5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

Σχετικά έγγραφα
Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

A Sequential Experimental Design based on Bayesian Statistics for Online Automatic Tuning. Reiji SUDA,

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem

ΒΕΛΤΙΣΤΟΙ ΣΧΕΔΙΑΣΜΟΙ ΣΕ ΑΝΟΜΟΙΟΓΕΝΕΙΣ ΠΛΗΘΥΣΜΟΥΣ

Concomitants of Dual Generalized Order Statistics from Bivariate Burr III Distribution

Α Ρ Ι Θ Μ Ο Σ : 6.913

IF(Ingerchange Format) [7] IF C-STAR(Consortium for speech translation advanced research ) [8] IF 2 IF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

Supplementary materials for Statistical Estimation and Testing via the Sorted l 1 Norm

Πεπερασμένες διαφορές για την ελλειπτική εξίσωση στις δύο διαστάσεις

Evaluation of Expressing Uncertain Causalities as Conditional Causal Possibilities

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Novel Ensemble Analytic Discrete Framelet Expansion for Machinery Fault Diagnosis 1

High order interpolation function for surface contact problem

ΜΕΡΟΣ ΙΙΙ ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ

90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z

Prey-Taxis Holling-Tanner

Generalized Linear Model [GLM]

ΜΕΡΟΣ ΙΙI ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ

[1], [2] - (Danfoss, Rexroth, Char-Lynn. [3, 4, 5]), .. [6]. [7]

Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University

CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital

Quantum annealing inversion and its implementation

= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

ΑΚΡΙΒΕΙΑ ΕΝΟΣ ΔΙΤΙΜΟΥ ΔΙΑΓΝΩΣΤΙΚΟΥ ΕΛΕΓΧΟΥ ΠΟΥ ΕΞΑΡΤΑΤΑΙ ΑΠΟ ΤΟ ΧΡΟΝΟ


Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet

A Two Sample Test for Mean Vectors with Unequal Covariance Matrices

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

Estimating Time of a Simple Step Change in Nonconforming Items in High-Yield Processes

α + α+ α! (=+9 [1] ι «Analyze-Regression-Linear». «Dependent» ι η η η!ηη ι «Independent(s)» η!ηη. # ι ι ι!η " ι ιηη, ι!" ι ηιι. 1 SPSS ι η η ι ιηη ι η

4.6 Autoregressive Moving Average Model ARMA(1,1)

Power allocation under per-antenna power constraints in multiuser MIMO systems

The one-dimensional periodic Schrödinger equation

α & β spatial orbitals in

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Το ανοιχτό µοντέλο Leontief Μιχάλης Τζούµας Σχολικός Σύµβουλος κλάδου ΠΕ03 Ν. Αιτ/νίας

ΜΙΑ ΜΕΘΟΔΟΣ ΤΙΜΩΡΙΑΣ ΓΙΑ ΤΗΝ ΑΠΟΡΡΙΨΗ ΑΚΡΑΙΩΝ ΤΙΜΩΝ ΣΤΗΝ ΑΝΘΕΚΤΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

ΕΘΝΙΚΟΝ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟΝ ΠΑΝΕΠΙΣΤΗΜΙΟΝ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΏΝ


Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Stochastic Finite Element Analysis for Composite Pressure Vessel

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Simplex Crossover for Real-coded Genetic Algolithms

Aerodynamic Design Optimization of Aeroengine Compressor Rotor

! "#$#% & '( K, X3/H }" I q +W R%2. >2" *+ + 1 LN6 H+ +ˆ,

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Downloaded from hakim.hbi.ir at 17:53 IRST on Thursday October 11th : . C.A.MAN AFP. 1 Acute Flaccid Paralysis (AFP)

Some generalization of Cauchy s and Wilson s functional equations on abelian groups

coupon effects Fisher Cohen, Kramer and Waugh Ordinary Least Squares OLS log

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Συνεχείς συναρτήσεις και συντελεστής µεταβλητότητας: Προσέγγιση µέσα από δειγµατοληψία

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A


m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx

35 90% %

8.323 Relativistic Quantum Field Theory I

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

ΥΨΗΛΟΥ ΣΗΜΕΙΟΥ ΚΑΤΑΡΡΕΥΣΗΣ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΜΕ PENALIZED TRIMMED SQUARES

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246).

Βέλτιστο Χαρτοφυλάκιο μετοχών του δείκτη FTSE/ΧΑΑ20 στο Χρηματιστήριο Αθηνών για τα έτη

Discriminative Language Modeling Based on Risk Minimization Training

Homework 8 Model Solution Section

Single-value extension property for anti-diagonal operator matrices and their square

Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment

ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΤΟΠΟΛΟΓΙΑΣ ΚΟΜΒΩΝ ΚΑΙ ΡΑΒ ΩΝ ΣΕ ΙΚΤΥΩΜΑΤΑ

Phasor Diagram of an RC Circuit V R

ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΦΡΑΓΜΑΤΩΝ ΑΞΙΟΠΙΣΤΙΑΣ *

m i N 1 F i = j i F ij + F x

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ

Supporting information for: Functional Mixed Effects Model for Small Area Estimation

ΚΑΤΑΣΚΕΥΗ D-ΒΕΛΤΙΣΤΩΝ, ΚΟΡΕΣΜΕΝΩΝ, s 1 s 2 s 3 ΠΑΡΑΓΟΝΤΙΚΩΝ ΣΧΕ ΙΑΣΜΩΝ, ΟΤΑΝ s 1 =3, s 2 3, s 3 s 2 +1, ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΤΗΣ ΘΕΩΡΙΑΣ ΓΡΑΦΗΜΑΤΩΝ

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

DOI /J. 1SSN

Durbin-Levinson recursive method


Λέξεις Κλειδιά: Γεωγραφικά Σταθμισμένη Παλινδρόμηση (GWR), Γονιμότητα

Pricing of Options on two Currencies Libor Rates

Non polynomial spline solutions for special linear tenth-order boundary value problems

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

A summation formula ramified with hypergeometric function and involving recurrence relation

ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΠΡΟΒΛΕΨΗΣ ΠΟΛΥΜΕΤΑΒΛΗΤΩΝ ΧΡΟΝΟΣΕΙΡΩΝ ΜΕ ΜΟΝΤΕΛΑ ΔΥΝΑΜΙΚΗΣ ΠΑΛΙΝΔΡΟΜΗΣΗΣ

A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

2002 Journal of Software /2002/13(08) Vol.13, No.8. , )

A Method for Determining Service Level of Road Network Based on Improved Capacity Model

Estimators when the Correlation Coefficient. is Negative

Ανάλυση σχημάτων βασισμένη σε μεθόδους αναζήτησης ομοιότητας υποακολουθιών (C589)

Θέμα : Retrieval Models. Ημερομηνία : 9 Μαρτίου 2006

Applying Markov Decision Processes to Role-playing Game

Classical Theory (3): Thermostatics of Continuous Systems with External Forces

Transcript:

4 Chnese Journal of Appled Probablty and Statstcs Vol.6 No. Apr. Haar,, 6,, 34 E-,,, 34 Haar.., D-, A- Q-,. :, Haar,. : O.6..,..,.. Herzberg & Traves 994, Oyet & Wens, Oyet Tan & Herzberg 6, 7. Haar Haar., L.,. Antonads & Oppenhem 995 Hardle 998. Haar 9, Haarφx Haar ψx L R,,, x < /;, x < ; φx ψx, / x < ;,,,. 679 67 E E34 7558 S345. 73, 9.

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [, ], f rt x, ψ x,, ψ mr, mr x, r,, Haar /, k/ x < k/ + / + ; ψ k x / ψ x k /, k/ + / + x < k/ + / ;,.,, m r ; k,, mr+, β rt β r, βr,, βr m r, mr, r,, β r, βr k mr+., m m. : E[ε r x], E[ε r x ε t x ] x x, E[ε r x] σ r, E[ε xε x] ρσ σ, } r, t,..3.,. D-, A- Q-... n n m + ξ n, supp{ξ n } {x,, x n }ξ n.. y r r β r + ε r, r,. r f r x,, f r x n T, y r y r x,, y r x n T, ε r ε r x,, ε r x n T, r,, r.,. Y β + ε,.

: Haar 53,, Y y T, y T T, β β T, β T T, ε ε T, ε T T..3 Cov [ε] Σ I n, Σ σ ρσ σ ρσ σ σ xyx y x, y x T., Gauss-Markov, β BLU β β T Σ I n T Σ I n Y, Cov [ β] T Σ I n. ξ n,, [, ], [ r mr+, mr+ mr+ r, ;,, mr+, r, r,, m m k m m +k,,, m +..ψ k x, x r, r, ;,, mr+, µ r f r x ψ k x ψ k µ r,,, m r ; k,,, / mr+, r, ;,, mr+ r. f r x f r µ r, x r, r, ;,, mr+.. r ξ n Ω r n, supp{ξ n} r {x r,, xr n r }, r, ;,, mr+. Ω n, m m k Ω n, m m +k, n m m k m m +k,,, m +.

54 D r mr+ r n, r H f r µ r, f r µ r,, f r µ r T, r,. mr+ D D D, H H. H, r n nr.., r D r r H, r,, D H. ψ k x, ξ n r T r H H T r H r H m r+ I mr+..3 Mξ n n Cov [ β] n T Σ I n n T HD T Σ I n D H..4 σ Σ σ, N σ σ m m +... m m,,, m +. σ D T Σ I n D T D σ D T D σ A σ A D, σ D T D σ D T D σ A T σ A.3 M ξ n n T HD T Σ I n D H n T m + H m + H T D T Σ I n D m + H m + H,.5 D T Σ I n D m + σ n m + ρσ σ n m m m + m + ρ σ N ρσ σ n T m m + ρ σ m m T. m m n

: Haar 55. Ξ. ξ Ξ ξ. D, A Q. : ξd Φ Dξ n M ξ n, Φ D ξ D M ξ D Mn ξ n Ξ M ξ n, ξ D D-. Mξ D Max ξ n Ξ Mξ n,.6 ξ A Φ Aξ n tr M ξ n, Φ A ξ A tr M ξ A Mn ξ n Ξ tr M ξ n,.7 ξa A-. ξq Φ Qξ n Φ Q ξq tr Dx, ξ Qdx Mn ξ n Ξ ξ Q Q-. Dx, ξ n F T xm ξ n Fx, Fx tr Dx, ξ n dx, tr Dx, ξ n dx,.8 f x f x. x,, m+, x ξ x m +.9 m + m +. D-, A- Q-. : a A m+ n, H T H m + m + m + m +, σ A σ A T σ A σ A m+ ρ σ N I m m ρ n m m T m m N m+ ρ ρ σ N n T m m N m m m+ m m k ρ m + ρ σ m + ρ σ m + m m +k, ρ.

56, Mξ n n T HD T Σ I n D H n DT Σ I n D H T H m + + m + σ A σ A σ A T n σ A σ A H T H m n + + m + m + m + m + m + m + σ ρ σ n m + m + n m + n, mr+.. n n r n m m k m m +k n, r, ;,, mr+, n r n r n r, r, Mξ mr+ n, Φ D ξ n.., Ω n, ξ n, Fx Fx x.,,, m +, Ω n, x D. b, x, x. D,.9 tr M ξ n tr n T HD T Σ I n D H tr{nd T Σ I n D H T H } { m+ n m + tr σ + m+ m + tr nσ m + m + n σ n + ρ σ m + m + n ρ σ N + n m + n m + + ρ σ m + + ρ σ } m m T m m n ρ σ m m m + k m m +k + ρ σ n m m.., n r n r n r, r, Φ mr+ A ξ n. A,.9A. c x,,, m+ x,, [/ m m ] +,., f r x r H, x, H f x e,

: Haar 57 H f x e. e,. x, xŷ e Dx, ξ n F T xm T ξ n Fx n [D T Σ I n D] e. e T e,,, m+ ; [/ m m ] + x, { m + tr Dx, ξ n n tr e T σ e + tr e T m + σ n + ρ σ n tr Dx, ξ n dx m+ m+ m+ n ρ σ N + ρ σ tr Dx, ξ n dx σ n + ρ σ n σ n + ρ σ n σ n + ρ σ m + m + σ n + ρ σ m + m + + ρ σ } m m T m m e n.. + ρ σ dx + ρ σ m m n n m + + ρ σ m + + ρ σ m + m + m +,.3. Φ Q ξ n Φ A ξ n, Q- A-..9 Q-.. Haar.,,.9D-, A- Q-.,.,. [] Antonads, A. and Oppenhem, G., Wavelets and statstcs, Papers from the Conference Held n Vllard de Lans, Noverber 6-8, Sprnger, Berln, New York, 995.

58 [] Antonads, A., Gregore, G. and McKeague, I.W., Wavelet method for curve estmaton, J. Am. Stat. Assoc., 89994, 34 34. [3] Dogaru, T. and Carn, L., Applcaton of Haar-wavelet-based multresoluton tme-doman schemes to electromagnetc scatterng problems, IEEE Trans. Antennas Propag., 5, 774 784. [4] Haar, A., Zur theore der orthogonalen Funktonensysteme, Math. Ann., 699, 33 37. [5] Hardle, W., Kerkyacharan, G., Pcard, D. and Tsybaov, A., Wavelets, Approxmaton and Statstcal Applcatons, Sprnger, Berln, New York, 998. [6] Herzberg, A.M. and Traves, W.N., An optmal expermental desgn for the Haar regresson model, Can. J. Stat., 994, 357 364. [7] Kerkyacharan, G. and Pcard, D., Estmatng nonquadratc functonals of a densty usng Haar wavelets, Ann. Statst., 4996, 485 57. [8] Oyet, A.J., Mnmax A- and D-optmal nteger-valued wavelet desgns for estmaton, Can. J. Stat., 3, 3 36. [9] Oyet, A.J. and Wens, D.P., Robust desgns for wavelet approxmatons of regresson models, J. Nonparametrc Stat.,, 837 859. [] Tan, Y.G. and Herzberg, A.M., Estmaton and optmal desgns for lnear Haar wavelet models, Metrka, 657, 3 34. [] Tan, Y.G. and Herzberg, A.M., A-mnmax and D-mnmax robust optmal desgns for approxmately lnear Haar wavelet models, Computatonal Statstcs & Data Analyss, 56, 94 95. Optmal Desgns for Dual Response Lnear Haar-Wavelet Regresson Model Lu n College of Scence, Donghua Unversty, Shangha, 6 Yue Rongxan College of Mathematcs, Shangha Normal Unversty, Shangha, 34 Scentfc Computng Key Laboratory of Shangha Unverstes and E-Insttute of Shangha Unverstes, Shangha, 34 Ths paper dscusses optmal desgn problems for the lnear regresson model wth two responses, n whch each response s expressed by a lnear combnaton of Haar-wavelets. It s shown that the obtaned desgn s D-, A- and Q-optmal smultaneously. Moreover, ths desgn s ndependent of the covarance matrx of the responses. Keywords: Dual response, Haar-wavelet, optmal desgns. AMS Subect Classfcaton: 6K5.