0 8 010 8 Vol.0 No.8 The Chinese Journal of Nonferrous Metals Aug. 010 1004-0609(01008-1474-07 ( 730050 Wheeler hcp 17.19 m/s 3 3 78.0% 53.7% TG44 A Numerical simulation of dendritic growth of magnesium alloys using phase-field method under forced flow YUAN Xun-feng, DING Yu-tian, GUO Ting-biao, HU Yong (State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050, China Abstract: Based on the diffusion Wheeler model which couples the temperature field, concentration field and flow field, the phase-field model for the magnesium alloys with hcp structure was established to simulate both of the single and multi-grain dendritic growths of magnesium alloys during solidification in a forced flow. The results show that when the flow velocity is 17.19 m/s, the growths of three directions on the upstream side are much faster than those of three directions on the downstream side, the tip velocity at steady state on the upstream is increased by about 78.0% compared with the case without flow, the tip velocity at the steady state on the downstream is decreased by about 53.7% compared with the case without flow. There exists much difference in the length of dendrite arm, so that the six-fold symmetry of the dendrite morphology is severely damaged. Under the case of the multi-grain, the grains grown face to face influence mutually and grow competitively. The dendrite arms of different dendrite are mutually inhibited, ultimately, form asymmetric dendrite morphology. Key words: magnesium alloy; phase-field; forced flow; dendritic growth; numerical simulation [1 3] [3 10] [11 1] Navier-Stokes 009-10-9 010-04-5 0931-75785 E-mail dingyt@lut.cn
0 8 1475 Boltzmann [13 14] fcc hcp fcc hcp hcp EIKEN [15] [16] [17] [18] WHEELER [19] hcp 1 1.1 Ф Ф=0 Ф=1 / Ф 0~1 Ф 1 Ф WHEELER [19] ε Φ 1 = Φ (1 Φ [ Φ + 30 εαω u Φ (1 Φ ] + m t Φ ε ( η ( θ Φ ε ( η( θ η ( θ + X Y Φ ε ( η( θ η ( θ (1 Y X = i+ j u x y t X Y u=(t T m /(T T 0 t=t /(ω /κ X=X /ω Y=Y /ω Ω=c ( T+m L (c c 0 /L α=( ωl / (1cσT m m=µσt m /(κl ε =δ/ω T T m δ T 0 T X Y ω t κ µ m L c 0 L σ x 0 ( x ( η(θ η(θ=1+γcos(6θ θ X γ θ θ i θ i θ i =K i π/+arctan(ф Y /Ф X (i=1 3 n ( i Ф Y Ф X X Y n K i 0 1 1. Navier-Stokes ( ΦV = 0 (3 ( ΦV + ΦV V = Φ p/ ρ+ [ ν ( ΦV] + M t d l (4 ρ p υ V M d l = υ(1 Ф ФhV/ M d l ε (Ф 0 0 (Ф 1 h.757 1.3 BECKERMANN [0] u 1 Φ + ΦV u+ p ( Φ = u t Ω t c Φc + ( V = t Φ + k (1 Φ 0 (5 ( k0 1 c D [ c + Φ ] (6 Φ + k (1 Φ 0
1476 010 8 p (Ф p(ф=ф 3 (10 15Ф+6Ф Ф X +Y R Ф=0 u=0 V X =0 V Y =0 x=x 0 D D s D l X +Y R Ф=1 u= 1 V X =0 V Y =vω/κ x=x 0 k 0 D ΦD + 0 (1 + Φ l k D D = Φ + k (1 + Φ 0 s Neumann 3.1 AZ91D [18] T m =868.5 K L=675 J/cm 3 c p =.353 J/(K cm 3 x 0 =8.179 σ=4.8 10 5 J/cm υ=3.61 10 3 cm /s κ=0.361 cm /s D l =1.8 10 5 cm /s D s =1.0 10 8 cm /s k 0 =0.4 m L =.1 µ=00 cm/(k s ω=.1 10 4 cm α=115 m=0.034 ε =0.005 γ=0.05. (5 (1 (3 (4 (6 ( X t < 4mk (7 m =max(d l m Pr k 1~ Pr=υ/κ X= Y=0.005 t=4. 10 5.3 R v 1 3.1 hcp 1 00 1 00 10 30 x 0 =8.17% T=100 K 1010 6 60 v=17.19 m/s 3 3 4 30 30 3(a AZ91D [1] 3(a 3(b (h 3(b 6 60 3 3 3(b [] 1 Fig.1 Schematic diagram of computational domain model 3. 4
0 8 1477 Fig. Evolution for phase field morphologies of single grains without flow ((a, (b, (c, (d and with flow ((e, (f, (g, (h at different times: (a, (e t=5 000 t; (b, (f t=10 000 t; (c, (g t=0 000 t; (d, (h t=30 000 t 3 AZ91D [1] Fig.3 As-cast microstructures of sand mould AZ91D under polarized light [1] : (a Multi-grain; (b Magnification of single grain shown in Fig.3(a 4 Fig.4 Distribution of solvent for single grains without flow ((a, (b, (c, (d and with flow ((e, (f, (g, (h at different times: (a, (e t=5 000 t; (b, (f t=10 000 t; (c, (g t=0 000 t; (d, (h t=30 000 t
1478 010 8 4 [3] 3.3 5 5 T m L (c c 0 78.0% 53.7% 56.6% 9.% 47.4% 17.6% 5 Fig.5 Relationships among tip velocity(a, tip temperature(b and tip concentration(c and solidification time for case of single-grain dendritic growth without and with flow 3.4 6 5 1 0 4
0 8 1479 6 Fig.6 Evolution of phase field morphologies ((a, (b, (c, (d and distributions of solvent ((e, (f, (g, (h for multi-grain with flow at different times: (a, (e t=5 000 t; (b, (f t=10 000 t; (c, (g t=0 000 t; (d, (h t=30 000 t v=34.38 m/s 6 hcp 6(h t=30 000 t 3(a 6 60 4 1 Wheeler hcp 17.19 m/s 78.0% 53.7% 3 4 REFERENCES [1] MORDIKE B L, EBERT T. Magnesium properties-applicationspotential[j]. Mater Sci Eng A, 30(1: 37 45. [] FRIEDRICH H, SCHUMANN S. Research for a new age of magnesium in the automotive industry[j]. Journal of Materials Processing Technology, 001, 117(3: 76 81. [3] DIEPERS H J, BECKERMANN C, STEINBACH I. Simulation convection and ripening in a binary alloy mush using the phase-field method[j]. Acta Mater, 1999, 47(13: 3663 3678. [4] TONHARDT R, AMBERG G. Dendritic Growth of randomly oriented nuclei in a shear flow[j]. J Cryst Growth, 000, 13(1/: 161 187.
1480 010 8 [5] TONHARDT R, AMBERG G. Phase-field simulation of dendritic growth in a shear flow[j]. J Cryst Growth, 1998, 194(3/4: 406 45. [6] JEONG J H, GOLDENFELD N, DANTZIG J A. Phase field model for three-dimensional dendritic growth with fluid flow[j]. Phys Rev E, 001, 64(4: 160 1616. [7] LU Y, BECKERMANN C, RAMIREZ J C. Three-dimensional phase-field simulations of the effect of convection on free dendritic growth[j]. J Cryst Growth, 005, 80(1/: 30 334. [8],. [J]., 008, 57(7: 4585 4589. CHEN Yu-juan, CHEN Chang-le. Simulation of the influence of convection velocity on upstream dendritic growth using phase-field method[j]. Acta Physica Sinica, 008, 57(7: 4585 4589. [9] CHEN Zhi, CHEN Chang-le, HAO Li-mei. Numerical simulation of succinonitrite dendritic growth in a forced flow[j]. Acta Metallurgica Sinica, 008, 1(6: 444 450. [10],,. [J]., 009, 38(7: 109 113. CHEN Zhi, CHEN Chang-le, HAO Li-mei. Effect of phase field parameters on the dendritic growth in a forced convection[j]. Rare Metal Materials and Engineering, 009, 38(7:109 113. [11] ZHU M F, LEE S Y, HONG C P. Modified cellular automaton model for the prediction of dendritic growth with melt convection[j]. Phys Rev E, 004, 69(6: 1610 16. [1],,,. [J]. E, 005, 35(7: 673 688. ZHU Ming-fang, DAI Ting, LEE Cheng-yun, HONG Chunp-yo. Modeling of dendritic growth in the presence of convection[j]. Science China E, 005,35(7:673 688. [13],. CA-LB [J]., 007, 17(S1: 84 89. SUN Dong-ke, ZHU Ming-fang. Cellular automaton-lattice Boltzmann model for modeling of dendritic growth in flowing melt[j]. The Chinese Journal of Nonferrous Metal, 007,17(S1: 84 89. [14],,,,. CA-LBM [J]., 009, 45(1: 43 50. YANG Chao-rong, SUN Dong-ke, PAN Shi-yan, DAI Ting, ZHU Ming-fang. CA-LBM model for the simulation of dendritic growth under natural convection[j]. Acta Metallurgica Sinica, 009, 45(1: 43 50. [15] EIKEN J, BOTTGER B, STEINBACH I. Phase field simulations of microstructure evolution during solidification of magnesiumbased alloys[c]//modeling of Casting, Welding and Advanced Solidification Processes-XI, TMS, 006: 489 493. [16],,. [J]., 008, 44(4: 483 488. MIAO Jia-ming, JING Tao, LIU Bai-cheng. Numerical simulation of dendritic morphology of magnesium alloys using phase field method[j]. Acta Metallurgica Sinica, 008, 44(4: 483 488. [17],,. [J]., 007, 43(4: 367 373. LIU Zhi-yong, XU Qing-yan, LIU Bai-cheng. Modeling of dendrite growth for the cast magnesium alloy[j]. Acta Metallurgica Sinica, 007, 43(4: 367 373. [18],,. [J]., 007, 17(10: 1567 1573. FU Zhen-nan, XU Qing-yan, XIONG Shou-mei. Numerical simulation on dendrite growth process of Mg alloy using cellular automaton method based on probability capturing model[j]. The Chinese Journal of Nonferrous Metals, 17(10: 1567 1573. [19] WHEELER A A, MURRAY B T, SCHAEFER R J. Computation of dendrites using a phase field model[j]. Physica D, 1993, 66(1/: 43 6. [0] BECKERMANN C, DIEPERS H J, STEINBACH I, KARMA A, TONG X. Modeling melt convection in phase-field simulations of solidification[j]. J Comp Phys, 1999, 154(: 468 496. [1] MALTAIS A, DUBE D, FISET M, LAROCHE G, TURGEON S. Improvements in the metallography of as-cast AZ91 alloy[j]. Materials Characterization, 004, 5(: 103 119. [] KARMA A, RAPPEL W J. Phase-field model of dendritic sidebranching with thermal noise[j]. Phys Rev E, 1999, 60(4: 3614 365. [3],,,. [J]., 006, 55(3: 150 1507. ZHU Chang-sheng, WANG Zhi-ping, JING Tao, XIAO Rong-zhen. Numerical simulation of solute segregation patterns for a binary alloy using phase-field approach[j]. Acta Physica Sinica, 006, 55(3: 150 1507. (