!"#$ "#!!,MAF+)-.',ARB+$%&'()* < : 6 ;)&/3&*5 7895 012345 /$ 7ARB6&-#%12&34 5//00.%%&'()'*+,&- #-"?@>934:+;#< 1=<-7MAF63,$8#% -J%K9,&7 ε = IDH6B(GEF(#>4<0DC<<<:A%1-#<B( -E% 5@#--M&?#-!N > 1=L #- #%1-//00.%%-M&E:1+>-43#!-8 -H00 T&& < JMAk-Microhardness 34 PQR SE3-O <3,$8#%&- V<34&-@:<-E:1+>934M,UCkJ/mol///kJ/mol XQ 5J-?4<8-#VE34V@N E?7SPD64:JA4W& >--9M:%-3435Z[<+UFG--#-E-&Y 5<& )=- >E:1]&'(]3,$8#%]&-].%\>?') 7saeed.a6@gmail.com6!-138!-]3A!-]-3A!-]4B4?^/!-138!-]3A!-]-3A!-]- ^H!-138!-]3A!-]-3A!-]B4?^I!-138!-]3A!-]-3A!-]B4?^G
>>>>M,&'(< _4:_JA_4_W&2_& -@:_<# 5<-&5#S- ; JA_4_W&_#V>a/H^/`9 1_=-_E_&-7Sever Plastic Deformation6 7HPT6[_<!_19_,&"b_(]aI^/`7ECAP6-_E:A#S?-!1-E: -]au^f`7rcs6 -?XR--e]ad`7CEC6 E;? E]acG` -g _Q(_4.1W&S<a/I/H`7MAF63,$8#%a///0`7ARB6& >3-<3#9+1<-:<-?34-!(-@:<# 5<@1- :<#"?<343--JA4W&#%K@1AAh5E<<-E& JA_49_<=_ :_#_A, _h5@:<#-3e-->---[< <_<>_4<_#-<?<-@:<K[i,KQA!EA?-(j( -_&EF_(_%K[i_,ET_3-O <-@:<# 5J%Kk J_%2_4 5#8#-3--3435Z[<J-<$>4<9# >a/d^/g`-4ja!&l XQ5<# 59A9,< &-@:<#&'(<)'*+,&EX#34?Z-<&< %:+-M&E:1M,]3,$8#%&-#%12&34 E:1M,l<JMAK-Micrihardness34PQRSE<->4< >9343-O -M& @;A& #>9343-O 3-<7AA//006m5&.%E*+,&-.%#n>91=3,$8#%&-#%19,&B($% <-9,&34."(?GcI--+=-cK<49<o,kE3-%EF( 9/CcmgkYk=<-38-2&&-%1> 1=qk+rk"#?pc0 <&d0a#b(2&n&--3,$8#%%1>9 1.G0rpm g1 9 s Hc mm -< - 34 3-- 4 : JA4 W& # Fs >9 1. HfcHHc]/c0]H00#--J%K>91=J%K9,&43</ct/ct/mm 3
!"#$ < +3?-J%>91.%9g&L #E9,&]-8 - J%EF(# KW&]&'(<l<Fs>9 1.#O:& >9 1=<-343E -o/cse.hc9,&]buehler38-2&ea @ -!1S,5%<-rk&-#--9<- 9:=EM&cJ='-&<#rk!<9=-<>9 1.3,$8#%%1 <3%9<N 89 1= @E%9,&L # - E:1 M, < JMAK-Microhardness >934V@ 34PQRSE*+,&- >9 34 3-O 3, $ 8#% &- #%1 2& 34 &.% # l< KW&E*+,&-SB<>934u9:=-SKu@ %1g # ( JMAK-E3-O <9343-O 34, 3-:?M, \-4L&Ek<KR< JMAK->934M,9=-<-M& X v = 1 exp( kt n ), + n >4<A (kjmaknv34-m&3-':? --? >a/f`#-!41j :#w?9 ( :?<34 -M&3-':?]JMAK-Microhardness 34PQRSB< / >-4L&H-B<] X R +>934@8 7 X R 634, 1 Transformed fraction
>>>>M,&'(< -M&3- H ann te-34j%3- H t v34&-3- H 0? >4<34J? \94I-k5k<KR<&/k<,6+ 1 ln ln = ln k + n ln t 1 X R,:+ -EJ+ :9<o ]n] JMAK&ln(t)T:'<ln(ln(1/1-XR)))-;< >4<-MEy ln(k) T4n]I-*Mx>-%9<]k] >-?M,-M&E:1+&G-E3-O < ln k = ln k0 Q RT,<+ 9<o6 R-%z)7?T:'<T61/TT:'<ln(k)-T4M,<[<k<*Mx.-4M,Q+7#E B" $8#%&-#%12&34&#<E^ KW&- l< KW&E*+,&->9343--"H/#JA4-T&&<3, N B<>9343-O L #--J%%19,&#&'(< B:,W&-8 -/c0--34&- /JA4#,E3%9< <>-4qW&$-&[<-8 -H00#-E /JA4*Mx>#-!-5E 4<&'(--8 -H00E#--34& 5@?l >-4- &"#?TM-3-,-#<<E<
!"#$ 70 65 60 Microhardness (Hv) 55 50 45 40 35 ARB, 150 c ARB, 175 c ARB, 200 c ARB, 230 c ARB, 275 c 30 1 10 100 1000 10000 Annealing time (s) J&6IH66H56!!5 IH5 H!'&&!!/G"F DE&$C C$%&K7-L&." 2=* 80 75 70 Microhardness (Hv) 65 60 55 50 45 40 MAF, 150 c MAF, 175 c MAF, 200 c MAF, 230 c MAF, 275 c 35 30 1 10 100 1000 10000 Annealing time (s) J&6IH66H56!!5 IH5 H!'&&!!/G"F DE&$C62=* C)-.'K7-L&."
>>>>M,&'(< k#>#-!<!&' 1@3,$8#%# KW&,,<<-H00-E>?91K4< -8 -H00E-43#!? {#%<S+k>-+k<,T4-W&B<&E^ KW& W&{#%-S+k?.+k[< W&{#%<.-+k];? KW& >4<? HI0]H00-] AKW&<&<H/#JA4E3%9<N B< <&<E>934z 7Q R 6-M&E:1M,l<-8 -Hfc KW& 9 ( M+& 5@-8 - H00 E? #--H/ #JA4 - ] X R ] 1, 3-':?KW&,H-E3-O <>-43#! -$ 343--!GI#JA4-3%9<N >934; 8B+-ET:'< >-?M,l,#- 1-M&3-:?&GI#JA4-E3-O <>9 1 Fraction Transformed (XR) 0.8 0.6 0.4 0.2 ARB, 200 c ARB, 230 c ARB, 275 c 0 1 10 100 1000 10000 Annealing time (s) J&6IH6:!56!!'&&2/G"?&$C: 2=* C$%&()*'$&."
!"#$ 1 Fraction Transformed (XR) 0.8 0.6 0.4 0.2 MAF, 200 c MAF, 230 c MAF, 275 c 0 1 10 100 1000 10000 Annealing time (s) J&6IH6:!56!!'&&2/G"?&$C<2=* C)-.'()*'$&." -3-4 -5-6 -7 Q=98 kj/mol ARB MAF Ln(k) -8-9 -10 Q=111 kj/mol -11-12 1.8 1.85 1.9 1.95 2 2.05 2.1 2.15 T 1 3 / 10 K 1 &."J&6IH6:!56!!'&& ln(k)m1/t&$ch2=* C)-.'$%&'()*'$
>>>>M,&'(< 8#%&-%1-#<-M&%11/TT:'<ln(k)-cJA4- +1/TT:'<ln(k)-;<34uK,)&B<>9343--!3,$ # %1 2& 34 & -@ :<.% # < (Q R )- M& E:1 >934M,UCkJ/mol ///kj/mol T&&<3,$8#%&- -3_,_$_8#%_&-%1-#<?-43#!H/#JA4*<k N _<_E"@_1_< _9 18KR# -$W&-8 -/c0-?--!&- 5@<<a/C`"A#Tsuji>9 1"#??@ _49_4-_$_]_4< <!_-8 -/c0--34j% 5 _-/fc_--3_4j_%_><"@1#e<r12-43#! 5@ - "#?@ M>#-!-8 -/c0-34j%<!&w&@-8 _E_#--a/U`"_A#Kamikava2_&3_4V@N B<>4<!<- #EE[<R-E#?("@1<9M: 53E-8 -/fc _<9XQ 5qE&j>--- 5--HE?<9XQ 5<g$?E >?W&<9M: _-H00[_<_#-- _K_W&!_<_?_#-_!_<_5_<H/#JA4 _&_# &'_(--8 -H00-8-KM<>93--w-8 5 &'_(_b#>_4<_3_,_$_8#%_&-#%12&34 V@ &- %12&34&#<-8 -H00-&//00.% >ah/^/c`934 :_+;#<3,$8#%&-#%1&'(EJR'N dja4- <!_M+&&' 1%1-#2&34&#-43#!?k#>934 "#_?!_<9<3,$8#%V<34&#- >#-!-5E _-_+E3_,_$8#%%1< +:A-g-Ax<>?( <-?k#>9g94jef(&- E?+<&[<
!"#$ A$_?#-3E-3,$8#%%12&34&#]4< 5@ E_&_&[_<3435Z#E!<R--j>4<&-%1<9M: _4< 1&-#<9M:34,$8#% 5?&'(J[- - #_-:_?KZ3_4Ji #_[<!Ji1-8-XxE>-% ]ah/h0/d`-j o_&j_%_o- 5_@_4 1-4q< 1& >ah0`-4-4q!ji1-#-e9?' 5.-<TMKZ- %1>?91N&<#- J%K <#o#edja4*<k #-4-M&EKO 4< (KR< 5@:<.%J%--4 A& -M&%1g"?9,&34-@:<--q=-9S KR< &m5.%<g(8b#dsc#< >a/g` 1nO& ( >ah/h0`3-?<e'-.!%?93-!34&- S'\E&M? 1nO&'- SPDV<34&# 5-J%%1 #-E-EJR'5-#"&]?-#-3E-W&<E<%1? ->4<-4<8 O'q=-S'>4-E%M+&#<-&Y KR<-4J%-<I'--.-,q:<-4.-' >a/g` 1nO& &-#%19,&343--JA4W&#<-M&E:1+ ZO<.E[+>934M,UCkj/mol///kj/molT&&<3,$8#% M,Cdkj/mol/GH kj/mol<<t&&<-ezo<.e[ Q SD ]AM4-5- :< # - M& E:1 +-4 3#!? k# >ahh`9 34 V@ >4<7Q SD 6AM4-5-ZOE?34-@ 4<"?+?-4TM#-<9XQ 5S :?(-:JA4W&- 5"?<-#-4<#"?<k<>4<8AEKO %- 1q& -49-W&TM-#-<8$KW&>-4&&?12& <M#J,35$O #9-?-gE9:=-<j#E>-4 -@:<--E:1"#?J-&<<>aHI` :#-M&#JA!&
>>>>M,&'(< --9M:%-3435Z[<-@:<--#-E-&Y 5-< >ahh` 2_ <E:1+[<#"?-?#-!-M&E:1M, :_<-_-_?9_3_4y1<<]9<<M+&-EZO-5AM4-ZO _#_-EZ_O-_5AM_4-Z_O.@_A-#< (-M&2&-4-@ >a/g`-4s??4<3,$8#%%1e!<?&--m&e:1+ Ji1:?KZ-]3,$8#%%1EJR' 5@-<&@J-<& >9 1=,<-&'(<-?4<&--#[<! 80 75 70 Microhardness (Hv) 65 60 55 50 45 40 ARB, 200 c ARB, 230 c ARB, 275 c MAF, 200 c MAF, 230 c MAF, 275 c 35 30 1 10 100 1000 10000 Annealing time (s) &."J&6IH66H56!!'&&!!/G"FDE;CO2=* C)-.'$%&'K7-L
!"#$ P%" 4W&9(-8 -H00E#--Aln34-@:< 5@>/ -M&EKO 4< (KR<5@:<.%J%--4%1>H w%--m&?w& 5@-8 -H00-E>-43#!%- >#- M&%1g:"?9,&34-@:<--q=-9S KR<#-4 > 1nO& (A& - E:1+M,<JMAK-MicrohardnessSE3%9<N B<>I 9<UCkj/mol ///kj/mol T&&<3,$8#%&-#%1-M& <%J-&?9?AM4-5-ZO+E34M,+>93% >>--9M:%-3435Z[<-@:< --#-E[<R-- QJ [1] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Progress in Material Science, 45, 2000, 103-189. [2] R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Progress in Materials Science, 51, 2006, 881 981. [3]. T.G. Langdon, The processing of ultrafine-grained materials through the application of severe plastic deformation, Materal Science, 42, 2007, 3388 3397. [4] G. Sakai, Z. Horita, T.G. Langdon, Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion, Materials Science and Engineering A, 393, 2005, 344 351. [5] R.Z. Valiev, Recent Progress in Developing Bulk Nanostructured SPD Materials With Unique properties.solid State Phenomena, 101-102,2005, 3-12. [6] J. Richert and M. Richert, A new method for unlimited deformation of metals and alloys, Aluminium, 62, 1986, 604-607. [7] J. Huang, Y.T. Zhu, D.J. Alexander, X. Liao, T.C. Lowe, R.J. Asaro, Development of repetitive corrugation and straightening, Materials Science and Engineering, 371, 2004, 35-39. [8] K. Peng, L. Su, L.L. Shaw, K.W. Qian, Grain refinement and crack prevention in constrained groove pressing of two-phase Cu-Zn alloys, Scripta Materialia, 56, 2007, 987-990. [9] D.H. Shin, J.-J. Park, Y.-S. Kim, K.-T. Park, "Constrained groove pressing and its application to grain refinement of aluminum", Materials Science and Engineering A, 328, 2002, 98 103. [10] Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, "Novel ultra-high straining process for bulk materials development of the accumulative roll-bonding (ARB) process", Acta materialia, 47, 1999, 579 583. [11] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, "Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process", Scripta Materialia, 39, 1998, 1221 1227.
>>>>M,&'(< [12] B. Cherukuri, T.S. Nedkova, R. Srinivasan, A comparison of the properties of SPD-processed AA-6061 by equal-channel angular pressing, multi-axial compressions/forgings and accumulative roll bonding, Materials Science and Engineering, 410 411, 2005, 394 397. [13] A. Kundu, R. Kapoor, R. Tewari and J.K. Chakravartty, Severe plastic deformation of copper using multiple compression in a channel die, Scripta Materialia, 58, 2008, 235 238. [14] A. Takayama, X. Yang, H. Miura, T. Sakai, Continuous static recrystallization in ultrafinegrained processed by multi-directional forging, Materials Science and Engineering, 478, 2008, 221 228. [15] N. Kamikawa, N. Tsuji, X. Huang, N. Hansen, Quantification of annealed microstructures in ARB processed aluminum, Acta Materialia, 54, 2006, 3055 3066. [16] C. Kwan, Z. Wang, Microstructure evolution upon annealing of accumulative roll bonding (ARB) 1100 Al sheet materials: evolution of interface microstructures, material science, 43, 2008, 5045-5051. [17] P.N. Kalu, D.R. Waryoba, "A JMAK-microhardness model for quantifying the kinetics of restoration mechanisms in inhomogeneous microstructure", Materials Science and Engineering A, 464, 2007, 68 75. [18] N. Tsuji, Y. Saito, Y. Minamino, Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing, Scripta Materialia, 47, 2002, 893 899. [19] N. Kamikawa, N. Tsuji, X. Huang, N. Hansen, Quantification of annealed microstructures in ARB processed aluminum, Acta Materialia, 54, 2006, 3055 3066. [20] C. Kwan, Z. Wang, S.B. Kang, Mechanical behavior and microstructural evolution upon annealing of the accumulative roll-bonding (ARB) processed Al alloy 1100, Materials Science and Engineering, 480, 2008, 148 159. [21] X. Huang, N. Hansen, N. Tsuji, "hardening by annealing and softening by deformation in nanostructured metals", science, 312, 2006, 249-251. [22] K.T. Park, H.J. Kwon, W.J. Kim, Y.S. Kim, Microstructural characteristics and thermal stability 6061 Al alloy fabricated by accumulative roll bonding process, material science and engineering A, 316, 2001, 145-152. [23] A. D. Rollet, D. J. Srolovitz, R. D. Doherty and M. P. Anderson, "computer simulation of recrystallization in non-uniformly deformed metals", Acta Metallurgica, 37, 1989, 627-639.
!"#$ Heat stability and activation energy calculation of 1100 Aluminum Alloy produced by Accumulative Roll-Bonding (ARB) and Multi Axial Forging (MAF) S. Ahmadian 1, A.R. Bazaz 2, R. Zahiri 3, S. Ramezanzade Noghondar 4 Abstract In this study Heat stability and activation energy of AA1100 alloy produced by Accumulative Roll Bonding (ARB) and Multi Axial Forging (MAF) were investigated and compared. The equivalent strain is 0.8 for each pass of both ARB and MAF processes. The UFG materials produced by four passes ( ε = 3.2), were annealed at different temperature. The results showed that the recrystallization of UFG 1100 aluminum alloy, Start at 200ºC. the activation energy for recrystallization calculated by JMAK- microhardness model is 111 kj/mol and 98 kj/mol for ARB and MAF processes respectively. activation energy for recrystallization of UFG materials produced by SPD processes are lower compared with that observed in other processes. The low value of Q results from the non-equilibrium characteristics of grain boundaries of UFG Al alloy. Keywords: Aluminum, Accumulative roll-bonding, Multi Axial Forging, heat stability, activation energy. 1- M. Sc. Student, Material Science and Eng Dept., School of Eng, Ferdowsi University of Mashhad. (saeed.a6@gmail.com) 2-Assistant Professor, Material Science and Eng Dept., School of Eng., Ferdowsi University of Mashhad. 3 B. Student, Material Science and Eng Dept., School of Eng, Ferdowsi University of Mashhad. 4-B. Student, Material Science and Eng Dept., School of Eng, Ferdowsi University of Mashhad.