Anomaly Detection with Neighborhood Preservation Principle

Σχετικά έγγραφα

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

Probabilistic Approach to Robust Optimization


User Behavior Analysis for a Large2scale Search Engine

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

Stabilization of stock price prediction by cross entropy optimization

Homomorphism in Intuitionistic Fuzzy Automata

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

Newman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Efficient Top-k Search for Random Walk with Restart

Quick algorithm f or computing core attribute

: Volterra. Volterra 3. (i.i.d.) Volterra cross-correlation. 2.1 Volterra f[ ] y(t) = f[t, u( )] y(t) = h 0 +


Research on model of early2warning of enterprise crisis based on entropy

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

[1] DNA ATM [2] c 2013 Information Processing Society of Japan. Gait motion descriptors. Osaka University 2. Drexel University a)

Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker

Αναγνώριση Προτύπων. Μη παραμετρικές τεχνικές Αριθμητικά. (Non Parametric Techniques)

ER-Tree (Extended R*-Tree)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks


CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Approximation of distance between locations on earth given by latitude and longitude

Homework 3 Solutions

Applying Markov Decision Processes to Role-playing Game

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Simplex Crossover for Real-coded Genetic Algolithms

CorV CVAC. CorV TU317. 1

Development of a Seismic Data Analysis System for a Short-term Training for Researchers from Developing Countries

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕς» OSWINDS RESEARCH GROUP

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Buried Markov Model Pairwise

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής

Gemini, FastMap, Applications. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Προεπεξεργασία Δεδομένων. Αποθήκες και Εξόρυξη Δεδομένων Διδάσκουσα: Μαρία Χαλκίδη

Parametrized Surfaces

476,,. : 4. 7, MML. 4 6,.,. : ; Wishart ; MML Wishart ; CEM 2 ; ;,. 2. EM 2.1 Y = Y 1,, Y d T d, y = y 1,, y d T Y. k : p(y θ) = k α m p(y θ m ), (2.1

{takasu, Conditional Random Field

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Maxima SCORM. Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup Approach. Jia Yunpeng, 1 Takayuki Nagai, 2, 1

Bayesian modeling of inseparable space-time variation in disease risk

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Indexing Methods for Encrypted Vector Databases

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

The challenges of non-stable predicates

Numerical Analysis FMN011

Fractional Colorings and Zykov Products of graphs

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

Automatic extraction of bibliography with machine learning

[5] F 16.1% MFCC NMF D-CASE 17 [5] NMF NMF 3. [5] 1 NMF Deep Neural Network(DNN) FUSION 3.1 NMF NMF [12] S W H 1 Fig. 1 Our aoustic event detect

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Λέκτορας στο Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων, Πανεπιστήμιο Πειραιώς, Ιανουάριος 2012-Μάρτιος 2014.

ΧΩΡΙΚΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΤΩΝ ΤΙΜΩΝ ΤΩΝ ΑΚΙΝΗΤΩΝ SPATIAL ECONOMETRIC MODELS FOR VALUATION OF THE PROPERTY PRICES

Reading Order Detection for Text Layout Excluded by Image

Other Test Constructions: Likelihood Ratio & Bayes Tests

Research on Economics and Management

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ. Σχολή Τεχνολογικών Εφαρμογών Τμήμα Εφαρμοσμένης Πληροφορικής & Πολυμέσων

w o = R 1 p. (1) R = p =. = 1

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ»

ΤΕΧΝΙΚΕΣ ΔΙΑΓΝΩΣΗΣ ΤΗΣ ΝΟΣΟΥ ΑΛΤΣΧΑΙΜΕΡ ΜΕ FMRI

Congruence Classes of Invertible Matrices of Order 3 over F 2

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕΣ» OSWINDS RESEARCH GROUP

SVM. Research on ERPs feature extraction and classification

Wishart α-determinant, α-hafnian

Δυνατότητα Εργαστηρίου Εκπαιδευτικής Ρομποτικής στα Σχολεία (*)

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Principles of Workflow in Data Analysis

EE512: Error Control Coding

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Statistical Inference I Locally most powerful tests

Uniform Convergence of Fourier Series Michael Taylor

Big Data/Business Intelligence

A Survey of Recent Clustering Methods for Data Mining (part 2)

CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity

Math 6 SL Probability Distributions Practice Test Mark Scheme

Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+

Architecture for Visualization Using Teacher Information based on SOM

Tridiagonal matrices. Gérard MEURANT. October, 2008

Partial Differential Equations in Biology The boundary element method. March 26, 2013


A research on the influence of dummy activity on float in an AOA network and its amendments

Section 8.3 Trigonometric Equations

Reminders: linear functions

Transcript:

27 27 Workshop on Information-Based Induction Sciences (IBIS27) Tokyo, Japan, November 5-7, 27. Anomaly Detection with Neighborhood Preservation Principle Tsuyoshi Idé Abstract: We consider a task of anomaly diagnosis from multiple sensor data. Our goal is to compute the anomaly score of each sensor under conditions that sensor signals are of highly dynamic and correlated natures, where existing techniques are less useful. We treat a set of sensor signals as a graph stream, and decompose the graph into a set of neighborhood graphs. The anomaly score is then defined based on a novel notion of neighborhood preservation. Applying to a real-world sensor validation task, we demonstrate the utility of our approach. Keywords: sensor data, anomaly detection, neighborhood graph 1 (a) reference data (b) # of data points T [5, 9, 1, 11] [13, 12] 1 IBM, 242-852 1623-14, e-mail: goodidea@jp.ibm.com. IBM Research, Tokyo Research Labotarory, 1623-14 Shimo-Tsuruma, Yamato-shi, Kanagawa 242-852, Japan.... N # of signals 1: (a) (b) (a) (b) 2 4 1. 2. 3....

4. 1 1 Papadimitriou [8] PCA Idé [4] MDS [1] PCA MDS 1 k [3, 2] 2 2.1 N N T 1 N T i (i = 1, 2,..., N) t (t = 1, 2,..., T ) x (t) i D D R N N D D 1 () D D ( ) D (i, j) i j d i,j D d i,j d i,j (1) i d i,i = (2) d i,i (3) d i,i 2 3 d ij = log a i,j {a i,j } i j c i,j 1 T T t=1 [x (t) i x i ][x (t) j x j ] c i,j / c i,i c j,j x i 1 T T t=1 x(t) i a i,j = δ i,j δ i,j 2.2 i k i i k i 1 k k N i k 2 (k ) i k N i i i i k-

target run reference sensor signals weight matrix k-nn graph 2: coupling probabilities anomaly score 1 3 ( ) 2 k- p(j i) p(j i) j i k- 3 k- i k- i [6] 3.1 k j i p(j i) i p(i i) + p(j i) = 1 (1) j i N i p(j i) = p(i i) k p(j i) i k c k p(j i) = 1 k (1 δ i,j) H i j i N i p(j i) ln p(j i) ln k e Hi k 1 i d i d i,j p(j i) p(j i) min d i s.t. e Hi = c (1) (2) H i (1) p(j i) p(j i) = 1 Z i e d ij σ i (3) Z i Z i 1 + e d il l N i σ i (4) σ i c d i,j σ i = 1 3.2 p(j i) p(j i) 1 Hinton Roweis [3]

e i (N i ) p(j i) (5) ē i (N i ) p(j i) (6) e i k k N i e i ( N i ) ē i ( N i ) e i e i k k + 1 ē i i (7) i i E E max { e i (N i ) ē i (N i ), ei ( N i ) ē i ( N i ) } (8) (7) 3.3 j i d i,j 1 j i p(i i) k [3, 2] σ i k [14] k = 2 3 k k T N 2 kn 2 N O(1 3 ) 4 1 PCA MDS [8, 4] [6] 4.1 MotorCurrent UCR [7] MotorCurrent 3 healthy N = 2 T = 1, 5 1 2 1 broken bar T = 1, x 1 x 2 x 1 x 2 Machine 61 1 1.2 N = 61 T 3 3 1 2 4

(a) reference (b) target 1 5 5 1 (a) 1 5 5 1 (b) 15 1 5 5 1 1 5 5 1 4: MotorCurrent Sammon (a) (b) 5 1 15 5 1 time time 3: MotorCurrent 4.2 Sammon Sammon 4 5 Sammon [1] MDS MDS MDS PCA PCA MotorCurrent Sammon 4 5 x 1 x 2 + (b) Machine Sammon 5 (a) (b) +,, and PCA [8] MDS (a) 2 1 1 2. 1.5 1.. 1. 1.5 1 1 2 5: Machine Sammon (a) (b) [4] 6 MotorCurrent k = 3 σ i = 1 4 x 1 x 2 x 6 7 Machine 11 25-11 - k 4 k 4 5 (b) + 2. 1.5 1.. 1. (b)

.6 ing Systems, 15, pages 833 84, 23..5.4.3.2.1 x1 x2 x3 x4 x5 x6 x7 x8 x9 x1 x11 x12 x13 x14 x15 x16 x17 x18 x19 x2 [4] T. Idé and K. Inoue. Knowledge discovery from heterogeneous dynamic systems using change-point correlations. In Proc. SIAM Intl. Conf. Data Mining, pages 571 575, 25. 6: MotorCurrent k=1 k=2 k=3 k=4 k=1 sensor index 7: Machine k 5 [1] T. F. Cox and M. A. A. Cox. Multidimensional Scaling, 2nd ed. Chapman and Hall, 21. [2] J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov. Neighbourhood component analysis. In Advances in Neural Information Processing Systems, 17, pages 513 52, 25. [3] G. Hinton and S. T. Roweis. Stochastic neighbor embedding. In Advances in Neural Information Process- [5] T. Idé and H. Kashima. Eigenspace-based anomaly detection in computer systems. In Proc. ACM SIGKDD Intl. Conf. Knowledge Discovery and Data Mining, pages 44 449, 24. [6] T. Idé, S. Papadimitriou, and M. Vlachos. Computing correlation anomaly scores using stochastic nearest neighbors. In Proc. IEEE Intl. Conf. Data Mining, page (to appear), 27. [7] E. Keogh and T. Folias. The UCR time series data mining archive [http://www.cs.ucr. edu/ eamonn/tsdma/index.html]. 22. [8] S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming pattern discovery in multiple time-series. In Proc. Intl. Conf. Very Large Data Bases, pages 697 78, 25. [9] S. Papadimitriou, J. Sun, and P. Yu. Local correlation tracking in time series. In Proc. IEEE Intl. Conf. Data Mining, pages 456 465. IEEE, 26. [1] J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos. Neighborhood formation and anomaly detection in bipartite graphs. In Proc. IEEE Intl. Conf. Data Mining, pages 418 425, 25. [11] J. Sun, Y. Xie, H. Zhang, and C. Faloutsos. Less is more: Compact matrix decomposition for large sparse graphs. In Proc. SIAM Intl. Conf. Data Mining, 27. [12] J. Takeuchi and K. Yamanishi. A unifying framework for detecting outliers and change points from time series. IEEE Trans. Knowledge and Data Engineering, 18(4):482 492, 26. [13] K. Yamanishi, J. Takeuchi, G. Williams, and P. Milne. On-line unsupervised outlier detection using finite mixtures with discounting learning algorithms. Data Mining and Knowledge Discovery, 8(3):275 3, 24. [14] X. Yang, S. Michea, and H. Zha. Conical dimension as an intrinsic dimension estimator and its applications. In Proc. SIAM Intl. Conf. Data Mining, 27.