Collaborative Filtering

Σχετικά έγγραφα
Kenta OKU and Fumio HATTORI

Customized Pricing Recommender System Simple Implementation and Preliminary Experiments

ER-Tree (Extended R*-Tree)


Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

Twitter 6. DEIM Forum 2014 A Twitter,,, Wikipedia, Explicit Semantic Analysis,

Τεχνολογία Ψυχαγωγικού Λογισμικού και Εικονικοί Κόσμοι Ενότητα 8η - Εικονικοί Κόσμοι και Πολιτιστικό Περιεχόμενο

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ. Σχολή Τεχνολογικών Εφαρμογών Τμήμα Εφαρμοσμένης Πληροφορικής & Πολυμέσων

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ»

Study of urban housing development projects: The general planning of Alexandria City

Quick algorithm f or computing core attribute

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ

Wiki. Wiki. Analysis of user activity of closed Wiki used by small groups

Research on Economics and Management

Toward a SPARQL Query Execution Mechanism using Dynamic Mapping Adaptation -A Preliminary Report- Takuya Adachi 1 Naoki Fukuta 2.

{takasu, Conditional Random Field


IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Stabilization of stock price prediction by cross entropy optimization

SocialDict. A reading support tool with prediction capability and its extension to readability measurement

CONFIOUS: The Conference Nous Σύστημα Διαχείρισης Επιστημονικών & Ακαδημαϊκών Συνεδρίων. (

Τοποθέτηση τοπωνυµίων και άλλων στοιχείων ονοµατολογίας στους χάρτες

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ

Ανάκτηση Πληροφορίας

Επιμέλεια: Αδαμαντία Τραϊφόρου (Α.Μ 263) Επίβλεψη: Καθηγητής Μιχαήλ Κονιόρδος

Αλγοριθµική και νοηµατική µάθηση της χηµείας: η περίπτωση των πανελλαδικών εξετάσεων γενικής παιδείας 1999

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΠΑΤΗΣΙΩΝ ΑΘΗΝΑ Ε - ΜΑΙL : mkap@aueb.gr ΤΗΛ: , ΚΑΠΕΤΗΣ ΧΡΥΣΟΣΤΟΜΟΣ. Βιογραφικό Σημείωμα

Εικονικά Περιβάλλοντα Μάθησης για Παιδιά με Αυτισμό: Επισκόπηση Πεδίου και Προτάσεις Σχεδιασμού

Automatic extraction of bibliography with machine learning

Recommendation συστήματα

Indexing Methods for Encrypted Vector Databases

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]


ΤΟ ΜΟΝΤΕΛΟ Οι Υποθέσεις Η Απλή Περίπτωση για λi = μi 25 = Η Γενική Περίπτωση για λi μi..35

DECO DECoration Ontology

Buried Markov Model Pairwise

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

Μιχαήλ Νικητάκης 1, Ανέστης Σίτας 2, Γιώργος Παπαδουράκης Ph.D 1, Θοδωρής Πιτηκάρης 3

Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker

Η χρήση του MOODLE από την οπτική γωνία του ιαχειριστή

Reading Order Detection for Text Layout Excluded by Image

ΕΥΘΑΛΙΑ ΚΑΜΠΟΥΡΟΠΟΥΛΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ. Ανάπτυξη Εφαρμογής Συνεργατικών Συστάσεων Βασισμένη σε Οντολογίες για Κινητές Εμπορικές Υπηρεσίες.

Security in the Cloud Era

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕΣ» OSWINDS RESEARCH GROUP

Εκτεταμένη περίληψη Περίληψη

Η διδασκαλία της θεωρίας της εξέλιξης στη δευτεροβάθμια εκπαίδευση

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

-,,.. Fosnot. Tobbins Tippins -, -.,, -,., -., -,, -,.

Δθαξκνζκέλα καζεκαηηθά δίθηπα: ε πεξίπησζε ηνπ ζπζηεκηθνύ θηλδύλνπ ζε κηθξνεπίπεδν.

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕς» OSWINDS RESEARCH GROUP


A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

CorV CVAC. CorV TU317. 1

Newman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙO ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

Legal use of personal data to fight telecom fraud

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

Προσωποποιημένη πλοήγηση σε εξωτερικούς χώρους: ανασκόπηση αλγορίθμων και μεθόδων επιλογής μονοπατιού

A High-speed Scheduling Method of Virtual Machine Placement with Search Parameter Estimation by Collaborative Filtering

Context-aware και mhealth

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΛΕΩΝΙΔΑΣ Α. ΣΠΥΡΟΥ Διδακτορικό σε Υπολογιστική Εμβιομηχανική, Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Θεσσαλίας.

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

ΣΥΓΧΡΟΝΕΣ ΤΑΣΕΙΣ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΩΝ ΚΙΝΔΥΝΩΝ

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

:JEL. F 15, F 13, C 51, C 33, C 13

ΣΤΥΛΙΑΝΟΥ ΣΟΦΙΑ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Maxima SCORM. Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup Approach. Jia Yunpeng, 1 Takayuki Nagai, 2, 1

ΜΟΝΤΕΛΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ

Στοιχεία εισηγητή Ημερομηνία: 10/10/2017

Ψηφιακή ανάπτυξη. Course Unit #1 : Κατανοώντας τις βασικές σύγχρονες ψηφιακές αρχές Thematic Unit #1 : Τεχνολογίες Web και CMS

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΣΔΥΝΟΛΟΓΗΚΟ ΔΚΠΑΗΓΔΤΣΗΚΟ ΗΓΡΤΜΑ ΗΟΝΗΧΝ ΝΖΧΝ «ΗΣΟΔΛΗΓΔ ΠΟΛΗΣΗΚΖ ΔΠΗΚΟΗΝΧΝΗΑ:ΜΔΛΔΣΖ ΚΑΣΑΚΔΤΖ ΔΡΓΑΛΔΗΟΤ ΑΞΗΟΛΟΓΖΖ» ΠΣΤΥΗΑΚΖ ΔΡΓΑΗΑ ΔΤΑΓΓΔΛΗΑ ΣΔΓΟΤ

Web 論 文. Performance Evaluation and Renewal of Department s Official Web Site. Akira TAKAHASHI and Kenji KAMIMURA

From Secure e-computing to Trusted u-computing. Dimitris Gritzalis

Χρήση οντολογιών στη χαρτογράφηση γνώσης: Μελέτη περίπτωσης σε μία ακαδημαϊκή βιβλιοθήκη

RUHR. The New Keynesian Phillips Curve with Myopic Agents ECONOMIC PAPERS #281. Andreas Orland Michael W.M. Roos

Durbin-Levinson recursive method

Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική»

þÿ Ç»¹º ³µÃ ± : Ãż²» Ä Â

Research of Han Character Internal Codes Recognition Algorithm in the Multi2lingual Environment

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ

F CISS, IGSSE, Tokyo Institute of Technology yamada@ymd.dis.titech.ac.jp,

A Method for Describing Coordination Problem Based on Coordination Knowledge Level

Συνεργατική Λήψη Αποφάσεων. Υποστήριξη στη Συνεργατική. Αποφάσεων. ιάρθρωση ενότητας. Η προτεινόµενη προσέγγιση. γνώσης και επιχειρηµατολογίας

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

Σπουδάστρια Δακανάλη Νικολέτα Α.Μ "Πώς η εξέλιξη της τεχνολογίας επηρεάζει την απόδοση των επιχειρήσεων" ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Homomorphism in Intuitionistic Fuzzy Automata

Connected Threat Defense

Transcript:

* 100084 caideng00@mails.tsinghua.edu.cn luzx@tsinghua.edu.cn Internet 1. Collaborative Filtering Social Filtering 1 Content_based 2 3 4 serendipitous recommendations Goldberg [1] * 60003004 MAS MAS 1

GroupLens[2-4] Ringo[5] Video Recommender[6] MovieLens[7] Jester[8] Amazon.com CDNow.com Levis.com [9] Commerce Server 1 1. 2. 2. 1. 2. 3. 2.1 explicit rating implicit rating GroupLens[2, 3] Ringo[5] [10] URL [11] 1 http://www.microsoft.com/directaccess/products/net/commerce/ 2

2.2 1 007? 2 4 4 4? 2 2 4 3?? 4 3 2? 1 [12] 1 Memory-based algorithms GroupLens[2, 3] Ringo[5] 2 Model-based algorithms 2.2.1 Memory-based algorithms Pearson correlation coefficient [2] constrained Pearson correlation coefficient [5] [12] [4, 12] 3

k = j I j I ( r xj ( r xj r ) r )( r x 2 x yj j I r ) ( r yj y r ) y 2 (1) k x y x j r x I x y x [5] r xj p xj = r x + Λ n y= 1 k ( r r ) (2) yj y pxj x j Λ k 1 correlation-based 2.2.2 Model-based collaborative filtering 0 m a a j m (3) E( r ) = P( r = i A) i a, j a, j i= 0 A a j i n C i i =1~n j P( r = i c) c, j P( a c r, k I ) j C ak, a C Pennock [13] Pennock 4

3 1. 2. 3.1 A B B C A C A C IR Information Retrieval LSI [14-16] SVD [17-19] 3.2 5

[20, 21] [3, 10, 22] Shapira Shoval [23] 3.3 profile 1 2 Stereotype Rules [24] User Profile 1. 2. [23] 6

3.4 content-based Basu Hirsh[25] Ripper[26, 27] inductive learning system WebWatcher [28] MAS Personal Agent Personal Agent MAS MAS [29] ACF(Automated collaborative filtering) [30] ACF can be questioned 4 Collaborative Filtering [1] [1] Goldberg, D., Nichols, D., Oki, B. M., and Terry, D., "Using collaborative filtering to weave an information tapestry," Communications of the ACM, Vol. 35, No. 12, 1992, pp. 61-70. [2] Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl, J., "GroupLens: An open architecture for collaborative filtering of netnews," In Proceedings of 1994 Conference on Computer Supported Collaborative Work, 1994, pp. 175-186. 7

[3] Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Gordon, L. R., and Riedl, J., "GroupLens: Applying collaborative filtering to Usenet news," Communications of the ACM, Vol. 40, No. 3, 1997, pp. 77-87. [4] Herlocker, J. L., Konstan, J. A., Borchers, A., and Riedl, J., "An algorithmic framework for performing collaborative filtering," In Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, 1999. [5] Shardanand, U. and Maes, P., "Social Information Filtering: Algorithms for Automating "Word of Mouth"," In Conference proceedings on Human factors in computing systems (ACM CHI '95), Denver, 1995, pp. 210-217. [6] Hill, W., Stead, L., Rosenstein, M., and Furnas, G. W., "Recommending and Evaluating Choices in a Virtual Community of Use," In Proceedings of ACM CHI'95 Conference on human factors in computing systems, Denver, 1995, pp. 194-201. [7] Dahlen, B. J., Konstan, J. A., Herlocker, J. L., Good, N., Borchers, A., and Riedl, J., "Jump-starting movielens: User benefits of starting a collaborative filtering system with "dead data"," University of Minnesota, TR 98-017, 1998. [8] Goldberg, K., Roeder, T., Gupta, D., and Perkins, C.. Eigentaste: A Constant Time Collaborative Filtering Algorithm. Information Retrieval Journal. 2000. [9] Schafer, J. B., Konstan, J. A., and Riedl, J., "Recommender systems in e-commerce," In Proceedings of the ACM Conference on Electronic Commerce (EC-99), 1999, pp. 158-166. [10] Morita, M. and Shinoda, Y., "Information filtering based on user behavior analysis and best match text retrieval," In Proceedings of the Seventeenth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 1994, pp. 272-281. [11] Terveen, L., Hill, W., Amento, B., McDonald, D., and Creter, J., "PHOAKS: A System for Sharing Recommendations," Communications of the ACM, Vol. 40, No. 3, 1997, pp. 59-62. [12] Breese, J., Heckerman, D., and Kadie, C., "Empirical analysis of predictive algorithms for collaborative filtering," In Proceedings of Fourteenth Conference on Uncertainty in Artificial Intelligence, 1998. [13] Pennock, D. M., Horvitz, E., Lawrence, S., and Giles, C. L., "Collaborative Filtering by Personality Diagnosis: A Hybrid Memory- and Model-Based Approach," In Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, UAI 2000, Morgan Kaufmann, San Francisco, 2000, pp. 473-480. 8

[14] Deerwester, S., Dumais, S., Furnas, G., Landauer, T., and Harshman, R., "Indexing by latent semantic analysis," Journal of the American Society of Information Science, Vol. 41, No. 6, 1990, pp. 391-407. [15] Ding, C. H. Q., "A similarity-based probability model for latent semantic indexing," In Proceedings of the SIGIR, ACM, 1999. [16] Hofmann, T., "Probabilistic latent semantic indexing," In Proceedings of the SIGIR, ACM, 1999. [17] Billsus, D. and Pazzani, M., "Learning Collaborative Information Filters," In Machine Learning: Proceedings of the Fifteenth International Conference, Morgan Kaufmann Publishers, San Francisco,CA, 1998, pp. 46-54. [18] Pryor, M., "The effects of singular value decomposition on collaborative fitering," Dartmouth College CS, PCS-TR98-338, 1998. [19] Lu, H., Lu, Z., and Li, Y., "EVS: Enhanced Vector Similarity for Collaborative Information recommendation based on SVD," In International ICSC-NAISO Congress on Computaional Intelligence: Methods And Applications (CIMA 2001), 2001. [20] Nichols, D. M., "Implicit Rating and Filtering," In the Fifth DELOS Workshop on Filtering and Collaborative Filtering, 1997, pp. 31-36. [21] Oard, D. and Kim, J., "Implicit Feedback for Recommender Systems," In Proceedings of the AAAI Workshop on Recommender Systems, 1998. [22] Claypool, M., Le, P., Waseda, M., and Brown, D., "Implicit Interest Indicators," In Proceedings of ACM Intelligent User Interfaces Conference (IUI), Santa Fe, New Mexico, USA, 2001. [23] Shapira, B., Shoval, P., and Hanani, U., "Experimentation with an information filtering system that combines cognitive and sociological filtering integrated with user stereotypes," Decision Support System, Vol. 27, 1999, pp. 5-24. [24] Shapira, B., Shoval, P., and Hanani, U., "Stereotypes in Information Filtering Systems," Information Processing and Management, Vol. 33, No. 3, 1997, pp. 273-287. [25] Basu, C., Hirsh, H., and Cohen, W., "Recommendation as classification: using social and content-based information in recommendation," In Proceedings of the 1998 workshop on Recommender Systems, AAAI Press, 1998, pp. 11-15. [26] Cohen, W., "Fast Effective Rule Induction," In Machine Learning: Proceedings of the Twelfth International Conference, Morgan Kaufmann, California, 1995. [27] Cohen, W., "Learning Trees and Rules with Set-valued Features," In Proceedings of the Thirteenth National Conference on Artificial Intelligence, Oregon, Portland, 1996. 9

[28] Joachims, T., Freitag, D., and Mitchell, T., "Webwatcher: A tour guide for the World Wide Web," In Proceedings of IJCAI-97, 1997. [29],. [ ]. 2001 [30] Herlocker, J. L., Konstan, J. A., and Riedl, J., "Explaining Collaborative Filtering Recommendations," In ACM 2000 Conference on Computer Supported Cooperative Work, 2000. Collaborative Filtering Cai Deng Lu Zengxiang Li Yanda Department of Automation, Tsinghua University, Beijing 100084, China caideng00@mails.tsinghua.edu.cn Abstract With the rapid growth of the Internet, information overload is becoming a more and more serious problem. It is an urgent demand to help people to find useful information effectively. Of all the filtering technique, Automated collaborative filtering is quickly becoming a popular one for solving the problem. In this paper we try to uncover the essential of collaborative filtering, analyze some algorithm, and discuss the future of this technique. Key words information filtering, collaborative filtering, social filtering 10