ΚΑΤΑΣΚΕΥΗ D-ΒΕΛΤΙΣΤΩΝ, ΚΟΡΕΣΜΕΝΩΝ, s 1 s 2 s 3 ΠΑΡΑΓΟΝΤΙΚΩΝ ΣΧΕ ΙΑΣΜΩΝ, ΟΤΑΝ s 1 =3, s 2 3, s 3 s 2 +1, ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΤΗΣ ΘΕΩΡΙΑΣ ΓΡΑΦΗΜΑΤΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΚΑΤΑΣΚΕΥΗ D-ΒΕΛΤΙΣΤΩΝ, ΚΟΡΕΣΜΕΝΩΝ, s 1 s 2 s 3 ΠΑΡΑΓΟΝΤΙΚΩΝ ΣΧΕ ΙΑΣΜΩΝ, ΟΤΑΝ s 1 =3, s 2 3, s 3 s 2 +1, ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΤΗΣ ΘΕΩΡΙΑΣ ΓΡΑΦΗΜΑΤΩΝ"

Transcript

1 Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 7 ου Πανελληνίου Συνεδρίου Στατιστικής (004), σελ. 5-4 ΚΑΤΑΣΚΕΥΗ D-ΒΕΛΤΙΣΤΩΝ, ΚΟΡΕΣΜΕΝΩΝ, s s s ΠΑΡΑΓΟΝΤΙΚΩΝ ΣΧΕ ΙΑΣΜΩΝ, ΟΤΑΝ s =, s, s s +, ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΤΗΣ ΘΕΩΡΙΑΣ ΓΡΑΦΗΜΑΤΩΝ Βασίλης Καραγιάννης, Χρόνης Μωυσιάδης Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης ΠΕΡΙΛΗΨΗ Είναι γνωστό (Raktoe, Heayat, Fenerer, 98, σελίδα 8) ότι, για κάθε παραγοντικό πείραµα Eκτιµητικής τάξης III, υπάρχει ένας πίνακας σταθερών που µετασχηµατίζει τον πίνακα σχεδιασµού σ έναν 0- πίνακα U. Ο νέος πίνακας U, έχει άµεση σχέση µε τους συνδυασµούς των σταθµών των παραγόντων που αντιστοιχίζουµε στις πειραµατικές µονάδες. Στην εργασία αυτή, επεκτείνοντας τ αποτελέσµατα των Chatterjee και Narashan (00), δίνουµε για ένα s s κορεσµένο D-Βέλτιστο παραγοντικό πείραµα εκτιµητικής τάξης ΙΙΙ, τη µέγιστη τιµή της ορίζουσας του αντίστοιχου πίνακα U, για κάθε τιµή των s, s, χρησιµοποιώντας στοιχεία της Θεωρίας Γραφηµάτων. Επιπλέον, εφαρµόζοντας τα θεωρητικά αποτελέσµατα, κατασκευάζουµε όλους τους D-Βέλτιστους σχεδιασµούς µε, s s+.. ΕΙΣΑΓΩΓΗ Κατά τις δυο τελευταίες δεκαετίες, υπάρχει ένα αµείωτο ενδιαφέρον από πλήθος ερευνητών (Mukerjee 986, 990, 99, Chatterjee 986, 99, 00 κ.α.) για την κατασκευή D-Βέλτιστων κορεσµένων σχεδιασµών εκτιµητικής τάξης III που αντιστοιχούν σε παραγοντικά πειράµατα µε δυο ή τρεις παράγοντες. Απώτερος στόχος αυτής της προσπάθειας είναι η εφαρµογή των αποτελεσµάτων στη µελέτη του γενικού s s... sp παραγοντικού πειράµατος, στο οποίο εµφανίζονται p παράγοντες µε s j j =,,.., p στάθµες ο καθένας αντίστοιχα. Ειδικότερα, έχουν µελετηθεί οι περιπτώσεις στις οποίες, s = (Mukerjee, Chatterjee και Sen, 986) για κάθε τιµή των s, s µεγαλύτερη ή ίση του, s = (Chatterjee και Mukerjee, 99) για κάθε τιµή των 5

2 s, s µεγαλύτερη ή ίση του και s = (Chatzopoylos και Machera, 00) για τις περιπτώσεις s 6, µε s s. Οι Chatterjee και Narashan (00), έδωσαν µια εναλλακτική απόδειξη για την περίπτωση s =, χρησιµοποιώντας στοιχεία της Θεωρίας Συζεύξεων (Matchng Theory). Στην εργασία αυτή, επεκτείνουµε τ αποτελέσµατα των προηγουµένων στην περίπτωση s =, χρησιµοποιώντας στοιχεία της Θεωρίας Γραφηµάτων. Αποδεικνύουµε έτσι, τη µέγιστη δυνατή τιµή της ορίζουσας για τον αντίστοιχο 0- πίνακα U, όταν s = και κατασκευάζουµε όλους τους D-Βέλτιστους σχεδιασµούς µε s = και s s+, s.. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΣΥΜΒΟΛΙΣΜΟΙ Θεωρούµε ένα πείραµα µε τρεις παράγοντες F, F και F, οι οποίοι εµφανίζονται µε s, s και s στάθµες αντίστοιχα. Ακολουθώντας το συµβολισµό των Chatterjee και Narashan (00), το γραµµικό µοντέλο που εκτιµά το γενικό µέσο καθώς και τις κύριες επιδράσεις των παραγόντων (κάθε αλληλεπίδραση θεωρείται αµελητέα), όταν κάθε δυνατή αγωγή εφαρµοστεί ακριβώς σε µια πειραµατική µονάδα έχει διάνυσµα µέσων τιµών και πίνακα διασπορών-συνδιασπορών που δίνονται από τις σχέσεις: E ( y) = Vθ, Dsp( y) = σ I, όπου, y το διάνυσµα των λεξικογραφικά διατεταγµένων παρατηρήσεων y στις οποίες εφαρµόζεται η αγωγή (,, ) µε j = 0,,..., sj, V ο u v πίνακας σχεδιασµού ( u= ss s και v= s+ s+ s ), σ η άγνωστη διασπορά των σφαλµάτων και θ= ( µ, β T, β T, β T ) T το διάνυσµα των άγνωστων παραµέτρων ( µ είναι ο γενικός µέσος ενώ το διάνυσµα β T j, j =,,, αντιστοιχεί σ ένα πλήρες σύνολο, s j ορθογωνίων αντιθέσεων του παράγοντα F j ). Είναι γνωστό ότι (Chatterjee και Mukerjee, 99), υπάρχει ένας µη ιδιάζων πίνακας µετασχηµατισµού H, τέτοιος ώστε V= UH. Ο πίνακας H είναι n n πίνακας σταθερών, ενώ o πίνακας U= [ X, X, X ] είναι u n υποπίνακας του πίνακα X, όπου: X= [, ε X, X, X ], ε= u, X = Is s s, X = s I s s, X = s s I s, p είναι ένα p διάνυσµα µε στοιχεία µονάδες και I p ο µοναδιαίος p p πίνακας, ενώ συµβολίζει το Kronecker γινόµενο πινάκων. Ο πίνακας προκύπτει από τον X, =, µε διαγραφή της τελευταίας στήλης. Στην εργασία µας θεωρούµε ότι s =. Έστω D το σύνολο των κορεσµένων σχεδιασµών (µε n= s+ s+, παρατηρήσεις) και V ο πίνακας σχεδιασµού. Τότε V = UH. Σύµφωνα µε τους Chatterjee και Narashan (00), ο πίνακας T T U ( A είναι ο ανάστροφος του A ) ικανοποιεί την ιδιότητα P µε =, δηλαδή είναι ένας n n, 0- X 6

3 πίνακας, τέτοιος ώστε, οι γραµµές του διαµερίζονται σε τρία σύνολα S, S και S, µε S = και κάθε στήλη του περιέχει το πολύ µία µονάδα σε κάθε ένα από τα σύνολα S, S και S ( G συµβολίζει είτε τον πληθυκό αριθµό του συνόλου G, είτε την ( ) απόλυτη τιµή του αριθµού G ). Θεωρούµε το σύνολο M, των µη ιδιαζόντων πινάκων που ικανοποιούν την προηγούµενη ιδιότητα. Για το πλήθος των γραµµών των συνόλων S και S θεωρούµε ότι S = και S = = + k µε k N. Επιπλέον, χωρίς να περιορίζουµε τη γενικότητα υποθέτουµε ότι. Έστω A = { a } j ένας πίνακας από το σύνολο ( M ). Στον A αντιστοιχίζουµε ένα διµερές γράφηµα r c G= ( V V, E), έτσι ώστε, κάθε γραµµή του ν αντιστοιχεί σ ένα στοιχείο του r c συνόλου V, κάθε στήλη του σ ένα στοιχείο του συνόλου V, ενώ η ακµή {, j} E υπάρχει αν και µόνο αν, a j =. Ο πίνακας A θα ονοµάζεται µη συµµετρικός πίνακας συνδέσεων του G (θα γράφουµε για συντοµία ΜΣΠΣ). Στο G ορίζουµε την επόµενη συνάρτηση χρωµατισµού c r, αν u S,στο γραφηµα συµβολιζουµε w, αν u S,στο γραφηµα συµβολιζουµε cu ( ) = b, αν u S,στο γραφηµα συµβολιζουµε c g, αν u V,στο γραφηµα συµβολιζουµε r c όπου u V V. Θα συµβολίζουµε τις κορυφές του γραφήµατος και τις αντίστοιχες γραµµές του πίνακα µε r, wj, b k, ενώ τις κορυφές και τις αντίστοιχες στήλες µε g (ορισµοί βασικών εννοιών της Θεωρίας Γραφηµάτων µπορούν να βρεθούν σε συγγράµµατα όπως των Bony και Murty, 976). Τέλεια σύζευξη F στο G θα ονοµάζουµε ένα σύνολο ακµών του, τέτοιο ώστε, κάθε κορυφή του G να είναι άκρο σε ακριβώς µια ακµή του F. Σε κάθε τέλεια σύζευξη F, αντιστοιχεί µονοσήµαντα µια µετάθεση pf των στοιχείων του συνόλου {,,..., n }, για την οποία ισχύουν, {, pf ( ) } F και a ( ) = (µε σηµειώνουµε πάντα κορυφή που αντιστοιχεί σε pf γραµµή του A και µε pf () κορυφή που αντιστοιχεί σε στήλη του). Τότε, κάθε άρτια µεταθέση p F µε a ( ) =, αντιστοιχεί σε µια µοναδική άρτια τέλεια σύζευξη, ενώ κάθε pf περιττή µεταθέση p F µε a p ( ) F =, σε µια µοναδική περιττή τέλεια σύζευξη. Ακολούθως, η τιµή της ορίζουσας του 0- πίνακα A (ορισµός Craer, et( A ) sgn( p ) = F p F () p F = n a ), ισούται µε τη διαφορά του πλήθους των περιττών από το πλήθος των άρτιων τέλειων συζεύξεων. Έτσι η εύρεση ενός πίνακα µε τη µέγιστη τιµή της ορίζουσας, ανάγεται στην κατασκευή ενός γραφήµατος στο οποίο η διαφορά του πλήθους των άρτιων από το πλήθος των περιττών τέλειων συζεύξεων γίνεται µέγιστη. Χρήσιµη για την κατασκευή αυτή είναι η έννοια της συµµετρικής διαφοράς F F των τέλειων συζεύξεων F, F (είναι ίση µ ένα σύνολο κύκλων 7

4 g g g7 g8 r` r r w w g 7 b w g g b g A7 = b b r Εικόνα Ένα γραφηµα µε ΜΣΠΣ τον πίνακα A 7. Στον πίνακα είναι σηµειωµένες οι µονάδες που αντιστοιχούν στις ακµές του P -µονοπατιού, [ r, g, b, g7, r ], (οι τελείες συµβολίζουν τα 0) rbr άρτιου µήκους). Οι Chatterjee και Narashan (00), απέδειξαν ότι, αν η συµµετρική διαφορά δυο τέλειων συζεύξεων είναι ακριβώς ένας κύκλος µήκους 0o4, τότε, η µια είναι περιττή και η άλλη άρτια (οι αντίστοιχοι όροι στην ορίζουσα είναι - και +, έτσι δεν συνεισφέρουν), ενώ αν η συµµετρική τους διαφορά είναι ακριβώς ένας κύκλος µήκους o4, τότε είναι, είτε και οι δυο περιττές είτε και οι δυο άρτιες. Η προηγούµενη πρόταση (θα την αναφέρουµε ως CN-Λήµµα) έπαιξε καθοριστικό ρόλο στη µελέτη µας. Προς διευκρύνιση των προηγουµένων εννοιών, ολοκληρώνουµε την παράγραφο µ ένα παράδειγµα. Παρουσιάζουµε ένα γράφηµα και τον αντίστοιχο ΜΣΠΣ, A 7 (Εικόνα ), για τον οποίο, S =, S = = 7 και S = = 8. Εύκολα µπορεί κάποιος να επαληθεύσει ότι et ( A 7 ) = 7. Η τιµή αυτή είναι η µέγιστη στο σύνολο ( ) M 7. Στο γράφηµα, σηµειώνονται µε έντονες ακµές τα µονοπάτια [ r, g, b, g 7, r ] και [ r, g, b, g8, r ]. Μονοπάτια όπως τα προηγούµενα, στα οποία η διαδοχή των κορυφών ακολουθεί τη συγκεκριµένη διάταξη των χρωµάτων και η εσωτερική b -κορυφή έχει βαθµό θα ονοµάζονται Prbr -µονοπάτια. Θα παρατηρήσουµε ότι, ανά δυο ενώνονται σ έναν κύκλο C 8 (ο δείκτης είναι το µήκος του). Ο κύκλος [ r, g, b, g7, r, g8, b, g, r ] στην Εικόνα, δηµιουργείται από τα δυο που έχουµε αναφέραµε. Η εύρεση του πλήθους αυτών των µονοπατιών παίζει καθοριστικό ρόλο στην τιµή της ορίζουσας του αντίστοιχου ΜΣΠΣ. Εφαρµόζοντας το CN-Λήµµα, στις τέλειες συζεύξεις που περιέχουν τις µη διαδοχικές ακµές αυτών των µονοπατιών, µπορούµε να δείξουµε ότι η µια είναι άρτια και η άλλη περιττή, εποµένως, δεν συνεισφέρουν στην τιµή της ορίζουσας. Αυτή η παρατήρηση αποτέλεσε τη βάση της µελέτης µας.. ΚΥΡΙΑ ΑΠΟΤΕΛΕΣΜΑΤΑ Στη συνέχεια, θα αναφέρουµε χωρίς απόδείξη τις βασικές Προτάσεις (Karaganns και Moyssas 004), οι οποίες µας οδηγούν στην κατασκευή των γραφηµάτων, µε ΜΣΠΣ τον 0- πίνακα U που αντιστοιχεί σ έναν βέλτιστο T 8

5 σχεδιασµό D. Τον προηγούµενο ΜΣΠΣ, συµβολίζουµε µε A ή A. Όπως αναφέρθηκε στην προηγούµενη ενότητα ο A ικανοποιεί την ιδιότητα P για =, έτσι το αντίστοιχο γράφηµα περιέχει r -κορυφές τις r και r. Τους βαθµούς των κορυφών αυτών θα συµβολίζουµε µε eg( r ) και eg( r ) αντίστοιχα. Λήµµα.. Έστω A ένας µη ιδιάζων πίνακας του συνόλου M και G το γράφηµα που αντιστοιχεί σ αυτόν. Αν C4 = [ r, gu, bs, gt, r] είναι ένας κύκλος µήκους 4 στο G, τότε ισχύει: et( A ) = et( A ), ( ) όπου A M. Λήµµα.. Η ορίζουσα των πινάκων A είναι γνησίως αύξουσα συνάρτηση του N. ( ) που ικανοποιούν την ιδιότητα P για =, Λήµµα.. Έστω A ένας µη ιδιάζων πίνακας του συνόλου M και G το γράφηµα που αντιστοιχεί σ αυτόν. Έστω ακόµη ότι eg( r) = n, eg( r) = n, ενώ n b είναι το πλήθος των Prbr -µονοπατιών. Τότε ισχύει: et( A ) nn n. b Στα επόµενα ο πίνακας A, συµβολίζει αυτόν που πετυχαίνει τη µέγιστη τιµή της ( ) ορίζουσας στο σύνολο M, ενώ επιπλέον ισχύει S =. Θεώρηµα.. Έστω A ( ), M ( ) ( ), λ λ+ ( ), λ λ (, ) ( λ + ), τότε: et A, αν = λ, ή et A + 4 +, αν = λ, ή et A, αν = λ +, µε λ. Στο επόµενο Θεώρηµα αποδεικνύεται ότι, η κατασκευή των πινάκων που πετυχαίνουν τα πρηγούµενα όρια είναι εφικτή. Θεώρηµα.. Έστω kv,, N. Τότε υπάρχει ένα γράφηµα G µε r -κορυφές, ( k+ + v+ ) w -κορυφές, ( k+ + v+ ) b -κορυφές και (k+ + v+ 5) g -κορυφές, τέτοιο ώστε, eg( r ) = v+ k+, eg( r ) = v+ + και nb = v+, όπου nb το πλήθος των -µονοπατιών. Αν A είναι ο ΜΣΠΣ του G, τότε: Prbr et( ) ( )( ) ( ) A = v+ k+ v+ + v+. ( ) 9

6 Επιπλέον, για κάθε λ, αν v = λ, = λ και k = λ, ο ΜΣΠΣ A λ,λ, πετυχαίνει τη µέγιστη τιµή για την ορίζουσα στο σύνολο M ( ) λ, αν v = λ και = k = λ, ο ΜΣΠΣ A λ,λ+ πετυχαίνει τη µέγιστη τιµή στο M ( ) λ, ενώ αν ( ) v= = k = λ, ο ΜΣΠΣ A πετυχαίνει τη µέγιστη τιµή στο M λ+. λ+,λ+ Έστω D, s, s+ p, το σύνολο των κορεσµένων σχεδιασµών εκτιµητικής τάξης III, για ένα πείραµα µε τρεις παράγοντες, που εµφανίζονται σε, s και s = s+ p µε p, στάθµες αντίστοιχα. Ένας D- βέλτιστος σχεδιασµός D, s, s+ p, δίνεται µε το επόµενο Θεώρηµα. Θεώρηµα.. Έστω D, s, s+ p ένας κορεσµένος D- Βέλτιστος σχεδιασµός εκτιµητικής τάξης III στο σύνολο D, s, s + p. Οι συνδιασµοί των σταθµών των παραγόντων που δίνουν τον για λ, είναι: (0,, ) (0 λ ), (0,λ, λ), (, λ, 0), (, +, ) (0 λ ), (, λ, λ+ ), (, +, ) (λ λ ), (, +, ) ( λ λ ), (,λ, ) (λ+ λ+ p ), αν s = λ, µε et ( U ) = λ( λ + ), (0,, ) (0 λ ), (0, λ, λ ), (, λ, 0), (, +, ) (0 λ ), (, λ, λ+ ), (, +, ) (λ λ ), (, +, ) ( λ λ), (, λ, ) (λ+ λ+ p), αν s = λ +, µε et ( U ) = λ + 4λ +, (0,, ) (0 λ), (0,λ+,λ+ ), (, λ +, 0), (, +, ) (0 λ ), (, λ, λ+ ), (, +, ) (λ+ λ), (, +, ) ( λ λ+ ), (,λ +, ) (λ+ λ+ p+ ), αν s λ = +, µε et ( ) ( ) U = λ +. Παράδειγµα.. Θα κατασκευάσουµε το γράφηµα που έχει ως ΜΣΠΣ έναν πίνακα ( ) που πετυχαίνει τη µέγιστη τιµή της ορίζουσας στο συνόλο M 8 και στη συνέχεια θα δώσουµε τις αγωγές του κορεσµένου D-Βέλτιστου σχεδιασµού εκτιµητικής τάξης III για ένα 9 παραγοντικό πείραµα. Για να εφαρµόσουµε το Θεώρηµα., θα παρατηρήσουµε ότι, 8=, άρα λ =. Έτσι για τις τιµές των v, k,, eg( r ), eg( r ) και nb του Θεωρήµατος, ισχύουν, v = =, k =, = =, eg( r ) = + + = 7, eg( r ) = + + = 6 και n b = + =. Κατασκευάζουµε το γράφηµα ακολουθώντας τα επόµενα βήµατα: r r Εικόνα. 40

7 Βήµα. Στην περίπτωση αυτή αλλά και σε κάθε άλλη ξεκινάµε κατασκευάζοντας το γράφηµα G 0 της Εικόνας (σελίδα 6). Βήµα. Προσθέτουµε v =, -µονοπάτια επιπλέον και τις αντίστοιχες w -κορυφές, όπως δείχνει η Εικόνα. Prbr r Εικόνα r Βήµα. Προσθέτουµε k = µονοπάτια που ξεκινούν από την r και περιέχουν τις κορυφές των χρωµάτων που δείχνει η Εικόνα 4. Ένα από τα µονοπάτια είναι σχεδιασµένο µε έντονες ακµές. r Εικόνα 4 r Βήµα 4. Προσθέτουµε =, µονοπάτια που ξεκινούν από την r και περιέχουν τις κορυφές των χρωµάτων που δείχνει η Εικόνα 5, όπου ένα από αυτά είναι σχεδιασµένο µε έντονες ακµές. r Εικόνα 5. r Εύκολα µπορεί να επαληθευτεί ότι, ο ΜΣΠΣ του γραφήµατος της Εικόνας 5, δίνει απόλυτη τιµή της ορίζουσας ίση µε, et ( A 8) = ( + ) =, πετυχαίνοντας την αντίστοιχη του Θεωρήµατος.. Επιπλέον εφαρµόζοντας το θεώρηµα. για τον 9 D-βέλτιστο κορεσµένο σχεδιασµό ( s =, λ = ), οι αγωγές θα είναι: ( 0,, ) ( 0 5), ( 0,8,6 ), (,8, 0 ), (, +, ) ( 0 ), (,, 7 ), (, +, ) ( 6 7), (, +, ) ( 8) και (,8, ) ( 0 ). Σε περίπτωση που βρεθεί ( x y) µε x> y τότε δεν συµπεριλαµβάνουµε τις αντίστοιχες αγωγές στο σχεδιασµό. 4

8 ABSTRACT It s known (Raktoe, Heayat, Fenerer, 98) that, we ay transfor the esgn atrx of any factoral esgn of Resoluton III, to a 0- atrx U. That atrx s assocate wth the treatent cobnatons of the corresponng esgn. In ths paper, extenng the results of Chatterjee an Narashan 00, we obtan the upper boun of the value of the eternant of the atrx U, whch s assocate wth a s s saturate, D-optal factoral esgn of Resoluton III, by the use of Graph theory. Usng the theoretcal results, we also gve the esgns for s s +. ΑΝΑΦΟΡΕΣ Aerson DA, Feerer WT (974) Representaton an constructon of an effect plans n ters of (0,)-atrces. Paper No. Bu-499-M n Meo Seres, Boetrcs Unt, Cornel Unversty, Ithaca, New York Brks D, Doge Y (99) Optal a b connecte esgns wth a+b observatons. J. Statst. Plann. Inference 8: Bony JA, Murty USR (976) Graph theory wth applcatons. Aercan Elsever, New York Chatterjee K, Narashan G (00) Graph-theoretc technques n D-optal esgn probles. J. Statst. Plann. Inference 0: Chatterjee K, Mukerjee R (99) D-optal saturate an effect plans for s s factorals. J. Cobn. Infor. Syste Sc. 8: 6- Chatzopoulos SA, Kolyva-Machera F (00) Soe D-optal saturate esgns for factorals (υποβλήθηκε για δηµοσίευση) Dey A, Mukerjee R (999) Fractonal Factoral Plans. John Wley, New York Lovasz L, Pluer M (986) Matchng Theory. Annals of Dscrete Matheatcs Vol. 9, North Hollan, Astera Mukerjee R, Chatterjee K, Sen M (986) D-optalty of a class of saturate aneffect plans an alle results. Statstcs 7: Mukergee R, Snha BK (990) Alost saturate D-optal an effect plans an alle results. Metrka 7: 0-07 Pesotan H, Raktoe B (988) On nvarance an ranozaton n factoral esgns wth applcatons to D-optal an effect esgns of the syetrcal factoral. J. Statst. Plann. Inference 9: 8-98 Raktoe BL, Feerer WT (970) Characterzaton of optal saturate an effect plans of the n factoral. Ann. Math. Statst. 4: 0-06 Raktoe BL, Heayat A, Feerer WT (98) Factoral Desgns John Wley, New York Karaganns V, Moyssas C (004) Constructon of D-optal s s s factoral esgns usng Graph theory (υποβλήθηκε για δηµοσίευση) 4

ΚΟΡΕΣΜΕΝΑ, D-ΒΕΛΤΙΣΤΑ, 3 s 2 ΠΑΡΑΓΟΝΤΙΚΑ ΠΕΙΡΑΜΑΤΑ, ΕΚΤΙΜΗΤΙΚΗΣ ΤΑΞΗΣ ΙΙΙ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΤΗΣ ΘΕΩΡΙΑΣ ΓΡΑΦΗΜΑΤΩΝ

ΚΟΡΕΣΜΕΝΑ, D-ΒΕΛΤΙΣΤΑ, 3 s 2 ΠΑΡΑΓΟΝΤΙΚΑ ΠΕΙΡΑΜΑΤΑ, ΕΚΤΙΜΗΤΙΚΗΣ ΤΑΞΗΣ ΙΙΙ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΤΗΣ ΘΕΩΡΙΑΣ ΓΡΑΦΗΜΑΤΩΝ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 8 ου Πανελληνίου Συνεδρίου Στατιστικής (005) σελ.7-8 ΚΟΡΕΣΜΕΝΑ, D-ΒΕΛΤΙΣΤΑ, s ΠΑΡΑΓΟΝΤΙΚΑ ΠΕΙΡΑΜΑΤΑ, ΕΚΤΙΜΗΤΙΚΗΣ ΤΑΞΗΣ ΙΙΙ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΤΗΣ ΘΕΩΡΙΑΣ ΓΡΑΦΗΜΑΤΩΝ Βασίλης

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 9η Διάλεξη

Θεωρία Γραφημάτων 9η Διάλεξη Θεωρία Γραφημάτων 9η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 9η Διάλεξη

Διαβάστε περισσότερα

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β)

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β) Κεφάλαιο 3β Ελεύθερα Πρότυπα (µέρος β) Ο σκοπός µας εδώ είναι να αποδείξουµε το εξής σηµαντικό αποτέλεσµα. 3.3.6 Θεώρηµα Έστω R µια περιοχή κυρίων ιδεωδών, F ένα ελεύθερο R-πρότυπο τάξης s < και N F. Τότε

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 10η Διάλεξη

Θεωρία Γραφημάτων 10η Διάλεξη Θεωρία Γραφημάτων 0η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 07 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 0η Διάλεξη

Διαβάστε περισσότερα

... a b c d. b d a c

... a b c d. b d a c ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΙΑΚΡΙΤA ΜΑΘΗΜΑΤΙΚΑ ιδάσκοντες: Φωτάκης, Σούλιου η Γραπτή Εργασία Θέµα (Αρχή του Περιστερώνα, 8 µονάδες) α) Σε ένα διάστηµα

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 6η Διάλεξη

Θεωρία Γραφημάτων 6η Διάλεξη Θεωρία Γραφημάτων 6η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 6η Διάλεξη

Διαβάστε περισσότερα

(β) Θεωρούµε µια ακολουθία Nθετικών ακεραίων η οποία περιέχει ακριβώς

(β) Θεωρούµε µια ακολουθία Nθετικών ακεραίων η οποία περιέχει ακριβώς Θέµα (Αρχή του Περιστερώνα, 8 µονάδες) (α) Επιλέγουµε αυθαίρετα φυσικούς αριθµούς από το σύνολο {,,3,, 3, } Να δείξετε ότι µεταξύ των αριθµών που έχουµε επιλέξει υπάρχει πάντα ένα ζευγάρι όπου ο µεγαλύτερος

Διαβάστε περισσότερα

ΠΛΗ20 ΕΝΟΤΗΤΑ 5: ΘΕΩΡΙΑ ΓΡΑΦΗΜΑΤΩΝ/2. Μάθηµα 5.1: Παραστάσεις Γραφηµάτων. ηµήτρης Ψούνης

ΠΛΗ20 ΕΝΟΤΗΤΑ 5: ΘΕΩΡΙΑ ΓΡΑΦΗΜΑΤΩΝ/2. Μάθηµα 5.1: Παραστάσεις Γραφηµάτων. ηµήτρης Ψούνης ΠΛΗ20 ΕΝΟΤΗΤΑ 5: ΘΕΩΡΙΑ ΓΡΑΦΗΜΑΤΩΝ/2 Μάθηµα 5.1: Παραστάσεις Γραφηµάτων ηµήτρης Ψούνης 2 ΠΕΡΙΕΧΟΜΕΝΑ Α. Σκοπός του Μαθήµατος Β.Θεωρία 1. Πίνακας Γειτνίασης 1. Ορισµός για µη κατευθυνόµενα γραφήµατα 2.

Διαβάστε περισσότερα

q={(1+2)/2}=1 A(1,2)= MERGE( 4, 6 ) = 4 6 q=[(3+4)/2]=3 A(1,4)= MERGE( 4 6, 5 8 ) = q=[(5+6)/2]=5 A(5,6)= MERGE( 2, 9 ) = 2 9

q={(1+2)/2}=1 A(1,2)= MERGE( 4, 6 ) = 4 6 q=[(3+4)/2]=3 A(1,4)= MERGE( 4 6, 5 8 ) = q=[(5+6)/2]=5 A(5,6)= MERGE( 2, 9 ) = 2 9 R 0 0 Ερώτηση 1 Να εκτελεστούν όλα τα βήµατα του παρακάτω αλγορίθµου στον µονοδιάστατο πίνακα: "!$ Στην κάθε κλήση της procedure εισάγεται ο %&') Ο συµϐολισµός υπονοεί τον υποπίνακα από την ϑέση % έως

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ Τα κάτωθι προβλήµατα προέρχονται από τα κεφάλαια, και του συγγράµµατος «Γραµµική Άλγεβρα». Η ηµεροµηνία παράδοσης

Διαβάστε περισσότερα

jτο πλήθος των ταξιδιών που κάνει η αεροσυνοδός µέχρι την j ηµέρα. Σχηµατίζω µία ακολουθία που αποτελείται από τα a.

jτο πλήθος των ταξιδιών που κάνει η αεροσυνοδός µέχρι την j ηµέρα. Σχηµατίζω µία ακολουθία που αποτελείται από τα a. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΙΑΚΡΙΤA ΜΑΘΗΜΑΤΙΚΑ ιδάσκοντες: Φωτάκης, Σούλιου, Θ Λιανέας η Γραπτή Εργασία Θέµα (Αρχή του Περιστερώνα, 8 µονάδες) α)

Διαβάστε περισσότερα

( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]}

( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]} 7 ΙΙΙ Ολοκληρωτικός Λογισµός πολλών µεταβλητών Βασικές έννοιες στη µια µεταβλητή Έστω f :[ ] φραγµένη συνάρτηση ( Ρ = { t = < < t = } είναι διαµέριση του [ ] 0 ( Ρ ) = Μ ( ) όπου sup f ( t) : t [ t t]

Διαβάστε περισσότερα

ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ

ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά ου Πανελληνίου Συνεδρίου Στατιστικής 008, σελ 9-98 ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ Γεώργιος

Διαβάστε περισσότερα

Αδιάσπαστοι, p-κυκλικοί, συνεπώς διατεταγµένοι πίνακες και γραφήµατα

Αδιάσπαστοι, p-κυκλικοί, συνεπώς διατεταγµένοι πίνακες και γραφήµατα Αδιάσπαστοι, p-κυκλικοί, συνεπώς διατεταγµένοι πίνακες και γραφήµατα Νικόλαος Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 19 εκεµβρίου 2018 Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί

Διαβάστε περισσότερα

Κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Πολυγραφήµατα (Multigraphs)

Κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Πολυγραφήµατα (Multigraphs) Μη κατευθυνόµενα γραφήµατα Στοιχεία Θεωρίας Γραφηµάτων (1) Απλό µη κατευθυνόµενο γράφηµα G είναι διατεταγµένο Ϲεύγος (V, E) µε σύνολο κορυφών/κόµβων V Ορέστης Τελέλης tllis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων,

Διαβάστε περισσότερα

q(g \ S ) = q(g \ S) S + d = S.

q(g \ S ) = q(g \ S) S + d = S. Διάλεξη 9: 9.11.2016 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Παναγιωτίδης Αλέξανδρος & Σ. Κ. Θεώρημα 9.1 Εστω γράφημα G = (V, E), υπάρχει τέλειο ταίριασμα στο G αν και μόνο αν για κάθε

Διαβάστε περισσότερα

d(v) = 3 S. q(g \ S) S

d(v) = 3 S. q(g \ S) S Διάλεξη 9: 9.11.2016 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Παναγιωτίδης Αλέξανδρος Θεώρημα 9.1 Εστω γράφημα G = (V, E), υπάρχει τέλειο ταίριασμα στο G αν και μόνο αν για κάθε S υποσύνολο

Διαβάστε περισσότερα

Γράφοι. Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο. Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά.

Γράφοι. Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο. Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά. Γράφοι Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο πλευρές (ακµές) και κορυφές (κόµβους). Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά. Graph Drawing 4 πιθανές αναπαραστάσεις

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Γραφηµάτων (1)

Στοιχεία Θεωρίας Γραφηµάτων (1) Στοιχεία Θεωρίας Γραφηµάτων (1) Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 1 / 23 Μη κατευθυνόµενα γραφήµατα

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές Κεφάλαιο Παραγοντοποίηση σε Ακέραιες Περιοχές Γνωρίζουµε ότι στο Ÿ κάθε στοιχείο εκτός από το 0 και τα ± γράφεται ως γινόµενο πρώτων αριθµών κατά τρόπο ουσιαστικά µοναδικό Από τη Βασική Άλγεβρα ξέρουµε

Διαβάστε περισσότερα

w S n lim (n 1)! = x(x + q)(x + q + q 2 ) (x + q + q q n 1 ),

w S n lim (n 1)! = x(x + q)(x + q + q 2 ) (x + q + q q n 1 ), Ασκήσεις #1 1. Εστω a(n, k) το πλήθος των υποσυνόλων του {1, 2,..., n} με k στοιχεία τα οποία δεν περιέχουν διαδοχικούς ακεραίους. (α) Δείξτε ότι το a(n, k) είναι ίσο με το πλήθος των συνθέσεων (r 0, r

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii018/laii018html ευτέρα 3 Απριλίου 018 Αν C = x

Διαβάστε περισσότερα

Μη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα.

Μη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα. Κατευθυνόµενα γραφήµατα Απλό κατευθυνόµενο Γράφηµα G είναι διατεταγµένο Ϲεύγος (V, E), µε: Στοιχεία Θεωρίας Γραφηµάτων (1) σύνολο κορυφών / κόµβων V, Ορέστης Τελέλης tllis@unipi.r Τµήµα Ψηφιακών Συστηµάτων,

Διαβάστε περισσότερα

u v 4 w G 2 G 1 u v w x y z 4

u v 4 w G 2 G 1 u v w x y z 4 Διάλεξη :.0.06 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος. Εισαγωγικοί ορισμοί Ορισμός. Γράφημα G καλείται ένα ζεύγος G = (V, E) όπου V είναι το σύνολο των κορυφών (ή κόμβων) και E

Διαβάστε περισσότερα

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών 54 ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών ιαφόριση συναρτήσεων πολλών µεταβλητών Ένας στέρεος ορισµός της παραγώγισης για συναρτήσεις πολλών µεταβλητών ανάλογος µε τον ορισµό για συναρτήσεις µιας µεταβλητής

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Ορίζουσα Gram και οι Εφαρµογές της Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 65 11 Η Ορίζουσα Gram και

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ Α ΕΡΓΑΣΙΑΣ. ( 8 µον.) Η άσκηση αυτή αναφέρεται σε διαιρετότητα και ρίζες πολυωνύµων. a. Να λυθεί η εξίσωση

Διαβάστε περισσότερα

ΒΕΛΤΙΣΤΟΙ ΣΧΕΔΙΑΣΜΟΙ ΣΕ ΑΝΟΜΟΙΟΓΕΝΕΙΣ ΠΛΗΘΥΣΜΟΥΣ

ΒΕΛΤΙΣΤΟΙ ΣΧΕΔΙΑΣΜΟΙ ΣΕ ΑΝΟΜΟΙΟΓΕΝΕΙΣ ΠΛΗΘΥΣΜΟΥΣ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 0 ου Πανελληνίου Συνεδρίου Στατιστικής (007), σελ 09-6 ΒΕΛΤΙΣΤΟΙ ΣΧΕΔΙΑΣΜΟΙ ΣΕ ΑΝΟΜΟΙΟΓΕΝΕΙΣ ΠΛΗΘΥΣΜΟΥΣ Στρατής Κουνιάς Ομότιμος Καθηγητής, Πανεπιστήμιο Αθηνών sounas@math.uoa.gr

Διαβάστε περισσότερα

Id A A, a Id A (a) := a, τ : A A, a b, όπου b είναι εκείνο το στοιχείο του A µε σ(b) = a. 7. Οµάδες µεταθέσεων (µετατάξεων)

Id A A, a Id A (a) := a, τ : A A, a b, όπου b είναι εκείνο το στοιχείο του A µε σ(b) = a. 7. Οµάδες µεταθέσεων (µετατάξεων) 250 7. Οµάδες µεταθέσεων µετατάξεων 7.1. Οι πρώτες έννοιες. Ας είναι A ένα µη κενό σύνολο και S A το σύνολο των «ένα προς ένα» και «επί» απεικονίσεων από το σύνολο A στον εαυτό του. Πρόταση 7.1. Το σύνολο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt014/nt014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι Είδαµε στο κύριο θεώρηµα του προηγούµενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισµα απλών προτύπων. Εδώ θα χαρακτηρίσουµε όλους

Διαβάστε περισσότερα

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ] Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες-εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Συνδιασπορά - Συσχέτιση Τυχαίων Μεταβλητών Επιµέλεια : Κωνσταντίνα

Διαβάστε περισσότερα

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x Ευκλείδειοι Χώροι Ορίζουµε ως R, όπου N, το σύνολο όλων διατεταµένων -άδων πραγµατικών αριθµών x, x,, x ) Tο R λέγεται ευκλείδειος -χώρος και τα στοιχεία του λέγονται διανύσµατα ή σηµεία Το x i λέγεται

Διαβάστε περισσότερα

S A : N G (S) N G (S) + d S d + d = S

S A : N G (S) N G (S) + d S d + d = S Διάλεξη 7: 2.11.2016 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Βασίλης Μαργώνης 7.1 Εφαρμογές του Θεωρήματος του Hall Πόρισμα 7.1 (Ελλειματική εκδοχή Θεωρήματος Hall) Εάν σε διμερές γράφημα

Διαβάστε περισσότερα

15 εκεµβρίου εκεµβρίου / 64

15 εκεµβρίου εκεµβρίου / 64 15 εκεµβρίου 016 15 εκεµβρίου 016 1 / 64 Αριθµητική Ολοκλήρωση Κλειστοί τύποι αριθµητικής ολοκλήρωσης Εστω I(f) = b µε f(x) C[a, b], τότε I(f) = F(b) F(a), όπου F(x) είναι το αόριστο ολοκλήρωµα της f(x).

Διαβάστε περισσότερα

L = F +. Είναι, 1 F, άρα και 1 L. Επεκτείνουµε τις πράξεις του F έτσι ώστε

L = F +. Είναι, 1 F, άρα και 1 L. Επεκτείνουµε τις πράξεις του F έτσι ώστε ΕΠΕΚΤΑΣΕΙΣ ΣΩΜΑΤΟΣ Προκαταρκτικά Σώµα = Αντιµεταθετικό σώµα, χαρακτηριστικής µηδενός Τα σώµατα αυτά καλούνται και αριθµητικά σώµατα Θα τα συµβολίζουµε µε τα γράµµατα F, F, L κλπ Έστω ότι κάποια ανάγκη

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 3η Θεωρία Γραφηµάτων

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 3η Θεωρία Γραφηµάτων ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ Ε ρ γ α σ ί α η Θεωρία Γραφηµάτων Α π α ν τ ή σ ε ι ς Ε ρ ω τ η µ ά τ ω ν Ερώτηµα. Στο παρακάτω γράφηµα µε βάρη, να βρεθεί το µήκος του µικρότερου µονοπατιού

Διαβάστε περισσότερα

Στοχαστικά Σήµατα και Εφαρµογές

Στοχαστικά Σήµατα και Εφαρµογές Στοχαστικά Σήµατα & Εφαρµογές Ανασκόπηση Στοιχείων Γραµµικής Άλγεβρας ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής ιανύσµατα Ορίζουµετοδιάνυσµα µε Ν στοιχεία

Διαβάστε περισσότερα

Μεταθέσεις και πίνακες μεταθέσεων

Μεταθέσεις και πίνακες μεταθέσεων Παράρτημα Α Μεταθέσεις και πίνακες μεταθέσεων Το παρόν παράρτημα βασίζεται στις σελίδες 671 8 του βιβλίου: Γ. Χ. Ψαλτάκης, Κβαντικά Συστήματα Πολλών Σωματιδίων (Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο,

Διαβάστε περισσότερα

Διάλεξη 4: Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος συνεκτικά γραφήματα (συνέχεια) Πρόταση 4.1 Δύο μπλοκ ενός

Διάλεξη 4: Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος συνεκτικά γραφήματα (συνέχεια) Πρόταση 4.1 Δύο μπλοκ ενός Διάλεξη 4: 20.10.2016 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος 4.1 2-συνεκτικά γραφήματα (συνέχεια) Πρόταση 4.1 Δύο μπλοκ ενός γραφήματος G μοιράζονται το πολύ μία κορυφή. Απόδειξη:

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt016/nt016.html Πέµπτη 7 Οκτωβρίου 016 Ασκηση 1. Βρείτε όλους

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 Μικρό Θεώρηµα του Fermat, η συνάρτηση του Euler και Μαθηµατικοί ιαγωνισµοί Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 Αλεξανδρος Γ. Συγκελακης

Διαβάστε περισσότερα

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης.

Παράρτηµα Α. Στοιχεία θεωρίας µέτρου και ολοκλήρωσης. Παράρτηµα Α Στοιχεία θεωρίας µέτρου και ολοκλήρωσης Α Χώροι µέτρου Πέραν της «διαισθητικής» περιγραφής του µέτρου «σχετικά απλών» συνόλων στο από το µήκος τους (όπως πχ είναι τα διαστήµατα, ενώσεις/τοµές

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάµε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων. Αυτές συνδέονται µεταξύ τους µε την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση 8 Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση Υπάρχουν δύο θεµελιώδη αποτελέσµατα που µας βοηθούν να υπολογίζουµε πολλαπλά ολοκληρώµατα Το πρώτο αποτέλεσµα σχετίζεται µε τον υπολογισµό ενός

Διαβάστε περισσότερα

Γράφηµα (Graph) Εργαστήριο 10. Εισαγωγή

Γράφηµα (Graph) Εργαστήριο 10. Εισαγωγή Εργαστήριο 10 Γράφηµα (Graph) Εισαγωγή Στην πληροφορική γράφηµα ονοµάζεται µια δοµή δεδοµένων, που αποτελείται από ένα σύνολο κορυφών ( vertices) (ή κόµβων ( nodes» και ένα σύνολο ακµών ( edges). Ενας

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 5η Διάλεξη

Θεωρία Γραφημάτων 5η Διάλεξη Θεωρία Γραφημάτων 5η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 5η Διάλεξη

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 5η Διάλεξη

Θεωρία Γραφημάτων 5η Διάλεξη Θεωρία Γραφημάτων 5η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 5η Διάλεξη

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 7η Διάλεξη

Θεωρία Γραφημάτων 7η Διάλεξη Θεωρία Γραφημάτων 7η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 7η Διάλεξη

Διαβάστε περισσότερα

Διάλεξη 4: Απόδειξη: Για την κατεύθυνση, παρατηρούμε ότι διαγράφοντας μια κορυφή δεν μπορούμε να διαχωρίσουμε τα u και v. Αποδεικνύουμε

Διάλεξη 4: Απόδειξη: Για την κατεύθυνση, παρατηρούμε ότι διαγράφοντας μια κορυφή δεν μπορούμε να διαχωρίσουμε τα u και v. Αποδεικνύουμε Διάλεξη 4: 20.10.2016 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος 4.1 2-συνεκτικά γραφήματα (συνέχεια) Πρόταση 4.1 Δύο μπλοκ ενός γραφήματος G μοιράζονται το πολύ μία κορυφή. Απόδειξη:

Διαβάστε περισσότερα

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ 3 η Διάλεξη Μονοπάτια και Κύκλοι Μήκη και αποστάσεις Κέντρο και μέσο γράφου. Ακτίνα και Διάμετρος Δυνάμεις Γραφημάτων Γράφοι Euler.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι

Διαβάστε περισσότερα

Συνάρτηση f, λέγεται η διαδικασία µε βάση την. Παρατηρήσεις - Σχόλια f

Συνάρτηση f, λέγεται η διαδικασία µε βάση την. Παρατηρήσεις - Σχόλια f Συνάρτηση f, λέγεται η διαδικασία µε βάση την οποία σε κάθε στοιχείο χ ενός συνόλου Α αντιστοιχούµε ακριβώς ένα στοιχείο ενός άλλου συνόλου Β. Το σύνολο Α λέγεται πεδίο ορισµού ( ή σύνολο ορισµού ) της

Διαβάστε περισσότερα

Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε

Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε 1. Να αποδειχθεί ότι κάθε ϑετικός ακέραιος αριθµός n 6, µπορεί να γραφεί στη µορφή όπου οι a, b, c είναι ϑετικοί ακέραιοι. n = a + b c,. Να αποδειχθεί ότι για κάθε ακέραιο

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai2017/lai2017html Παρασκευή 20 Οκτωβρίου 2017

Διαβάστε περισσότερα

Η Ευκλείδεια διαίρεση

Η Ευκλείδεια διαίρεση 1 Η Ευκλείδεια διαίρεση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρηµα Αποδεικνύεται ότι για οποιουσδήποτε ακέραιους α και β, β 0, ισχύει το παρακάτω θεώρηµα και διατυπώνεται ως εξής : Αν α και β ακέραιοι µε β

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,... KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #: Εύρεση Ελαχίστων Μονοπατιών σε Γραφήματα που Περιλαμβάνουν και Αρνητικά Βάρη: Αλγόριθμος

Διαβάστε περισσότερα

Τµήµα Πληροφορικής και Τηλεπικοινωνιών

Τµήµα Πληροφορικής και Τηλεπικοινωνιών Αδιάσπαστοι, p-κυκλικοί, συνεπώς διατεταγµένοι πίνακες και γραφήµατα Νικόλαος Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών 2 Σεπτεµβρίου 2015 Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 1 / 35 Περιεχόµενα

Διαβάστε περισσότερα

Οι πραγµατικοί αριθµοί

Οι πραγµατικοί αριθµοί Οι πραγµατικοί αριθµοί Προλεγόµενα Η ανάγκη απαρίθµησης αντικειµένων, οδήγησε στην εισαγωγή του συνόλου των φυσικών αριθµών Η ανάγκη µέτρησης µεγεθών, οδήγησε στην εισαγωγή του συνόλου των ρητών αριθµών

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Οµάδες µεταθέσεων µετατάξεων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 250 7. Οµάδες µεταθέσεων µετατάξεων

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Τοπικές έννοιες Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ιανύσµατα στον 2-διάστατο και στον 3-διάστατο χώρο

ιανύσµατα στον 2-διάστατο και στον 3-διάστατο χώρο Κεφάλαιο 3 ιανύσµατα στον -διάστατο και στον 3-διάστατο χώρο 3.1 Εισαγωγή στα ιανύσµατα (Γεωµετρική) Πολλές ϕυσικές ποσότητες, όπως το εµβαδόν, το µήκος, η µάζα και η ϑερµοκρασία, περιγράφονται πλήρως

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 25 Μαΐου 2010 ΕΚΠΑ

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 25 Μαΐου 2010 ΕΚΠΑ Αριθµητική Ανάλυση Κεφάλαιο 9. Αριθµητική Ολοκλήρωση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 5 Μαΐου 010 ιδάσκοντες:τµήµα Α ( Αρτιοι)

Διαβάστε περισσότερα

Διάλεξη 7: X Y Σχήμα 7.2: Παράδειγμα για το Πόρισμα 7.2, όπου: 1 = {1, 2, 5}, 2 = {1, 2, 3}, 3 = {4}, 4 = {1, 3, 4}. Θ

Διάλεξη 7: X Y Σχήμα 7.2: Παράδειγμα για το Πόρισμα 7.2, όπου: 1 = {1, 2, 5}, 2 = {1, 2, 3}, 3 = {4}, 4 = {1, 3, 4}. Θ Διάλεξη 7: 2.11.2016 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Βασίλης Μαργώνης & Σ. Κ. 7.1 Εφαρμογές του Θεωρήματος του Hall Πόρισμα 7.1 (Ελλειματική εκδοχή Θεωρήματος Hall) Δίνεται διμερές

Διαβάστε περισσότερα

3 Αναδροµή και Επαγωγή

3 Αναδροµή και Επαγωγή 3 Αναδροµή και Επαγωγή Η ιδέα της µαθηµατικής επαγωγής µπορεί να επεκταθεί και σε άλλες δοµές εκτός από το σύνολο των ϕυσικών N. Η ορθότητα της µαθηµατικής επαγωγής ϐασίζεται όπως ϑα δούµε λίγο αργότερα

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 8 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi07/asi07.html Παρασκευή 9 Μαίου 07 Για κάθε µετάθεση

Διαβάστε περισσότερα

1 Η εναλλάσσουσα ομάδα

1 Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Όπως είδαμε η συνάρτηση g : S { } είναι ένας επιμορφισμός ομάδων. Ο πυρήνας Ke g {σ S / g σ } του επιμορφισμού συμβολίζεται με A περιέχει όλες τις άρτιες μεταθέσεις

Διαβάστε περισσότερα

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 1 Εισαγωγη : Πραξεις επι Συνολων και Σωµατα Αριθµων

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 3 Μαρτίου 2016 Αν (G, ) είναι

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 1η Διάλεξη

Θεωρία Γραφημάτων 1η Διάλεξη Θεωρία Γραφημάτων η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 206 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων η Διάλεξη

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 13 Μαρτίου 2013 Ασκηση 1. Αφού ϐρείτε την

Διαβάστε περισσότερα

ΟΣ GAUSS) Α.6 ΣΧΕΤΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ...

ΟΣ GAUSS) Α.6 ΣΧΕΤΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... ΠΑΡΑΡΤΗΜΑ Α ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Περιεχόµενα παραρτήµατος Α Α.1 Μέθοδος αντικατάστασης... A. Μέθοδος των οριζουσών (ΜΕΘΟ ΟΣ CRAMER)... 3 A..1 ΣΥΣΤΗΜΑΤΑ... 3 A.. ΣΥΣΤΗΜΑΤΑ 33... 5 A..3 ΣΥΣΤΗΜΑΤΑ

Διαβάστε περισσότερα

Σχέσεις, Ιδιότητες, Κλειστότητες

Σχέσεις, Ιδιότητες, Κλειστότητες Σχέσεις, Ιδιότητες, Κλειστότητες Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Σχέσεις 1 / 26 Εισαγωγή & Ορισµοί ιµελής Σχέση R από

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai8/lai8html Παρασκευή 6 Οκτωβρίου 8 Υπενθυµίζουµε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ 31 Ορισµοί Ορισµός 311 Εστω f : A f( A), A, f( A) και έστω 0 Α είναι σηµείο συσσώρευσης του συνόλου Α Θα λέµε ότι η f είναι παραγωγίσιµη στο σηµείο 0 εάν υπάρχει λ : Ισοδύναµα:

Διαβάστε περισσότερα

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα και 12 26 20 10 9 7 17 14 4 Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο)

Διαβάστε περισσότερα

Αλγόριθµοι Ροής σε Γράφους (CLR, κεφάλαιο 27)

Αλγόριθµοι Ροής σε Γράφους (CLR, κεφάλαιο 27) Αλγόριθµοι Ροής σε Γράφους (CLR, κεφάλαιο 27) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: ίκτυα ροής και το πρόβληµα της µέγιστης ροής Η µεθοδολογία Ford-Fulkerson Ο αλγόριθµος Edmonds-Karps ΕΠΛ 232

Διαβάστε περισσότερα

1 Οι πραγµατικοί αριθµοί

1 Οι πραγµατικοί αριθµοί 1 Οι πραγµατικοί αριθµοί 1.1 Σύνολα αριθµών Το σύνολο των ϕυσικών αριθµών N = {1, 2, 3,...} Το σύνολο των ακεραίων Z = {... 3, 2, 1, 0, 1, 2, 3,...}. Οι ακέραιοι διαµερίζονται σε άρτιους και περιττούς

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai018/lai018html Παρασκευή 3 Νοεµβρίου 018 Ασκηση

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Μέτρο Lebesgue. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Μέτρο Lebesgue. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Μέτρο Lebesgue Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση 8 Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση Υπάρχουν δύο θεµελιώδη αποτελέσµατα που µας βοηθούν να υπολογίζουµε πολλαπλά ολοκληρώµατα. Το πρώτο αποτέλεσµα σχετίζεται µε τον υπολογισµό ενός

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων Γράφοι

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων Γράφοι HY118- ιακριτά Μαθηµατικά Θεωρία γράφων / γραφήµατα Τρίτη, 17/05/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 5/22/2016 1 1 5/22/2016 2 2 Τι είναι οι γράφοι; Mία ειδική κλάση διακριτών δοµών (που

Διαβάστε περισσότερα

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης

Ανάλυση Σ.Α.Ε στο χώρο κατάστασης ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Ανάλυση Σ.Α.Ε στο χώρο 6 Nicola Tapaouli Λύση εξισώσεων ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [4]: Κεφάλαιο 5: Ενότητες 5.-5. Παρασκευόπουλος

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 1 : Εισαγωγή στη Γραµµική Αλγεβρα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ

A2. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ A. ΠΑΡΑΓΩΓΟΣ-ΚΛΙΣΗ-ΜΟΝΟΤΟΝΙΑ d df() = f() = f (), = d d.κλίση ευθείας.μεταβολές 3.(Οριακός) ρυθµός µεταβολής ή παράγωγος 4.Παράγωγοι βασικών συναρτήσεων 5. Κανόνες παραγώγισης 6.Αλυσωτή παράγωγος 7.Μονοτονία

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Μονοπάτια και Κυκλώµατα Euler. Στοιχεία Θεωρίας Γραφηµάτων (3,4) Παραδείγµατα. Κριτήρια Υπαρξης.

Μονοπάτια και Κυκλώµατα Euler. Στοιχεία Θεωρίας Γραφηµάτων (3,4) Παραδείγµατα. Κριτήρια Υπαρξης. Μονοπάτια και Κυκλώµατα Eulr Σε γράφηµα G(V, E): Στοιχεία Θεωρίας Γραφηµάτων (3,4) Ορέστης Τελέλης tllis@unipi.r Κύκλωµα Eulr: Απλό κύκλωµα που διασχίζει κάθε ακµή του G. Μονοπάτι Eulr: Απλό µονοπάτι που

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 3

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 3 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 3 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 3 Νοεµβρίου 2016 Ασκηση 1. Αφού ϐρείτε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Βασικές έννοιες θεωρίας πιθανοτήτων

Βασικές έννοιες θεωρίας πιθανοτήτων Βασικές έννοιες θεωρίας πιθανοτήτων Ορισµός πιθανότητας Έστω Ω το σύνολο των δυνατών αποτελεσµάτων ενός πειράµατος Συµβολίζουµε µε ω τα στοιχεία του Ω Ονοµάζουµε ενδεχόµενο (evet ένα υποσύνολο του Ω Για

Διαβάστε περισσότερα

Παράρτηµα Β. Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης [ ) ( )

Παράρτηµα Β. Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης [ ) ( ) Παράρτηµα Β Στοιχεία Θεωρίας Τελεστών και Συναρτησιακής Ανάλυσης Β1 Χώροι Baach Βάσεις Schauder Στο εξής συµβολίζουµε µε Z,, γραµµικούς (διανυσµατικούς) χώρους πάνω απ το ίδιο σώµα K = ή και γράφουµε απλά

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων Βασικές Έννοιες Θεωρίας Γραφημάτων Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων

Διαβάστε περισσότερα

2 ) d i = 2e 28, i=1. a b c

2 ) d i = 2e 28, i=1. a b c ΑΣΚΗΣΕΙΣ ΘΕΩΡΙΑΣ ΓΡΑΦΩΝ (1) Εστω G απλός γράφος, που έχει 9 κορυφές και άθροισμα βαθμών κορυφών μεγαλύτερο του 7. Αποδείξτε ότι υπάρχει μια κορυφή του G με βαθμό μεγαλύτερο ή ίσο του 4. () Αποδείξτε ότι

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Ολοκλήρωση Εισαγωγή Έστω ότι η f είναι μία φραγμένη συνάρτηση στο πεπερασμένο

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πίνακες Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Πίνακες Μητρώα Πίνακας: Ορθογώνια διάταξη αριθμών σε γραμμές και στήλες

Διαβάστε περισσότερα

MEΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΗΣ ΜΟΡΦΗΣ Y= g( X1, X2,..., Xn)

MEΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΗΣ ΜΟΡΦΗΣ Y= g( X1, X2,..., Xn) MEΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΗΣ ΜΟΡΦΗΣ g( Έστω τυχαίες µεταβλητές οι οποίες έχουν κάποια από κοινού κατανοµή Ας υποθέσουµε ότι επιθυµούµε να προσδιορίσουµε την κατανοµή της τυχαίας µεταβλητής g( Η θεωρία των ένα-προς-ένα

Διαβάστε περισσότερα