Research on real-time inverse kinematics algorithms for 6R robots

Σχετικά έγγραφα
Quick algorithm f or computing core attribute

ER-Tree (Extended R*-Tree)

CAP A CAP

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

High order interpolation function for surface contact problem

Motion analysis and simulation of a stratospheric airship

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

Adaptive grouping difference variation wolf pack algorithm

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

A research on the influence of dummy activity on float in an AOA network and its amendments

An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Simplex Crossover for Real-coded Genetic Algolithms

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Research of Han Character Internal Codes Recognition Algorithm in the Multi2lingual Environment

CORDIC Background (4A)

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Research on vehicle routing problem with stochastic demand and PSO2DP algorithm with Inver2over operator

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

Numerical Analysis FMN011

CORDIC Background (2A)

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Gain self-tuning of PI controller and parameter optimum for PMSM drives

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Approximation Expressions for the Temperature Integral

Χαράλαμπος Δ.Γ. Βάλσαμος. Μηχανολόγος και Αεροναυπηγός Μηχανικός

Section 8.3 Trigonometric Equations

Analysis of energy consumption of telecommunications network and application of energy-saving techniques

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

Control Theory & Applications PID (, )

CorV CVAC. CorV TU317. 1

6.3 Forecasting ARMA processes

Second Order Partial Differential Equations

Inverse trigonometric functions & General Solution of Trigonometric Equations

Matrices and Determinants

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

The optimization of EV powertrain s efficiency control strategy under dynamic operation condition

Journal of Central South University (Science and Technology) May Bragg TU443 A (2011)

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ

Second Order RLC Filters

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Autonomous navigation control for mobile robots based on emotion and environment cognition

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)

Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ. Χρήστος Αθ. Χριστοδούλου. Επιβλέπων: Καθηγητής Ιωάννης Αθ. Σταθόπουλος

Homework 3 Solutions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

A method of seeking eigen-rays in shallow water with an irregular seabed

ΒΕΛΤΙΣΤΟΣ ΓΕΩΜΕΤΡΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΧΩΡΙΚΟΥ ΒΡΑΧΙΟΝΑ RRR ΜΕ ΧΡΗΣΗ ΥΒΡΙΔΙΚΟΥ ΑΛΓΟΡΙΘΜΟΥ

Eulerian Simulation of Large Deformations

New Soliton and Periodic Solutions for Nonlinear Wave Equation in Finite Deformation Elastic Rod. 1 Introduction

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Newman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3

Supporting Information

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

Solution Series 9. i=1 x i and i=1 x i.

ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ

Error ana lysis of P2wave non2hyperbolic m oveout veloc ity in layered media

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ

Congruence Classes of Invertible Matrices of Order 3 over F 2

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

supporting phase aerial phase supporting phase z 2 z T z 1 p G quardic curve curve f 2, n 2 f 1, n 1 lift-off touch-down p Z

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

A summation formula ramified with hypergeometric function and involving recurrence relation

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

(II) * PACS: a, Hj 300. ) [6 9] ) [10 23] ) [26 30]. . Deng [24,25] Acta Phys. Sin. Vol. 61, No. 15 (2012)

D Alembert s Solution to the Wave Equation

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Wavelet based matrix compression for boundary integral equations on complex geometries

Detection and Recognition of Traffic Signal Using Machine Learning

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Numerical simulation of Earth s gravitational field recovery from SST based on the energy conservation principle

Fused Bis-Benzothiadiazoles as Electron Acceptors

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

Example Sheet 3 Solutions

Transcript:

25 6 2008 2 Control Theory & Applications Vol. 25 No. 6 Dec. 2008 : 000 852(2008)06 037 05 6R,,, (, 30027) : 6R. 6 6R6.., -, 6R., 2.03 ms, 6R. : 6R; ; ; : TP242.2 : A Research on real-time inverse kinematics algorithms for 6R robots LIU Song-guo, ZHU Shi-qiang, LI Jiang-bo, WANG Xuan-yin (State Key Lab of Fluid Power Transmission and Control, Zhejiang University, Hangzhou Zhejiang 30027, China) Abstract: A set of real-time algorithms for inverse kinematics of all type of 6R robots is proposed. The general algorithm obtains 6 inverse kinematics solutions in total for general 6R robots based on vector operations and eigenvaluedecomposition of a 6 order target matrix. The closed-form algorithm selects proper kinematics equations directly and solves for the joint variables analytically. The obtained results are employed by the combined algorithm as the initial values in the iterative Newton-Raphson method for finding the exact solutions of the inverse kinematics, which can be used for 6R robots that approximately meet the requirements of the closed-form algorithm or the general algorithm. Experimental results show that the proposed set of algorithms solves the inverse kinematics problem of 6R robots with any geometry configuration in 2.03 ms, and provides effective solutions for the inverse kinematics problem of 6R robots applied in strong real-time systems. Key words: 6R robots; inverse kinematics; real-time algorithm; combined algorithm (Introduction) 6R,. 6R Pieper [], 33, [2], PUMA560. Pieper 6R, [3],,. 6R Pieper, 6R, [5 0]. Raghavan Roth 6 4 [5], 24, 6, 8. Manocha 24 Raghavan [6],. [7,8] 7R, 0, 6,, 6R. 6R. Pieper 6R. Manocha 24 6, 6R. - [4], Pieper 6R : 2007 05 8; : 2008 0 0.

038 25 6R,. C++, 6R 2.03 ms. 2 (Inverse kinematics algorithms) D-H, 6R T End = T T 2 T 3 T 4 T 5 T 6, () : T i = R z (θ i )T z (d i )T x (a i )R x (α i )(i =, 2,, 6), a i, α i, d i, θ i, T End. 6R d i, a i α i T End, θ i. 2. (General algorithm) 6R. [6]24 24,, : 24 24 ; 8. P L, 0 0 c 2 s 2 0 h P = 0 λ 2 µ 2 s 2 c 2 0 h 2 0 µ 2 λ 2 0 0 h 3 a 2 c 3 s 3 0 f 0 = s 3 c 3 0 f 2, d 2 0 0 f 3 0 0 c 2 s 2 0 n L = 0 λ 2 µ 2 s 2 c 2 0 n 2 = 0 µ 2 λ 2 0 0 n 3 c 3 s 3 0 r s 3 c 3 0 r 2. 0 0 r 3 : µ i = sin α i, λ i = cos α i, h v = F SC(c, s, c 2, s 2 ), f v = F SC(c 4, s 4, c 5, s 5 ), n v = F SC(c, s, c 2, s 2 ), r v = F SC(c 4, s 4, c 5, s 5 ), v =, 2, 3, i =, 2,, 5, FSC, s i = sin θ i, c i = cos θ i. P L, P, L, P P, P L, P L (P P )L (2P L)P, 4 : EQ : P L (θ 3, θ 4, θ 5 ) = P R (θ, θ 2 ); EQ2 : P L2 (θ 3, θ 4, θ 5 ) = P R2 (θ, θ 2 ); EQ3 : P L3 (θ 4, θ 5 ) = P R3 (θ, θ 2 ); EQ4 : L L (θ 3, θ 4, θ 5 ) = L R (θ, θ 2 ); EQ5 : L L2 (θ 3, θ 4, θ 5 ) = L R2 (θ, θ 2 ); EQ6 : L L3 (θ 4, θ 5 ) = L R3 (θ, θ 2 ); EQ7 : (P P ) L (θ 4, θ 5 ) = (P P ) R (θ, θ 2 ); EQ8 : (P L) L (θ 4, θ 5 ) = (P L) R (θ, θ 2 ); EQ9 : (P L) L (θ 3, θ 4, θ 5 )=(P L) R (θ, θ 2 ); EQ0 : (P L) L2 (θ 3, θ 4, θ 5 )=(P L) R2 (θ, θ 2 ); EQ : (P L) L3 (θ 4, θ 5 ) = (P L) R3 (θ, θ 2 ); EQ2 : [(P P )L (2P L)P ] L (θ 3, θ 4, θ 5 ) = [(P P )L (2P L)P ] R (θ, θ 2 ); EQ3 : [(P P )L (2P L)P ] L2 (θ 3, θ 4, θ 5 ) = [(P P )L (2P L)P ] R2 (θ, θ 2 ); EQ4 : [(P P )L (2P L)P ] L3 (θ 4, θ 5 ) = [(P P )L (2P L)P ] R3 (θ, θ 2 ). : L R,, 2 3., EQ3, EQ6, EQ7, EQ8, EQ EQ4 6 θ 3,, L 6 [s 4 s 5 s 4 c 5 c 4 s 5 c 4 c 5 s 4 c 4 s 5 c 5 s 2 c 2 ] T = R 6 6 [s s 2 s c 2 c s 2 c c 2 s c ] T. (2) : L 6 R 6 6. x 3 = tan(θ 3 /2), θ 3 8, 8 : EQ L + x 3 EQ2 L = EQ R + x 3 EQ2 R, EQ2 L x 3 EQ L = EQ2 R x 3 EQ R, EQ4 L + x 3 EQ5 L = EQ4 R + x 3 EQ5 R, EQ5 L x 3 EQ4 L = EQ5 R x 3 EQ4 R, EQ9 L + x 3 EQ0 L = EQ9 R + x 3 EQ0 R, EQ0 L x 3 EQ9 L = EQ0 R x 3 EQ9 R, EQ2 L + x 3 EQ3 L = EQ2 R + x 3 EQ3 R, EQ3 L x 3 EQ2 L = EQ3 R x 3 EQ2 R., L2 8 (x 3 )[s 4 s 5 s 4 c 5 c 4 s 5 c 4 c 5 s 4 c 4 s 5 c 5 s 2 c 2 ] T = R2 8 6 [s s 2 s c 2 c s 2 c c 2 s c ] T. (3) : R2 8 6, L2 8 (x 3 ) x 3. rank(r 6 6 ) = 6, (2) R 6 6,

6 : 6R 039 x i = tan(θ i /2), i = 4, 5, (3), ( + x 2 4)( + x 2 5), L3 8 (x 3 ) [ x 2 4x 2 5 x 2 4x 5 x 4 x 2 5 x 4 x 5 x 2 4 x 4 x 2 5 x 5 s 2 k c 2 k ] T = 0 8. (4) k = ( + x 2 4)( + x 2 5), L3 8 (x 3 ) L2 8 (x 3 ). (4) x 4, 8, (4) 8, L4 6 6 (x 3 )[x 3 4x 2 5 x 3 4x 5 x 2 4x 2 5 x 2 4x 5 x 3 4 6R6R,. PUMA560, D-H. L(i, j) R(i, j) 4 4 L R i j, : L = T T End = T 2 T 3 T 4 T 5 T 6 = R, L(3, 4) = R(3, 4), L(, 4) = R(, 4), L(2, 4) = R(2, 4) (8) x 2 4 x 4 x 2 5 x 4 x 5 x 4 s 2 k x 4 c 2 k x 4 x 2 5 x 5 s 2 k c 2 k ] T = 0 6., L4(x 3 )(V 245 ) = 0. (5) : L4(x 3 ) = Ax 3 + B, A, B R 6 6, V 245 θ 4 θ 5 θ 2. (5) det[l4(x 3 )] = 0. (6). A, L4(x 3 ) = 0 Ix 3 + A B = 0. (7) I 6 6. M = A B,, M 6 x 3 6, V 245, V 245 x 4, x 5, s 2 c 2, θ 2, θ 3, θ 4 θ 5, (2), θ, 5 (), θ 6. 6R 3, ( ) 02 6 R 6 6 =. R 4 6 6R3, A = ( R 6 2 0 6 4 ). 6R Pieper,, Pieper 6R. Pieper 6R,. 2.2 (Close form algorithm) 6R Pieper,. Pieper 6R,. Pieper, PUMA560. Pieper θ θ 3 [ 80, 80 ]., L = (T T 2 T 3 ) T End = T 4 T 5 T 6 = R, L(, 4) = R(, 4), L(3, 4) = R(3, 4), (9) L(, 3) = R(, 3), θ 2 [ 80, 80 ] θ 4. L = (T T 2 T 3 T 4 ) T End = T 5 T 6 = R, L(, 3) = R(, 3), (0) θ 5 [ 80, 80 ]. L = (T T 2 T 3 T 4 T 5 ) T End = T 6 = R, L(, 3) = R(, 3), () θ 6 [ 80, 80 ]. θ, θ 3 θ 4, θ 2, θ 5 θ 6,, PUMA560 8. PUMA560D-H Table D-H parameters of PUMA560 robot θ/( ) d/mm a/mm α/( ) θ 2 50 90.0 2 θ 2 0 550 0 3 θ 3 0 75 90.0 4 θ 4 650 0 90.0 5 θ 5 0 0 90.0 6 θ 6 0 0 0 2.3 (Combined algorithm) 6R ν ω6, d δ6 D, (ν ) ω = lim t 0 t ( ) d = lim δ t 0 D. (2) t

040 25, 6R 6 6 J : ( ) ν = J(θ) dθ ω dt. (3) (2) (3) lim t 0 t D = J(θ)dθ dt, D = J(θ)dθ. 6R T End : T End = (I + TCur ), = T Cur T End I., 0 δ z δ y d x δ = z 0 δ x d y δ y δ x 0 d z, 0 0 0 : d x, d y d z d, δ x, δ y δ z δ. J(θ), dθ = J (θ)d., - 6R, : Step θ Cur, θ Cur (), ; Step 2 T End : = T Cur T End I; Step 3 D, dθ = J (θ Cur )D; Step 4 dθ ξ, θ Cur, ξ; N,, N ; dθ > ξ N, θ Cur = θ Cur + dθ, = T (θ Cur ), Step 2 Step 4,. 2.3. I(Combined algorithm I) Pieper6R,,,, -.,., Pieper 6R 6R,. 2.3.2 II(Combined algorithm II) 6R Pieper,,.,,,,. 3 (Experiments and performance) Pentium IV 2.4G CPU, 52M RAM, Windows 2000, VC++ NEWMAT CLAPCAK. Table 2 2 8 Eight solutions of inverse kinematics θ/( ) θ/( ) 89.06600660 2 74.8564945 3 79.7228035 4 70.845305 5 94.4794234 6 6.3625337 88.5542942 2 75.5308876 2 3 79.605998 4 9.060946030 5 94.77339928 6 64.8684275 93.04835838 2 6.535200275 3 3 60.390667 4 7.380443 5 7.8629364 6 72.575594 93.23458698 2 6.72560300 4 3 60.5885754 4 05.9482565 5 72.080762 6 0.0052334 90.00000000 2 40.0000000 5 3 49.99999999 4 9.999999999 5 80.0000000 6 20.0000000 90.47589037 2 39.3355973 6 3 49.2995095 4 70.0932884 5 79.95845685 6 60.492374 85.24308956 2 65.0634692 7 3 29.930875 4 60.048599 5 7.4032793 6 5.45247788 85.5559833 2 65.0269727 8 3 30.24760494 4 2.529607 5 7.870577 6 73.2035008

6 : 6R 04 PUMA560, D- H, θ = 90, θ 2 = 40, θ 3 = 50, θ 4 = 0, θ 5 = 80 θ 6 = 20, : d 2 = d 3 = d 5 = d 6 = a 4 = a 5 = a 6 = 2, α 2 = α 6 =. I8, 2. 6R, 3. Manocha, 4.6 ms,.37 ms,,. 3 Table 3 Applicability and real-time performance of algorithms Pieper /ms PUMA560 0. 0. PUMA560 I 0.77.37 I 0.77.37 0..37 II 2.03, 6R,, Pieper 6R, 6R. 4 (Conclusion) 6R. 6R Pieper, Pieper,. Pieper 6R, 6. I II Pieper 6R 6R. C++, 2.03 ms, 0. ms, 6R. (References): []. [M]. :, 996. (XIONG Youlun. Fundamentals of Robot Techniques[M]. Wuhan: Huazhong University of Science and Technology Press, 996.) [2] PAUL R P, ZHANG H. Computational efficient kinematics for manipulators with spherical wrists based on homogeneous transformation representation[j]. International Journal of Robotics Research, 986, 5(2): 30 42. [3] DOLINSKY J U, JENKINSON I D, COLQUHOUN G J. Application of genetic programming to the calibration of industrial robots[j]. Computers in Industry, 2007, 58(3): 255 264. [4] ANGELES J. On the numerical solution to the inverse kinematics problem[j]. International Journal of Robotics Research, 985, 4(2): 2 37. [5] RAGHAVAN M, ROTH B. Kinematic analysis of the 6R manipulator of general geometry[c]//international Journal of Robotics Research. Tokyo: MIT Press, 989: 34 320. [6] MANOCHA D, CANNY J F. Efficient inverse kinematics for general 6R manipulators[j]. IEEE Transaction on Robotics and Automation, 994, 5(9): 648 657. [7],, 7R [J], 986, 22(3): 9. (LIAO Qizheng, LIANG Chonggao, ZHANG Qixian. A novel approach to the displacement analysis of general spatial 7R mechanism[j]. Chinese Journal of Mechanical Engineering, 986, 22(3): 9.) [8] LEE H Y, LIANG C G. Displacement analysis of the general spatial 7-link 7R mechanism[j]. Mechanism and Machine Theory, 988, 23(3): 29 226. [9] HUSTY M L, PFURNER M, SCHROCKER H P. A new and efficient algorithm for the inverse kinematics of a general serial 6R manipulator[j]. Mechanism and Machine Theory, 2007, 42(): 66 8. [0] CHAPELLE F, BIDAUD P. A closed form for inverse kinematics approximation of general 6R manipulators using genetic programming[c]//proceedings of the 200 IEEE International Conference on Robotics & Automation. Seoul, USA: IEEE Press, 200: 3364 3369. : (980 ),,,, E-mail: sgliu@zju.edu.cn; (966 ),,,, E-mail: sqzhu@zju.edu.cn; (983 ),,,, E-mail: ernist@zju.edu.cn; (966 ),,,, E-mail: xywang@zju.edu.cn.