2011 7 31 7 1001-6325 2011 07-0751 -05 July 2011 Vol. 31 No. 7 MUC1 1 1 1 2 1 1* 1. 100005 2. 100190 MUC1 PLGA MUC1 MUC1 MUC1 MCF-7 HepG2 MTS IC 50 MUC1 225. 3 ± 9. 2 nm 83. 6% ± 1. 7% MUC1 + MCF-7 P < 0. 01 IC 50 1. 52 mg /L MUC1 + IC 50 MUC1 R 979. 1 A Preparation of MUC1-targeted nanoparticles and evaluation of its cytotoxicity in vitro YU Chen-chen 1 HU Yan 1 DUAN Jin-hong 1 WANG Chen 2 XU Hai-yan 1 YANG Xian-da 1* 1. Dept. of Physiology and Pathophysiology Institute of Basic Medical Sciences CAMS & PUMC Beijing 100005 2. National Center of Nanoscience and Technology Beijing 100190 China Abstract Objective To construct MUC1-targeted nanoparticles and evaluate its cytotoxicity in vitro. Methods MUC1 aptamers were conjugated to the surface of nanoparticles which were made of poly lactic-co-glycolic-acid PLGA nanoparticles and loaded with paclitaxel PTX. The MUC1-targeted nanoparticles Apt-NP-PTX were characterized by UV spectrophotometry and dynamic light scattering. Using MUC1-overexpressing MCF-7 breast cancer cell as experimental group and HepG2 as control group the specificity of the Apt-NP-PTX was detected by flow cytometry. The cytotoxicity and IC 50 of Apt-NP-PTX against MCF-7 were evaluated using a standard MTS assay. Results The Apt-NP-PTX were about 225. 3 ± 9. 2 nm in size with an encapsulation efficiency of 83. 6% ± 1. 7%. The Apt-NP-PTX enhanced in vitro drug delivery and cellular toxicity to MUC1 + cancer cells as compared with non-targeted nanoparticles that lack the MUC1 aptamer P < 0. 01 with IC 50 of 1. 52 mg /L and 4. 10 mg /L respectively. Conclusion MCF-7 cells in vitro. Key words MUC1 aptamer targeted drug delivery tumor The Apt-NP-PTX can effectively enhance the PTX delivery to MUC1-overexpressing 2011-04 - 18 2011-05 - 19 2011CB911003 2011CB911004 2011CB933504 81071870 * corresponding author ayangmd@ gmail. com
752 2011. 31 7 aptamer 30 min DNA RNA 4 1. 2. 2 MUC1 S2. 2 0. 01 g /L 1 0. 04 mol /L EDC 0. 01 mol /L NHS 15 min 3'-NH 2 2-4 S2. 2 2 h T - 30 min 5 4 1. 2. 3 25 90 3 MUC1 1. 2. 4 NP PTX-NP 1. 0 mg 6 MUC1 S2. 2 7 227 nm MUC1 PTX PTX 1 1. 1 1. 1. 1 poly lactidecoglycolide acid PLGA M w = 16000 95 ml PBS 37 120 rpm 3 500 EDC 5. 0 ml HCl N- NHS PBS MUC1 S2. 2 Invitrongen 188 M w = 8400-123 Rho-123 Sigma 1. 2. 6 MUC1- MTS Promega MCF-7 MUC1 + HepG2 1. 1. 2 MCF-7 24 24 h HepG2 S2. 2 0. 5 g /L 37 1. 2 1. 2. 1 0. 1 mg PTX 2. 0 mg PLGA 0. 2 ml 1. 0 ml 5% 188 1 min 1. 0 ml 1 mol /L NaOH 1. 2. 5 MUC1-0. 5% 188 PBS ph 7. 4 1. 0 mg /ml 5. 0 ml 3 Rho-123 MUC1 MUC1- MCF-7 HepG2 4 h D-Hank's 2 0. 25% 1 ~ 2 min 4% 10 min 1. 2. 7 MUC1-96 MCF-7 HepG2 3 000 37 24 h
MUC1 753 NP PTX PLGA 83. 6% ± 1. 7% NP-PTX Apt-NP-PTX 4. 2% ± 0. 1% MUC1 MTS MCF-7 D-Hank's 3 100 μl RPMI-1640 20 μl MTS 37 1 h 490 nm A 1. 2. 8 IC 50 MCF-7 HepG2 96 3 000 24 h 1. 2. 6 PTX Fig 1 Structure of MUC1 aptamer conjugated NP-PTX Apt-NP-PTX 6 nanoparticles 4 h 3 2. 2 MUC1-96 MCF-7 MUC1 Apt-NP MTS S2. 2 IC 50 1. 3 131% HepG2 ± x ± s Excel t 2 12 h 54. 1% 2. 1 65% 3 MUC1 2. 4 MUC1-1 225. 3 ± 9. 2 nm PTX 4 NP MCF-7 HepG2 PLGA PTX 1 2 MUC1 Apt-PTX-NP 2. 3 MUC1-2 Fig 2 MCF-7 A HepG2 B NP Apt-NP Flow cytometry analysis of MCF-7 A and HepG2 B cells treated with Apt-NPs and NPs A. MCF-7 cells B. HepG2 cells
754 2011. 31 7 PTX NP-PTX Apt-NP-PTX IC 50 14. 59 4. 10 1. 52 mg /L Apt-NP-PTX PTX 8. 6 NP-PTX 1. 7 MCF-7 Apt-NP NP 1. 3 5 Fig 5 MTS PTX NP-PTX Apt-NP-PTX MUC1 + MCF-7 IC 50 MTS assay to determine the IC 50 of PTX NP-PTX and Apt-NP-PTX towards MCF-7 cells 3 Enhanced permeability and retention 8 MUC1 MUC1 MCF-7 S2. 2 Apt-NP-PTX P < MUC1 0. 01 HepG2 MUC1 S2. 2 MUC1 S2. 2 MUC1 2. 5 IC 50 MCF-7 MUC1 S2. 2 5 PTX PTX MUC1 S2. 2 NP-PTX Apt-NP-PTX MCF-7 MCF-7 - HepG2 MUC1
MUC1 755 MUC1 IC 50 MUC1 PLGA MUC1 PTX MUC1 S2. 2 MUC1 S2. 2 S2. 2 MUC1 S2. 2 S2. 2 MUC1 + IC 50 MUC1 + MUC1 MUC1 MUC1 MUC1 MUC1 + 9 10 11 1 Levy-Nissenbaum E Radovic-Moreno AF Wang AZ et al. Nanotechnology and aptamers applications in drug delivery J. Trends Biotechnol 2008 26 442-449. 2 Dhar S Gu FX Langer R et al. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt IV prodrug-plga-peg nanoparticles J. Proc Natl Acad Sci USA 2008 105 17356-17361. 3 Farokhzad OC Jon S Khademhosseini A et al. Nanoparticle-aptamer bioconjugates a new approach for targeting prostate cancer cells J. Cancer Res 2004 64 7668-7672. 4 Farokhzad OC Cheng J Teply BA et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo J. Proc Natl Acad Sci USA 2006 103 6315-6320. 5 Huang YF Shangguan D Liu H et al. Molecular assembly of an aptamer-drug conjugate for targeted drug delivery to tumor cells J. Chembiochem 2009 10 862-868. 6 Taylor-Papadimitriou J Burchell J Miles DW et al. MUC1 and cancer J. BBA-Mol Basis Dis 1999 1455 301-313. 7 Ferreira CSM Matthews CS Missailidis S. DNA aptamers that bind to MUC1 tumour marker design and characterization of MUC1-binding single-stranded DNA aptamers J. Tumor Biol 2006 27 289-301. 8 Yu B Tai HC Xue W et al. Receptor-targeted nanocarriers for therapeutic delivery to cancer J. Mol Membr Biol 2010 27 286-298. 9 O'Connor JC Julian J Lim SD et al. MUC1 expression in human prostate cancer cell lines and primary tumors J. Prostate Cancer Prostatic Dis 2005 8 36-44. 10 Ohuchida K Mizumoto K Yamada D et al. Quantitative analysis of MUC1 and MUC5AC mrna in pancreatic juice for preoperative diagnosis of pancreatic cancer J. Int J Cancer 2006 118 405-411. 11 Chauhan SC Vinayek N Maher DM et al. Combined staining of TAG-72 MUC1 and CA125 improves labeling sensitivity in ovarian cancer antigens for multi-targeted antibody-guided therapy J. J Histochem Cytochem 2007 55 867-875.