41 4 ( ) Vol.41 No.4 2010 8 Journal of Central South University (Science and Technology) Aug. 2010 EDTA ( 410083) OH EDTA ph OH EDTA CO2 H2O NH3 ph 6.0 200 ml/min 25 0.15 S/m 200 ma 1h (TOC) 96.40% 50 TOC 90% X703.1 O646.5 A 1672 7207(2010)04 1240 06 Electrochemical degradation of organic wastewater containing EDTA with three-dimensional electrode reactor CHAI Li-yuan, YOU Xiang-yu, SHU Yu-de, YANG Jie, WANG Yun-yan, ZHAO Na (School of Metallurgical Science and Engineering, Central South University, Changsha 410083, China) Abstract: The electrochemical degradation of organic wastewater containing EDTA was investigated using a novel three-dimensional electrode reactor. The results show that using activated carbon as particle electrode, EDTA in organic wastewater can be efficiently removed by OH radicals produced in the reactor, while its removal efficiency is significantly dependent on current, electric conductivity and ph of the wastewater. EDTA is firstly degraded into primary amine during the action of OH radicals, then mineralized into CO2, H2O andnh3. The removal efficiency of total organic carbon (TOC) is 96.40% at 200 ma, 0.15 S/m of electric conductivity, 1 h of electrolysis time, 25, 200 ml/min of influent flow rate, ph 6.0. The removal efficiency of TOC maintains 90% when it is circulated times is 50. Key words: three-dimensional electrode; electro-catalytic oxidation; organic wastewater; OH radical; EDTA-2Na (Advanced oxidation processes) OH [1] OH [2] [3] OH [4] [5] 2009 09 05 2010 01 18 (2009ZX07212-001-01) (50925417) (50830301) (2008FJ1013) (1975 ), 0731-88830875 E-mail: wyy@mail.csu.edu.cn
4 EDTA 1241 [6 7] [8 9] [10 12] [13] EDTA EDTA EDTA 1 1.1 1 2 ( ) 2 5cm 10 cm ( 830~2 360 µm) 5cm 5cm 10 cm PVC 1 1mm PVC 0.5 cm 5cm DF1797B 8003 0~80 V 0~2.5 A 1.2 TOC-VCPH ( ) (TOC) 200 mg/l ph PHS-3B ph ( ) DDS-307 ( ) NEXUS670 ( Nicolet ) TOC η m0 m t η = m 100% (1) m0 TOC mt t TOC 1.3 150 g 500 ml TOC 1.4 0 2 1 2 3 4 5 6 7 8 1 Fig.1 Schematic diagram of a three-dimensional electrode reactor 2.1 2 EDTA 2 20 20
1242 ( ) 41 EDTA 3 TOC 86.79% 4 TOC 86.79% 50% TOC 95% 5 2.2 [14] O2 H2O OH +H + +e (2) 2 EDTA Fig.2 Effect of temperature on adsorption capacity of EDTA adsorbed using activated carbon ph 8.0 200 ma 500 ml 2h TOC 3 I=100 ma, σ =0.20 S/m, t =1 h, θ=25, v =200 ml/min, ph =8.0 3 TOC Fig.3 Effect of used times of activated carbon on TOC removal efficiency OH O +H + +e (3) 2O O2 (4) (2) OH OH +e (5) OH +OH O +H2O+e (6) 2O O2 (7) (6) (5) (2) (5) 2.80 V ( 4) 3000~3500cm 1 3523.57cm 1 N H 3 438.57 cm 1 N H 1 564.44 cm 1 N H [15] NH3 EDTA EDTA R3N( ) R2NH( ) H2NR( ) NH4 + +HOOC COOH CO2+H2O+ NH3 Gilbert [16] EDTA
4 EDTA 1243 I =100 ma, σ =0.20 S/m, t =1 h, θ=25, v=200 ml/min, ph =8.0 4 Fig.4 Infrared spectrum of activated carbon after electrolysis reaction 2.3.2 Na2SO4 6 6 0.10 S/m 0.15 S/m 60 min 94.71% 0.40 S/m 60 min 84.03% 0.15 S/m [17] 2.3 2.3.1 40 ml TOC 5 5 TOC 200 ml/min 20% 275 ml/min 25% 200 ml/min I =100 ma, t =1 h, θ=25, v=200 ml/min, ph =8.0 σ/(s m 1 ): 1 0.15; 2 0.20; 3 0.40; 4 0.10 6 TOC Fig.6 Effect of electric conductivity on TOC removal efficiency I =100 ma, σ =0.20 S/m, t =1 h, θ=25, ph =8.0 v/(ml min 1 ): 1 125; 2 200; 3 275 5 TOC Fig.5 Effect of influent flow on TOC removal efficiency 2.3.3 7 7 200 ma 60 min 96.40% 500~800 ma 60 min 92% 1100mA 60 min 75.22% TOC 200~800 ma TOC (ph=9.0) (6) (5) EDTA TOC 1100mA (5) (6)
1244 TOC σ =0.20 S/m, t =1 h, θ=25, v=200 ml/min, ph =8.0 I/mA: 1 200; 2 500; 3 800; 4 1 100 7 TOC Fig.7 Effect of current on TOC removal efficiency 2.3.4 ph ph TOC 8 8 ph 4~11 TOC 85%~90% ph 3 TOC 80% 40% ph 3 Tafel RT [18] 2 (2) F (3) (4) 8 ph 11 TOC RT ph Tafel [18] 2 F ( ) 41 (5) (6) (7) EDTA ph 3~7 (3) ph 7~10 (6) ph 3~10 TOC 2.3.5 TOC 9 9 TOC TOC 25 60 min TOC 95.26% 45 60 min TOC 77.48% 25 Tafel [18] 1 RT (7) (5) (6) 4 F EDTA 8 45 EDTA 45 (7) I =100 ma, σ =0.20 S/m, t =1 h, v =200 ml/min, ph =8.0 θ/ :1 25; 2 35; 3 45; 4 55 9 TOC Fig.9 Effect of inlet water temperature on TOC removal efficiency I =100 ma, σ =2.0 ms/cm, t =1 h, θ=25, V =200 ml/min ph: 1 6; 2 9; 3 12; 4 2 8 ph TOC Fig.8 Effect of inlet water ph on TOC removal efficiency 3 (1) TOC 90%
4 EDTA 1245 (2) EDTA ph 6.0~8.0 200 ml/min 25 0.15 S/m 200 ma 1h EDTA 96.40% (3) EDTA OH EDTA R3N( ) R2NH( ) H2NR( ) NH4 + +HOOC COOH CO2+ H2O + NH3 [1] Huang C P, DONG C D, Tang Z H. Advanced chemical oxidation: Its present role and potential future in hazardous waste treatment[j]. Waste Management, 1993, 13: 5 7. [2],,,. Cu( )-Fe( )-H 2O 2 [J]. :, 2007, 38(6): 480 485. XU Fu-yuan, SONG Tian-shun, CHEN Ying-wen, et al. Oxidation degradation of cationic red GTL by photo-fenton[j]. Journal of Central South University: Science and Technology, 2007, 38(6): 480 485. [3],. Fenton GTL[J]. :, 2008, 39(4): 688 693. ZHANG Ya-ping, WEI Chao-hai. Oxidation degradation of cationic red GTL by photo-fenton[j]. Journal of Central South University: Science and Technology, 2008, 39(4): 688 693. [4] Brillas E, Calpe J C, Casado J. Mineralization of 2,4-D by advanced electrochemical oxidation processes[j]. Water Research, 2000, 34(8): 2253 2262. [5] Rajeshwar K, Ibanez J G, Swain G M. Electrochemistry and environment [J]. J Appl Electrochem, 1994, 24(11): 1077 1091. [6] Belmant C, Cognet P, Berlan J, et al. Application of an electrochemical pulsed flow reactor to electroorganic synthesis: Part I. Reduction of acetophenone[j]. J Appl Electrochem, 1997, 28(2): 185 191. [7] Szanto D, Trinidad P, Walsh F. Evaluation of carbon electrodes and electrosynthesis of coumestan and catecholamine derivatives in the FM01-LC electrolyser[j]. J Appl Electrochem, 1998, 28(3): 251 258. [8] Didckmann G R, Langer S H. Selective electrogenerative oxidation of benzyl alcohol with platinum-graphite packed-bed anodes[j]. J Appl Electrochem, 1997, 27(1): 1 8. [9] Bisang J M. Electrochemical treatment of waste solutions containing ferrous sulfate by anodic oxidation using an undivided reactor[j]. J Appl Electrochem, 2000, 30(4): 399 404. [10] El-Deab M S, Saleh M M, El-Anodouli B E, et al. Electrochemical removal of lead ions from flowing electrolytes using packed bed electrodes[j]. J Electrochem Soc, 1999, 146(1): 208 213. [11] Ragnini C A R, Di I R A, Bizzo W. et al. Recycled niobium felt as an efficient three-dimensional electrode for electrolytic metal ion removal[j]. Water Research, 2000, 34(13): 3269 3276. [12] Walsh F, Reade G. Design and performance of electrochemical reactors for efficient synthesis and environmental treatment. Part 2. Typical reactors and their performance[j]. Analyst, 1994, 119(5): 797. [13] Pitter P, Sykora V. Biodegradability of ethylenediamine-based complexing agents and related compounds[j]. Chemosphere, 2001, 44(4): 823 826. [14]. [M]. 3. :, 2002: 192 197. ZHA Quan-xing. Introduction to electrode kinetics[m]. 3rd ed. Beijing: Science Press, 2002: 192 197. [15]. [M]. :, 2005: 53. ZOU Ding-ping. Structure analysis of organic compounds[m]. Beijing: Science Press, 2005: 53. [16] Gilbert E, Hoffmann-Glewe S. Ozonation of ethylenediaminetetraacetic acid (EDTA) in aqueous solution, influence of ph value and metal ions[j]. Water Reasearch, 1990, 24(1): 39 44. [17] Newman J, Tiedemann W. Porous-electrode theory with battery applications[j]. American Institute of Chemical Engineers, 2004, 21(1): 25 41. [18] Antropov L I. Theoretical electrochemistry[m]. Moscow: Mir Publishers, 1977: 196 201. ( )