X Y x X Y ( W 0 ) X VaR Y 3.2 X Y E [ X ] < E [ Y ] < X FSD Y VaR X (α) VaR Y (α), α (0, 1) (3.16) X FSD Y α (0, 1), α = F Y [W 0 VaR Y (α)] = F X [W 0 VaR X (α)] F Y [W 0 VaR X (α)] F Y ( ) VaR X (α) VaR Y (α) α (0, 1) VaR X (α) VaR Y (α) α = F X (x) x = F 1 X [F X (x)] = W 0 VaR X [F X (x)] W 0 VaR Y [F X (x)] = F 1 Y [F X (x)] F Y (x) F X (x) x R α (0, 1) VaR(α) X Y FSD 3.6.2