20 6 2008 12 Chinese Bulletin of Life Sciences Vol. 20, No. 6 Dec., 2008 1004-0374(2008)06-0843-06 ( 200025) (human papilloma virus, HPV) HPV HPV HPV HPV R730.261; R737.33; R373.9 A Reseach progress on human papilloma virus and its related carcinogenesis LIANG De-guang, HE Zhi-heng, LAN Ke* (Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200025, China) Abstract: Persistant infection of high risk HPV (human papilloma virus) is a critical factor to the onset of women cervical carcinoma. HPV can infect cervical epithelium and establish latent infection through down-regulation of host immune response. Viral proteins encoded by high risk HPV modulate multiple cellular functions during persistant infection, such as apoptosis, proliferation and cell cycle regulation. As a result, the morphology, genetic materials, and epigenetics of cervical epithelium can be changed dramatically. In some cases, HPV infected epithelium can be transformed and further developed to cervial cancer with the assistance of some cofactors. In a word, HPV plays an important role in cervical oncogenesis. This review will introduce recent research progress on the mechanisms by which HPV induces cervical cancer. Key words: human papilloma virus; carcinogenesis; cervical carcinoma (human papilloma virus, HPV) Harald zur Hausen 2008 HPV HPV 10 20 2008-12-02 * E-mail: lank@sibs.ac.cn 1 20 ( 1) DNA 7 200 8 000 bp (ORF) DNA (early region ER) (1ate region LR) E L 1 kb (upstream regulatory region URR) (1ong control region LCR)
844 [1,2] ( 2) E6 E7 HPV E6 151 E6 [3] E7 98 C N E7 HPV (16 18 31) E7 (HFK) [3, 4] 1 2 100 HPV 40 [5] HPV 10.5% 1 HPV ( Stephen C. Harrison ) 2 HPV ( John Doorbar, Clin Sci, 2006, 110: 525-41) 1 HPV ORF E1 ATP ATP E2 E1 DNA E5 T E4 L1 L2 HPV 50 100 HPV16 18 100 500 HPV ( II III ) HPV DNA 70% 90% I 20% 50% [6] HPV HPV DNA RNA DNA HPV HPV6 HPV11 HPV [7] HPV16 HPV18 [7, 8] 50% HPV16 20% HPV18 HPV [9] (cervical intraepithelial neoplasia CIN) 10 Dalstein HPV CIN HPV HPV CIN HPV
845 3 HPV 3.1 HPV HPV 12 18 HPV HPV 3.1.1 DNA 3.1.2 HPV16 NF-κB E6 E7 IFN E7 p48/ IRF-9 ISGF-3(IFN stimulated gene factor3) IFN-α E7 DNA IRF-1 IFN-β [10] E6 IRF3 IFN-α Tyk2 IFN STAT1 STAT2 STAT/JAK 3.1.3 II III T TH2 [11] E5 HPV Suprynowicz [12] E5 (23 40 )T caveolin-1/gm1 T E5 MHCII 3.2 HPV HPV E5 E6 E7 HPV E6 E6 E6-AP p53 P53 BCL-2 Bax E6-AP E6 E6-AP p53 E6-AP P53 [13] Hoppe- Seyler RNAi E6 RNAi Bax, E6 p53/puma/bax [14] HPV-16 E6 PDZ p52 p52 NF-κB ciap-2 TNF-α [15] HPV-16 E6 TNF-R1 TNF E6 [16] HPV E5 E7 E5 FAS-R TRAIL-R FAS-R TRAIL-R E5 FAS TRAIL [17] E7 TNF-α [18] 3.3 HPV G1/S G2/M HPV p53 p53 DNA HR-E6 E6-AP p53 DNA [13] E6 p53 CBP/P300 p53 G1/S S [19] Rb Rb E2F E2F S Cycline/CDK Rb E2F S S Rb M1/S HPV E7 Rb Cullin2 Rb E2F [20, 21] Rb HPV E7 E7 Mi2b HDACs,
846 E2F2 S [22] E7 cycline/cdk CDK2/ cyclina CDK2/cyclinE [23] prb E7 p27 p21, [24, 25] HPV-16 E7 Rb E2F6 E2F6 S E2F HPV-16 E7 E2F6 HPV S [26] E5 E5 EGFR E5 EGF E5 EGFR MAPK [27, 28] 3.4 HPV HPV HPV E6 htert E6 Myc Myc htert htert [29] E6/E6-AP NFX1-91, htert htert TERT [30] 3.5 HPV HPV HPV (LCR) E6 E7 ORF E2 E6 E7 E6 E7 E2 E6 E7 HPV 23% HPV [31] HPV HPV E6 Liu [32] E6 p53 p53 G1 E6 7(hMCM7) hmcm7 hmcm7 [33] E7 [34] E7 Fanconi Anemia(FA) [35] 3.6 HPV HPV HPV HPV HPV 11 HPV [36] HPV RARA p53 IL-10, WAF-1, HLA [37] HPV [37] HPV HPV HPV-16 E6 HPV [38] / / HPV
847 3 HPV HPV 3 4 HPV HPV HPV (Merck) 4 70% 90% HPV6 11 Cervarix HPV CIN HPV HPV HPV HPV E5 E6 E7 [1] Markowitz LE, Dunne EF, Saraiya M, et al. Quadrivalent human papillomavirus vaccine: recommendations of the advisory committee on immunization practices (ACIP). MMWR Recomm Rep, 2007, 56(RR-2): 1-24 [2] Wang Q, Griffin H, Southern S, et al. Functional analysis of the human papillomavirus type 16 E1=E4 protein provides a mechanism for in vivo and in vitro keratin filament reorganization. J Virol, 2004, 78(2): 821-33 [3] Boulet G, Horvath C, Vanden Broeck D, et al. Human papillomavirus: E6 and E7 oncogenes. Int J Biochem Cell Biol, 2007, 39(11): 2006-11 [4] Liu X, Clements A, Zhao KH, et al. Structure of the human papillomavirus E7 oncoprotein and its mechanism for inactivation of the retinoblastoma tumor suppressor. J Biol Chem, 2006, 281(1): 578-86 [5] de Villiers EM, Fauquet C, Broker TR, et al. Classification of papillomaviruses. Virology, 2004, 324(1): 17-27 [6] Castellsague X. Natural history and epidemiology of HPV infection and cervical cancer. Gynecol Oncol, 2008, 110(3 Suppl 2): S4-7 [7] An HJ, Cho NH, Lee SY, et al. Correlation of cervical carcinoma and precancerous lesions with human papillomavirus (HPV) genotypes detected with the HPV DNA chip microarray method. Cancer, 2003, 97(7): 1672-80 [8] Clifford G, Franceschi S, Diaz M, et al. Chapter 3: HPV type-distribution in women with and without cervical neoplastic diseases. Vaccine, 2006, 24 Suppl 3: S3/26-34 [9] Kurman RJ, Malkasian GD, Jr. Sedlis A, et al. From papanicolaou to bethesda: the rationale for a new cervical cytologic classification. Obstet Gynecol, 1991, 77(5): 779-82 [10] Clarke DT, Irving AT, Lambley EH, et al. A novel method for screening viral interferon-resistance genes. J Interferon Cytokine Res, 2004, 24(8): 470-7 [11] Bais AG, Beckmann I, Lindemans J, et al. A shift to a peripheral Th2-type cytokine pattern during the carcinogenesis of cervical cancer becomes manifest in CIN III lesions. J Clin Pathol, 2005, 58(10): 1096-100 [12] Suprynowicz FA, Disbrow GL, Krawczyk E, et al. HPV-16 E5 oncoprotein upregulates lipid raft components caveolin- 1 and ganglioside GM1 at the plasma membrane of cervical cells. Oncogene, 2008, 27(49): 6396 [13] Scheffner M, Huibregtse JM, Vierstra RD, et al. The HPV- 16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell, 1993, 75(3): 495-505 [14] Vogt M, Butz K, Dymalla S, et al. Inhibition of Bax activity is crucial for the antiapoptotic function of the human
848 papillomavirus E6 oncoprotein. Oncogene, 2006, 25(29): 4009-15 [15] James MA, Lee JH, Klingelhutz AJ. Human papillomavirus type 16 E6 activates NF-κB, induces ciap-2 expression, and protects against apoptosis in a PDZ binding motif-dependent manner. J Virol, 2006, 80(11): 5301-7 [16] Filippova M, Song H, Connolly JL, et al. The human papillomavirus 16 E6 protein binds to tumor necrosis factor (TNF) R1 and protects cells from TNF-induced apoptosis. J Biol Chem, 2002, 277(24): 21730-9 [17] Kabsch K, Alonso A. The human papillomavirus type 16 E5 protein impairs TRAIL- and FasL-mediated apoptosis in HaCaT cells by different mechanisms. J Virol, 2002, 76 (23): 12162-72 [18] Thompson DA, Zacny V, Belinsky GS, et al. The HPV E7 oncoprotein inhibits tumor necrosis factor alpha-mediated apoptosis in normal human fibroblasts. Oncogene, 2001, 20 (28): 3629-40 [19] Patel D, Huang SM, Baglia LA, et al. The E6 protein of human papillomavirus type 16 binds to and inhibits coactivation by CBP and p300. EMBO J, 1999, 18(18): 5061-72 [20] Boyer SN, Wazer DE, Band V. E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res, 1996, 56(20): 4620-4 [21] Huh K, Zhou XB, Hayakawa H, et al. Human papillomavirus type 16 E7 oncoprotein associates with the cullin 2 ubiquitin ligase complex, which contributes to degradation of the retinoblastoma tumor suppressor. J Virol, 2007, 81(18): 9737-47 [22] Longworth MS, Wilson R, Laimins LA. HPV31 E7 facilitates replication by activating E2F2 transcription through its interaction with HDACs. EMBO J, 2005, 24(10): 1821-30 [23] Tommasino M, Adamczewski JP, Carlotti F, et al. HPV16 E7 protein associates with the protein kinase p33cdk2 and cyclin A. Oncogene, 1993, 8(1): 195-202 [24] Zerfass-Thome K, Zwerschke W, Mannhardt B, et al. Inactivation of the cdk inhibitor p27kip1 by the human papillomavirus type 16 E7 oncoprotein. Oncogene, 1996, 13(11): 2323-30 [25] Funk JO, Waga S, Harry JB, et al. Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. Genes Dev, 1997, 11(16): 2090-100 [26] McLaughlin-Drubin ME, Huh KW, Munger K. Human papillomavirus type 16 E7 oncoprotein associates with E2F6. J Virol, 2008, 82(17): 8695-705 [27] Straight SW, Hinkle PM, Jewers RJ, et al. The E5 oncoprotein of human papillomavirus type 16 transforms fibroblasts and effects the downregulation of the epidermal growth factor receptor in keratinocytes. J Virol, 1993, 67(8): 4521-32 [28] Crusius K, Auvinen E, Alonso A. Enhancement of EGF- and PMA-mediated MAP kinase activation in cells expressing the human papillomavirus type 16 E5 protein. Oncogene, 1997, 15(12): 1437-44 [29] Liu XF, Dakic A, Chen RX, et al. Cell-restricted immortalization by human papillomavirus correlates with telomerase activation and engagement of the htert promoter by Myc. J Virol, 2008, 82(23): 11568-76 [30] Gewin L, Myers H, Kiyono T, et al. Identification of a novel telomerase repressor that interacts with the human papillomavirus type-16 E6/E6-AP complex. Genes Dev, 2004, 18(18): 2269-82 [31] Kraus I, Driesch C, Vinokurova S, et al. The majority of viral-cellular fusion transcripts in cervical carcinomas cotranscribe cellular sequences of known or predicted genes. Cancer Res, 2008, 68(7): 2514-22 [32] Liu YW, Heilman SA, Illanes D, et al. p53-independent abrogation of a postmitotic checkpoint contributes to human papillomavirus E6-induced polyploidy. Cancer Res, 2007, 67(6): 2603-10 [33] Kukimoto I, Aihara S, Yoshiike K, et al. Human papillomavirus oncoprotein E6 binds to the C-terminal region of human minichromosome maintenance 7 protein. Biochem Biophys Res Commun, 1998, 249(1): 258-62 [34] Duensing S, Lee LY, Duensing A, et al. The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proc Natl Acad Sci USA, 2000, 97(18): 10002-7 [35] Spardy N, Duensing A, Charles D, et al. The human papillomavirus type 16 E7 oncoprotein activates the Fanconi anemia (FA) pathway and causes accelerated chromosomal instability in FA cells. J Virol, 2007, 81(23): 13265-70 [36] Evans MF, Koreth J, Bakkenist CJ, et al. Allelic deletion at 11q23.3-q25 is an early event in cervical neoplasia. Oncogene, 1998, 16(19): 2557-64 [37] Madkan VK, Cook-Norris RH, Steadman MC, et al. The oncogenic potential of human papillomaviruses: a review on the role of host genetics and environmental cofactors. Br J Dermatol, 2007, 157(2): 228-41 [38] Arbeit JM, Howley PM, Hanahan D. Chronic estrogeninduced cervical and vaginal squamous carcinogenesis in human papillomavirus type 16 transgenic mice. Proc Natl Acad Sci USA, 1996, 93(7): 2930-5