17 5 2005 10 Chinese Bulletin of Life Sciences Vol. 17, No. 5 Oct., 2005 1004-0374(2005)05-0414-05 NOX ( 200025) NADPH (reactive oxygen species, ROS) NOX NADPH gp91 phox NOX NOX1 NOX3 NOX4 NOX5, NADPH ROS NADPH ROS NOX ROS NOX (EPO) NADPH Q55 A NOX family: the ROS producer in plasma membrane LI Ling-Na, ZHOU Song, YI Jing* (Department of Cell Biology, Shanghai Second Medical University, Shanghai 200025, China) Abstract: NADPH oxidase, specially located in plasma membrane of phagocytes, can generate reactive oxygen species (ROS) to participate in host defense by killing or damaging invading microbes. NOX are the homologs of gp91 phox, the catalytic subunit of the NADPH oxidase, existing in various non-phagocytic cells. So far NOX1, NOX3, NOX4, NOX5 have been characterized. All of them possess the ability of ROS generation like NADPH oxidase, though their expression is tissue-specific. Unlike the NADPH oxidase-derived ROS that is responsible for cell defense, NOX- derived ROS functions as a second messenger molecule to participate in the modulation of cell proliferation, differentiation and apoptosis. In addition, NOX affects angiogenesis and bone resorption, and, as an oxygen sensor, regulates erythropoietin production. Key words: NADPH oxidase; reactive oxygen species (ROS); tumor 1 NOX NADPH NADPH C FAD gp91 phox p22 phox p47 phox p67 phox p40 phox Rac gp91 phox p22 phox NADPH gp91 phox p22 phox C NADPH NADPH p47 phox p67 phox p40 phox Rac p22 phox 2005-04-08 2005-06-27 (30170475) (1979 ) (1981 ) (1957 ) *
NOX 415 gp91 phox [1~2] NADPH p67 phox NADPH [3] NADPH (reactive oxygen species, ROS) [3~4] NADPH NOX(NADPH oxidase) ROS [5~6] ROS ROS ROS 2 NOX 2.1 NOX NADPH gp91 phox NOX1 NOX3 NOX4 NOX5 gp91 phox 56% 58% 37% 27% [3] gp91 phox NOX2 NOX1 NOX3 NOX4 gp91 phox [7] NOX5 NOX [5] 2.2 NOX NOX N C [5] FAD P450 ferredoxin-nadp NOX 564 737 NADPH FAD NOX5 N NOX5 gp91 phox NOX3 NOX4 α- N [5] NOX5 NOX5 N- NOX5 NADPH p22 phox [5] 3 NOX 3.1 NOX1 [5~6] NOX3 [8] [5] NOX4 [9] NOX4 [9] NOX4 [10] NOX4 [5,11] NOX5 [5] gp91 phox gp91 phox gp91 phox [5] NOX ROS NOX NOX 3.2 NOX NOX1 Caco-2 T-84 HEK293 [5] NOX1 [12] NOX4 NOX5 [5] NOX
416 NOX ROS 4 NOX NOX ROS ROS ROS ROS ( / ) G p21 Ras Smads/Src p38 MAPK ERK-1/2 MAPK [13] ( 1) 1 NADPH PDGF EGF Ras NADPH Rac1 Rac1 GTP NADPH NADPH ROS ( 1 A) 5 NOX 5.1 NOX ROS NOX NOX ROS ROS ROS ( ) (HUVEC) NIH3T3 NOX ROS PDGF -II NOX1 ROS [14~15] NOX1 NIH3T3 ROS [6] NOX 80% ROS NOX1 [12] NIH3T3 NOX1 85% [16] VEGF NOX VEGF [17] NOX NOX1 DU145 [12] NOX [18] NOX VEGF 1 ROS [13]
NOX 417 NOX 5.2 NOX NOX NOX2 ROS PI3 p38-mapk NF-κB/iNOS [19] HT29 Caco-2 γ 1-25- D 3 NOX1 Geiszt [20] NOX1 5.3 NOX ROS [13] NOX ROS ROS NOX NOX2 NOX4 NOX ROS [10,21] 7-Kchol (7- ) IRE1/JNK/AP-1 NOX4 ROS [22] ROS NB4 ML1 PLB-985 HL60 PMA NADPH ROS [23] NOX ROS NADPH ( NOX4) ROS [24] 5.4 NOX NOX H 2 O 2 NOX1 200 (catalase) 70% [25] [25] 5.5 NOX NOX4 (EPO) EPO NOX4 mrna NOX4 EPO [26] NOX4 ROS EPO HIF-1α EPO [27~28] (NEB) KV3.3a NADPH NEB NEB NADPH NEB [29] 5.6 NOX NADPH ROS ROS ROS [30~31] ROS [32] gp91 phox NOX4 gp91 phox NOX4 ROS [33] 6 NOX NADPH NADPH ROS ROS NOX ROS NOX NOX ROS ROS [1] Babior B M. The respiratory burst oxidase. Curr Opin Hematol, 1995, 2(1): 55~60 [2] Lambeth J D, Cheng G, Arnold R S, et al. Novel homologs of gp91 phox. Trends Biochem Sci, 2000, 25(10): 459~461
418 [3] Chanock S J, EL Benna J, Smith R M, et al. The respiratory burst oxidase. J Biol Chem, 1994, 269: 24519~24522 [4] Babior B M. NADPH oxidase: an update. Blood, 1999, 93: 1464~1476 [5] Cheng G J, Cao Z H, Xu X X, et al. Homologs of gp91 phox : cloning and tissue expression of NOX3, NOX4, and NOX5. Gene, 2001, 269: 131~140 [6] Suh Y A, Arnold R S, Lassegue B, et al. Cell transformation by the superoxide-generating oxidase Mox1. Nature, 1999, 401(6748): 79~82 [7] De Deken X, Wang D T, Many M C, et al. Cloning of two human thyroid cdnas encoding new members of the NADPH oxidase family. J Biol Chem, 2000, 275: 23227~23233 [8] Baánfi B, Malgrange B, Knisz J, et al. NOX3, a superoxidegenerating NADPH oxidase of the inner ear. J Biol Chem, 2004, 279(44): 46065~46072 [9] Geiszt M, Kopp J B, Varnai P, et al. Identification of Renox, an NAD(P)H oxidase in kidney. Proc Natl Acad Sci USA, 2000, 97: 8010~8014 [10] Vallet P, Charnay Y, Steger K, et al. Neuronal expression of the NADPH oxidase NOX4, and its regulation in mouse experimental brain ischemia. Neuroscience, 2005, 132(2): 233~238 [11] Kikuchi H, Hikage M, Miyashita H, et al. NADPH oxidase subunit, gp91 phox homologue, preferentially expressed in human colon epithelial cells. Gene, 2000, 254(1-2): 237~243 [12] Lim S D, Sun C, Lambeth J D, et al. Increased Nox1 and hydrogen peroxide in prostate cancer. Prostate, 2005, 62(2): 200~207 [13] Thannickal V J, Fanburg B L. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol, 2000, 279(6): L1005~L1028 [14] Lassègue B, Sorescu D, Szöcs K, et al. Novel gp91 phox homologues in vascular smooth muscle cells: nox1 mediates angiotensin II induced superoxide formation and redox-sensitive signaling pathways. Circ Res, 2001, 88(9): 888~894 [15] Katsuyama M, Fan C Y, Yabe-Nishimura C. NADPH oxidase is involved in prostaglandin F 2α -induced hypertrophy of vascular smooth muscle cells: induction of NOX1 by F 2α. J Biol Chem, 2002, 277: 13438~13442 [16] Lambeth J D. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol, 2004, 4(3): 181~189 [17] Arbiser J L, Petros J, Klafter R, et al. Reactive oxygen generated by NOX1 triggers the angiogenic switch. Proc Natl Acad Sci USA, 2002, 99(2): 715~720 [18] Brar S S, Corbin Z, Kennedy T P, et al. NOX5 NAD(P)H oxidase regulates growth and apoptosis in DU 145 prostate cancer cells. Am J Physiol Cell Physiol, 2003, 285(2): C353~C369 [19] Piao Y J, Seo Y H, Hong F, et al. NOX2 stimulates muscle differentiation via NF-κB/iNOS pathway. Free Radic Biol Med, 2005, 38(8): 989~1001 [20] Geiszt M, Lekstrom K, Brenner S, et al. NADPH oxidase1, a product of differentiated colon epithelial cells, can partially replace glycoprotein 91 phox in the regulated production of superoxide by phagocytes. J Immunol, 2003, 171: 299~306 [21] Zekry D, Epperson T K, Krause K H. A role for NOX NADPH oxidases in Alzheimer s disease and other types of dementia? IUBMB Life, 2003, 55(6): 307~313 [22] Pedruzzi E, Guichard C, Ollivier V, et al. NAD(P)H oxidase NOX-4 mediates 7-ketocholesterol-induced endoplasmic reticulum stress and apoptosis in human aortic smooth muscle cells. Mol Cell Biol, 2004, 24(24): 10703~10717 [23] Chou W C, Jie C F, Kenedy A A, et al. Role of NADPH oxidase in arsenic-induced reactive oxygen species formation and cytotoxicity in myeloid leukemia cells. Proc Natl Acad Sci USA, 2004, 101(13): 4578~4583 [24] Vaquero E C, Edderkaoui M, Pandol S J, et al. Reactive oxygen species produced by NAD(P)H oxidase inhibit apoptosis in pancreatic cancer cells. J Biol Chem, 2004, 279 (33): 34643~34654 [25] Arnold R S, Shi J, Murad E, et al. Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase NOX1. Proc Natl Acad Sci USA, 2001, 98(10): 5550~5555 [26] Shiose A, Kuroda J, Tsuruya K, et al. A novel superoxideproducing NAD(P)H oxidase in kidney. J Biol Chem, 2001, 276(2): 1417~1423 [27] Elbert B L, Bunn H F. Regulation of the erythropoietin gene. Blood, 1999, 94(6): 1864~1877 [28] Bunn H F, Gu J, Huang L E, et al. Erythropoietin: a model system for studying oxygen-dependent gene regulation. J Exp Biol, 1998, 201(Pt8): 1197~1201 [29] Wang D S, Youngson C, Wong V, et al. NADPH-oxidase and a hydrogen peroxide-sensitive K + channel may function as an oxygen sensor complex in airway chemoreceptors and small cell lung carcinoma cell lines. Proc Natl Acad Sci USA, 1996, 93(23): 13182~13187 [30] Darden A G, Ries W L, Wolf W C, et al. Osteoclastic superoxide production and bone resorption: stimulation and inhibition by modulators of NADPH oxidase. J Bone Miner Res, 1996, 11(5): 671~675 [31] Ries W L, Key L L, Rodriguiz R M. Nitroblue tetrazolium reduction and bone resorption by osteoclasts in vitro inhibited by a manganese-based superoxide dismutase mimic. J Bone Miner Res, 1992, 7(8): 931~939 [32] Imagawa S, Yamamoto M, Miura Y. Negative regulation of the erythropoietin gene expression by the GATA transcription factors. Blood, 1997, 89(4): 1430~1439 [33] Yang S, Madyastha P, Bingel S, et al. A new superoxidegenerating oxidase in murine osteoclasts. J Biol Chem, 2001, 276: 5452~5458