t ts P ALEPlot t t P rt P ts r P ts t r P ts

Σχετικά έγγραφα
LEM. Non-linear externalities in firm localization. Giulio Bottazzi Ugo Gragnolati * Fabio Vanni

Alterazioni del sistema cardiovascolare nel volo spaziale

rs r r â t át r st tíst Ó P ã t r r r â

Assessment of otoacoustic emission probe fit at the workfloor

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

QBER DISCUSSION PAPER No. 8/2013. On Assortative and Disassortative Mixing in Scale-Free Networks: The Case of Interbank Credit Networks

P r s r r t. tr t. r P

A hybrid PSTD/DG method to solve the linearized Euler equations

E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets

ON THE MEASUREMENT OF

Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat

Couplage dans les applications interactives de grande taille

Forêts aléatoires : aspects théoriques, sélection de variables et applications

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

Résolution de problème inverse et propagation d incertitudes : application à la dynamique des gaz compressibles

Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage

ACI sécurité informatique KAA (Key Authentification Ambient)

Consommation marchande et contraintes non monétaires au Canada ( )

Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes

Multi-GPU numerical simulation of electromagnetic waves

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Traitement STAP en environnement hétérogène. Application à la détection radar et implémentation sur GPU

Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation

Modern Regression HW #8 Solutions

ss rt t r s t t t rs r ç s s rt t r t Pr r r q r ts P 2s s r r t t t t t st r t

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s

Mesh Parameterization: Theory and Practice

P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r

Ax = b. 7x = 21. x = 21 7 = 3.

❷ s é 2s é í t é Pr 3

Langages dédiés au développement de services de communications

Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s

Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées

Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques

Conditions aux bords dans des theories conformes non unitaires

Coupling strategies for compressible - low Mach number flows


ts s ts tr s t tr r n s s q t r t rs d n i : X n X n 1 r n 1 0 i n s t s 2 d n i dn+1 j = d n j dn+1 i+1 r 2 s s s s ts

Analysis of a discrete element method and coupling with a compressible fluid flow method

Pierre Grandemange. To cite this version: HAL Id: tel

Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle

Ηλεκτρονικοί Υπολογιστές IV

DirichletReg: Dirichlet Regression for Compositional Data in R

VISCOUS FLUID FLOWS Mechanical Engineering

Pathological synchronization in neuronal populations : a control theoretic perspective

Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE)

UNIVERSITE DE PERPIGNAN VIA DOMITIA

Αναπαραστάσεις και χαρακτήρες πεπερασµένων οµάδων

Logique et Interaction : une Étude Sémantique de la

Développement d un nouveau multi-détecteur de neutrons

ST5224: Advanced Statistical Theory II

Three essays on trade and transfers: country heterogeneity, preferential treatment and habit formation

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

( ) ( ) ( ) ( ) ( ) 槡 槡 槡 ( ) 槡 槡 槡 槡 ( ) ( )

Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation

Jeux d inondation dans les graphes

UNIVtrRSITA DEGLI STUDI DI TRIESTE

Biostatistics for Health Sciences Review Sheet

Points de torsion des courbes elliptiques et équations diophantiennes


Three Essays on Canadian Housing Markets and Electricity Market

A Probabilistic Numerical Method for Fully Non-linear Parabolic Partial Differential Equations

La naissance de la cohomologie des groupes

Numerical Methods for Civil Engineers. Lecture 10 Ordinary Differential Equations. Ordinary Differential Equations. d x dx.

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Ιστοσελίδα:

Wan Nor Arifin under the Creative Commons Attribution-ShareAlike 4.0 International License. 1 Introduction 1

P P Ô. ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t

Vers un assistant à la preuve en langue naturelle

MATHACHij = γ00 + u0j + rij

Segmentation d IRM cérébrales multidimensionnelles par coupe de graphe

SPECIAL FUNCTIONS and POLYNOMIALS

Partial Trace and Partial Transpose

Approximation de haute précision des problèmes de diffraction.

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο

Aboa Centre for Economics. Discussion paper No. 122 Turku 2018

DATA SHEET Surface mount NTC thermistors. BCcomponents

Instruction Execution Times

Constructive Mayer-Vietoris Algorithm: Computing the Homology of Unions of Simplicial Complexes

Numerical Analysis FMN011

AVERTISSEMENT. D'autre part, toute contrefaçon, plagiat, reproduction encourt une poursuite pénale. LIENS

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Μοντελοποίηση προβληµάτων

6. MAXIMUM LIKELIHOOD ESTIMATION

Geometric Tomography With Topological Guarantees

Generalized additive models in R

R & R- Studio. Πασχάλης Θρήσκος PhD Λάρισα



Parametric proportional hazards and accelerated failure time models

Mohamed-Salem Louly. To cite this version: HAL Id: tel

An Introduction to Splines

Measurement-driven mobile data traffic modeling in a large metropolitan area

Tutorial on Multinomial Logistic Regression


Transcript:

t ts P ALEPlot 2 2 2 t t P rt P ts r P ts t r P ts t t r 1 t2 1 s r s r s r 1 1 tr s r t r s s rt t r s 2 s t t r r r t s s r t r t 2 t t r r t t2 t s s t t t s t t st 2 t t r t r t r s s t t r t s r t r t rs rst t s ts t r t s s s 2 r t r t s s r 1 t r2 r s t s r r 2 r t t s 3 t s rt t st t r t s rs s t t t 1 s r s r t r 1 t E[Y X = x] f(x) r Y s s r r s s r X = (X 1,...,X d ) s d s t r r t rs f( ) s t tt t t r ts Y r t r t2 t t Y s t rt r ss t ss t s tt s t X tr t t t t s {y i,x i = (x i,1,...,x i,d ) : i = 1,...,n} r s t2 t t t t s2 t r tt 2 f st ˆf s r s X Y t t r r s r s t t s s t r r s t r s t s 3 t t f(x 1,...,x d ) r t r x 1,...,x d s s t r r r t r t ts r t r t rs t tr t t s tt str t ts r t s s d = 2 r d s t 2 s r s s r t r t t r st t tt t s 2 r s 3 t r s t rt P t r s r s 3 t t r t r s 2 x 1 t r s s f( ) P t ts t t f 1,PD (x 1 ) = E[f(x 1,X 2 )] rs s x 1 st t s ˆf 1,PD (x 1 ) = 1 n n f(x 1,x i,2 ) i=1 r str t s f 1,PD (x 1 ) s t t s x 1 = 0.3 r t 2 1 t n = 200 s r t s (X 1,X 2 ) r str t t s t x 2 = x 1 t t t N(0,0.05 2 ) r s t t r t rs s t t r str t s t r t P ts s t t t 1 t t s t t r f(x 1,X 2 ) s X 2 r s r ts r str t s t r

s q t t t r r t t r rt s t r r q r s r t r s r 1tr t 2 t t tr t r t t s r tr f(x) = β 0 + β 1 x 1 + β 2 x 2 2 t rr t r t t s 1tr t t r r 2 t r ts 1 t2 r tr s r s r r r ss tr t 1 t t 1tr t r 2 P t s t t r s 3 t t r t rs r rr t r str t t r s t t t t f 1,PD (x 1 ) f 1,M (x 1 ) t x 1 = 0.3 1tr t r t t s r q r t t f 1,PD (x 1 ) rs s t r s t2 X 2 s ss tr t r t t t t t s t2 X 2 X 1 = x 1 t t str t X 2 X 1 r ts r t r t s t P ts t t s 1tr t 2 s t t s t2 t r s t2 s str t r t t t x 1 s t t t f 1,M (x 1 ) = E[f(X 1,X 2 ) X 1 = x 1 ] rs s x 1 r st t f 1,M (x 1 ) s ˆf 1,M (x 1 ) = 1 n(x 1 ) i N(x 1 ) f(x 1,x i,2 ) r N(x 1 ) {1,2,...,n} s t s s t r s i r x i,1 s t s s r r t 2 s t r x 1 n(x 1 ) s t r s r t s t r t r s st t r s t t s r t2 2 s t st t f 1,M (x 1 ) t s r t r s t r s r s r s r t s f 1,M (x 1 ) t s 3 t t x 1 X 1 X 2 r t 2 s f 1,M (x 1 ) s r r ss Y t X 1 r r 3 r t s r X 2 s q t 2 Y s X 1 X 2 f 1,M (x 1 ) r t t t r ts s q t tt r s r r ss t r 2 Y s X 1 t t X 2 rr t t X 1 X 2 r s t f 1,M (x 2 ) t r s t Y s X 2 r r s s r s r t t s s r t r r s r t 2 rr t P ts t s r 2 s 2 t r r r t rt 2 s ss r s 3 t ts t r t rs

st t t r r t t ts t t ALEPlot P t ts ts r s 2 st t t s 3 t r t t s t t 1tr t r P ts t r ts t t r t r x j j {1,...,d} s s f j,ale (x j ) = xj z 0,j E[ f(x 1,...,X d ) X j ) X j = z j ]dz j c 1 r z 0,j s r 1 t r X j st t c 1 s s s t t f j,ale (X j ) s 3 r t r s t t t r str t X j t t t x j s t st t f j,ale (x j ) rs s x j t s 3 s t t f( ) x j st t t t s t 2 r t t r t s t t r t t t r ˆf j,ale (x) = k j (x) k=1 1 n j (k) i:x i,j N j (k) [f(z k,j,x i,\j ) f(z k 1,j,x i,\j )] ĉ 1 r t t t s s s t st t ĉ 1 s s s t t 1 n n i=1 ˆf j,ale (x i,j ) = 0 t x i,\j = (x i,l : l = 1,...,d;l j) r t s s r t \j t s r s t t jt t {N j (k) = (z k 1,j,z k,j ] : k = 1,2,...,K} s t 2 rt t t s r {x i,j : i = 1,2,...,n} t t r s ALEPlot t s s z k,j s t k K q t t r str t {x i,j : i = 1,2,...,n} t z 0,j s st t s st s r t z K,j s s t r st s r t r k = 1,2,...,K t n j (k) t t r s r t s {x i,j : i = 1,...,n} t t t t kt t r N j (k) s t t K k=1 n j(k) = n r rt r x r t r t r x j t k j (x) t t 1 t t r t x s x (z kj (x) 1,j,z kj (x),j] r str t s t t t t t st t r ˆf j,ale (x j ) r t rst r t r j = 1 r t s d = 2 r t rs 2 t s t t t r t t ss s r t t2 f( ) t t st r r t f( ) s s ss 2 r t st t r ts t t t r s s t st t rs s t r s s t s s s t r t t t r t K s t r t t ALEPlot t s t2 2 s K r 100 t r r s t tt r r s ts t t t t r t 2 st r K t r 2 t r t rs r s r t r t 50 st t s K s 2 s t r t r s r r t r r t rs t q t K s t r t r s s t t 2 t r t r 2

r str t t t t ts t t t st t r ˆf j,ale (x j ) r j = 1 t d = 2 r t rs ts r s tt r t {(x i,1,x i,2 ) : i = 1,2,...,n} r n = 30 tr s r t s r {x i,1 : i = 1,2,...,n} s rt t t K = 5 t r s {N 1 (k) = (z k 1,1,z k,1 ] : k = 1,2,...,5} r t K s s 2 s r r t 5 rs tr s r t s t t 5 t r s r n 1 (1) = 4,n 1 (2) = 6,n 1 (3) = 6,n 1 (4) = 5, n 1 (5) = 9 r 3 t s s ts s t N 1 (4) r r t s ts r ss t t r s f(z 4,j,x i,\j ) f(z 3,j,x i,\j ) r t t r t r s rr s t k = 4 j = 1 ALEPlot s s t s 3 t ts r t rs t r s r r t r t ts t s ss t 1t s t 1 s r s r s t s sts t r r2 t s ALEPlot PDPlot r t ts P ts r s t 2 tt s r s r t tr t s t t t s t t t t t ALEPlot s t yaimpute s r r r t r r t rs r t r st rs t2 r t r r st t ALEPlot t st t yaimpute 1 str t s t s t ALEPlot t s 3 t ts t s t 1 1 s 3 t ts t t t s X = {X 1,X 2,X 3,X 4 } s s t d = 4 r t r r s r X i : i {1, 2, 3, 4} s r str t t t r [0, 1] 4 r t rs r t 1 t rr t r t rs s t r s s t t t r s s r s Y = 4x 1 +3.87x 2 2 +2.97 exp( 5+10x 3) 1+exp( 5+10x 3 ) +ǫ, r ǫ s N(0,1 2 ) str t ts r s s t t t t r t r s r 1 t 2 t s r r t n = 5000 s r t s {y i,x i = (x i,1,...,x i,4 ) : i = 1,...,n} r t s s t tr t s t t t r t r s t t 2 s 2 t 8 s t s 2 r r t t t t t 2 r t r 0.1

s r t rs r s s r 1 t 2 t t r t s 10 r ss t t t tt t ts r t r r t rs s K = 100 r t s t t ts t r t r t s str ts t ts ## R code for Example 1 ## Load relevant packages library(aleplot) library(nnet) ## Generate some data and fit a neural network supervised learning model n = 5000 x1 <- runif(n, min = 0, max = 1) x2 <- runif(n, min = 0, max = 1) x3 <- runif(n, min = 0, max = 1) x4 <- runif(n, min = 0, max = 1) y = 4*x1 + 3.87*x2^2 + 2.97*exp(-5+10*x3)/(1+exp(-5+10*x3))+ rnorm(n, 0, 1) DAT <- data.frame(y, x1, x2, x3, x4) nnet.dat <- nnet(y~., data = DAT, linout = T, skip = F, size = 8, decay = 0.1, maxit = 1000, trace = F) ## Define the predictive function yhat <- function(x.model, newdata) as.numeric(predict(x.model, newdata, type = "raw")) ## Calculate and plot the ALE main effects of x1, x2, x3, and x4 par(mfrow = c(2,2), mar = c(4,4,2,2) + 0.1) ALE.1 = ALEPlot(DAT[,2:5], nnet.dat, pred.fun = yhat, J = 1, K = 100, ALE.2 = ALEPlot(DAT[,2:5], nnet.dat, pred.fun = yhat, J = 2, K = 100, ALE.3 = ALEPlot(DAT[,2:5], nnet.dat, pred.fun = yhat, J = 3, K = 100, ALE.4 = ALEPlot(DAT[,2:5], nnet.dat, pred.fun = yhat, J = 4, K = 100, ## Manually plot the ALE main effects on the same scale for easier ## comparison of the relative importance of the four predictor variables plot(ale.1$x.values, ALE.1$f.values, type="l", xlab="x1", ylab="ale_main_x1", xlim = c(0,1), ylim = c(-2,2), main = "(a)") plot(ale.2$x.values, ALE.2$f.values, type="l", xlab="x2", ylab="ale_main_x2", xlim = c(0,1), ylim = c(-2,2), main = "(b)") plot(ale.3$x.values, ALE.3$f.values, type="l", xlab="x3", ylab="ale_main_x3", xlim = c(0,1), ylim = c(-2,2), main = "(c)") plot(ale.4$x.values, ALE.4$f.values, type="l", xlab="x4", ylab="ale_main_x4", xlim = c(0,1), ylim = c(-2,2), main = "(d)") t t t t rst r t t ALEPlot t s t t r r t r r s 1 t r s s r s t t s r s r s t s r t ALEPlot s t s r s r t r t r s s r s t t t s t r t t r s s r t s r s r t r st s r s r ts r s 2 t r t t t t s r tt s rt t t t ss t t s r t t r t t s t r t t r t s r r t st t t s ss t 1t s t tt s s t r t r s t t s t r t r t r st s ALEPlot s t r t t s 1 s s rt r s st r s t P t st t s t t t r ts t r t r s s t s s

t tt s r t s t t r ts t t s t (a) (b) ALE_main_x1 2 1 0 1 2 ALE_main_x2 2 1 0 1 2 x1 (c) x2 (d) ALE_main_x3 2 1 0 1 2 ALE_main_x4 2 1 0 1 2 x3 r t ts r t tt r t r 1 ˆf 1,ALE (x 1 ) s x 1 ˆf 2,ALE (x 2 ) s x 2 ˆf 3,ALE (x 3 ) s x 3 ˆf 4,ALE (x 4 ) s x 4 r st t ts r t 2 t r t rr t r q r t s r t s s r s t 2 r x 1 x 2 x 3 r r ˆf 4,ALE (x 4 ) rr t 2 t s t t x 4 s t Y x4 r s s t t ts r x 1 x 2 x 3 x 4 r 1 st t s f 1,ALE (x 1 ) f 2,ALE (x 2 ) f 3,ALE (x 3 ) r 2 t r t rr t r q r t s r t s s q t t s t t t st t f 4,ALE (x 4 ) s st 3 r r s t t t t t Y t t X 4 t r r t t t s t t t r s t Y X 4 t s r ts s t s 2 ss ss r rt t ts r t rt

[f(z k,j,z m 1,l,x i,\{j,l} ) f(z k 1,j,z m 1,l,x i,\{j,l} )]] ĝ j (x j ) ĝ l (x l ) ĉ 2 st t t r r t t r r ts t t ALEPlot P s r r t t r t rs {x j,x l } {j,l} {1,...,d} s s f {j,l},ale (x j,x l ) = xl xj z 0,l E[ 2 f(x 1,...,X d ) z 0,j X j X l X j = z j,x l = z l ]dz j dz l g j (x j ) g l (x l ) c 2 r z 0,j z 0,l r r 1 t r s X j X l r s t 2 t s g j (x j ) g l (x l ) t s t s r s x j x l r s t 2 t st t c 2 r t s t tf {j,l},ale (x j,x l ) s 2 t r t s s t tf {j,l},ale (X j,x l ) s 3 r t r s t t t r str t {X j,x l } t ts x j x l f {j,l},ale (X j,x l ) r t 3 r t r t st t f {j,l},ale (x j,x l ) s {x j,x l } s s t t r t t t t t r t rs r str t t t t s t t s r r t st t r ˆf {j,l},ale (x j,x l ) r K = 5 r s {x i,j : i = 1,2,...,n} {x i,l : i = 1,2,...,n} r rt t t 5 t r s t r rt s r t r s t r r t r s {N {j,l} (k,m) = N j (k) N l (m) : k = 1,2,...,5;m = 1,2,...,5} t r rs s t r N {j,l} (4,3) s r r t r s q r (k,m) = (4,3) r t r ss t r rs t s t r s t q t s r s r t r r t n {j,l} (4,3) = 2 s r t s r N {j,l} (4,3) s st t t s r r t {X j,x l } t 2 (x j,x l ) (z 0,j,z K,j ] (z 0,l,z K,l ] ˆf {j,l},ale (x j,x l ) = k j (x j ) k=1 k l (x l ) m=1 1 n {j,l} (k,m) i:x i,{j,l} N {j,l} (k,m) [[f(z k,j,z m,l,x i,\{j,l} ) f(z k 1,j,z m,l,x i,\{j,l} )] r t t s ĝ j (x j ) ĝ l (x l ) t st t ĉ 2 r t t 2 t r t s r r t st t t t t s s s s str t r

rt t t {X j,x l } s t r K 2 r t r s {N {j,l} (k,m) = N j (k) N l (m) : k = 1,2,...,K;m = 1,2,...,K} t s t r ss r t t t r s t s rt t s t t n {j,l} (k,m) t t r tr s r t s t t t N {j,l} (k,m) s t t K K k=1 m=1 n {j,l}(k,m) = n r s t (x j,x l ) t {X j,x l } s t k j (x j ) k l (x l ) t t s t t r s t x j x l r s t 2 (x j,x l ) N {j,l} (k j (x j ),k l (x l )) 1 2 1 2 t r t t r t t tr str t t t s 3 t s r r t r t ts s t ALEPlot X = {X 1,X 2,X 3,X 4 } r r t r t r r s t X j U[0,1] t tr r s s s r t s Y = 4x 1 +3.87x 2 2 +2.97 exp( 5+10x 3) 1+exp( 5+10x 3 ) +13.86(x 1 0.5)(x 2 0.5)+ǫ, r ǫ N(0,1) t ts r s s t t t r t r s r 1 t 2 t s r r t n = 5000 s r t s r t r t r t r s t t 2 s 2 t 6 s t s 2 r r t t t t t 2 r t r 0.1 r r 1 t 2 t r t 10 r ss t s K = 500 r t t ts K = 100 r t s r r t ts s t t r t t ## R code for Example 2 ## Load relevant packages library(aleplot) library(nnet) ## Generate some data and fit a neural network supervised learning model n = 5000 x1 <- runif(n, min = 0, max = 1) x2 <- runif(n, min = 0, max = 1) x3 <- runif(n, min = 0, max = 1) x4 <- runif(n, min = 0, max = 1) y = 4*x1 + 3.87*x2^2 + 2.97*exp(-5+10*x3)/(1+exp(-5+10*x3))+ 13.86*(x1-0.5)*(x2-0.5)+ rnorm(n, 0, 1) DAT <- data.frame(y, x1, x2, x3, x4) nnet.dat <- nnet(y~., data = DAT, linout = T, skip = F, size = 6, decay = 0.1, maxit = 1000, trace = F) ## Define the predictive function yhat <- function(x.model, newdata) as.numeric(predict(x.model, newdata, type = "raw")) ## Calculate and plot the ALE main effects of x1, x2, x3, and x4 ALE.1 = ALEPlot(DAT[,2:5], nnet.dat, pred.fun = yhat, J = 1, K = 500, ALE.2 = ALEPlot(DAT[,2:5], nnet.dat, pred.fun = yhat, J = 2, K = 500, ALE.3 = ALEPlot(DAT[,2:5], nnet.dat, pred.fun = yhat, J = 3, K = 500, ALE.4 = ALEPlot(DAT[,2:5], nnet.dat, pred.fun = yhat, J = 4, K = 500, ## Calculate and plot the ALE second-order effects of {x1, x2} and {x1, x4} ALE.12 = ALEPlot(DAT[,2:5], nnet.dat, pred.fun = yhat, J = c(1,2), K = 100, ALE.14 = ALEPlot(DAT[,2:5], nnet.dat, pred.fun = yhat, J = c(1,4), K = 100,

## Manually plot the ALE main effects on the same scale for easier comparison ## of the relative importance of the four predictor variables par(mfrow = c(3,2)) plot(ale.1$x.values, ALE.1$f.values, type="l", xlab="x1", ylab="ale_main_x1", xlim = c(0,1), ylim = c(-2,2), main = "(a)") plot(ale.2$x.values, ALE.2$f.values, type="l", xlab="x2", ylab="ale_main_x2", xlim = c(0,1), ylim = c(-2,2), main = "(b)") plot(ale.3$x.values, ALE.3$f.values, type="l", xlab="x3", ylab="ale_main_x3", xlim = c(0,1), ylim = c(-2,2), main = "(c)") plot(ale.4$x.values, ALE.4$f.values, type="l", xlab="x4", ylab="ale_main_x4", xlim = c(0,1), ylim = c(-2,2), main = "(d)") ## Manually plot the ALE second-order effects of {x1, x2} and {x1, x4} image(ale.12$x.values[[1]], ALE.12$x.values[[2]], ALE.12$f.values, xlab = "x1", ylab = "x2", main = "(e)") contour(ale.12$x.values[[1]], ALE.12$x.values[[2]], ALE.12$f.values, add=true, drawlabels=true) image(ale.14$x.values[[1]], ALE.14$x.values[[2]], ALE.14$f.values, xlab = "x1", ylab = "x4", main = "(f)") contour(ale.14$x.values[[1]], ALE.14$x.values[[2]], ALE.14$f.values, add=true, drawlabels=true) r s s t t ts x 1 x 4 r s s t s r r t ts r {x 1,x 2 } {x 1,x 4 } r s t 2 r r s s t t t t t t t r t t r t t ts st t r t rr t r q r t s st t 3 r r t s s r2 r r s s t t t t r t t x 1 x 2 s s t t t r t t x 1 x 4 s st 2 t t ˆf {1,2},ALE (x 1,x 2 ) s s r t t t r t 2 r r t t ˆf{1,4},ALE (x 1,x 4 ) s s t t t r t t 3 r t t t t t s t t r s s t r s s r s ts r t t t t t t tr s str t r t t x 1 x 2 t r t t x 1 x 4 r t r r t t t {x 1,x 2 } t r t t s r t f x 2 x 1 s 1 r r 1 s 2 x 1 = 0.2 r s x 2 r s s ˆf {1,2},ALE (x 1,x 2 ) 1 s 2 x 1 = 0.8 r s x 2 r s s ˆf {1,2},ALE (x 1,x 2 ) s r t s t t {x 1,x 2 } s t r r t t r t s rs s t t 2 t s r r ts 3 r ts s t tt r s s tr t r t r r t t r r r t rst t f x 2 r r t 1 s x 1 s t t t ˆf 2,ALE (x 2 )+ ˆf {1,2},ALE (x 1,x 2 ) rs s x 2 t t x 2 t t t r t t {x 1,x 2 } r 1 x 1 = 0.2 t tr t x 2 Y s r 3.87x 2 2 4.16x 2 +constant r 1 x 1 = 0.8 t tr t x 2 Y s str r 3.87x 2 2 +4.16x 2 +constant r s q t s 2 t t st t ˆf 2,ALE (x 2 ) + ˆf {1,2},ALE (x 1,x 2 ) t x 1 = 0.2 x 1 = 0.8

(a) (b) ALE_main_x1 2 1 0 1 2 ALE_main_x2 2 1 0 1 2 x1 x2 (c) (d) ALE_main_x3 2 1 0 1 2 ALE_main_x4 2 1 0 1 2 x3 x4 (e) (f) x2 x4 x1 x1 r t ts ˆf 1,ALE (x 1 ) ˆf 2,ALE (x 2 ) ˆf 3,ALE (x 3 ) ˆf 4,ALE (x 4 ) s r r t ts ˆf {1,2},ALE (x 1,x 2 ) ˆf {1,4},ALE (x 1,x 4 ) r t tt r t r 1 r s t r t rr t r q r t s st t 3 r r t s s r x 1 x 4 r r s s t t r t t x 1 x 2 r s s t t t t r t t x 1 x 4 s

2 s ss s t r rt s r t r st s ts 2 s t 1 t t s s t r 1 t t t t s ts ts t 1tr t r P ts t r r r 2 r t t t rt r t r t r t t t f ts ts t s r r t r t t r rs P ts tt s r rst t ts t r t rs t t r t 1tr t r s ts 2 t2 t s ss r rt2 r t r t r t rs t t s ss r rt2 r t s s ts r t rs st s P ts ts r s r ss t t 2 1 s t P ts t t t 1 s s t t K 2 t r r r r t r t ts st t s r 2 s ts s r r t r t ts r t ALEPlot s t s r t s t 2 r ss r t r t t t r r t t ts s r r t r t ts 2 r t s r 1 1 t t t r 1 s r 2 r 3 rs s r t r s s r t s t r t r r r t r r s t r t t s s t r t rs t2 r r r r s t r2 t tt r s t s ts s s 1 t 1 r r t s r s ts s t r rs s rst t t t t r t s t s s r r n = 30,162 s s t tr t s t t r r s s t ss t s r r s ts rs r s s s t r2 t r r t t r rs r r t $50 1994 d = 12 r t r r s t t s r x 1 r r ss x 2 t r t 8 t r s t x 3 tr t s r r s st t r t t r t t r t r t r t r t r s r t s t ss t s r ss t s r r s r st r s r r ss r t r t r r t st t s x 4 t r t t r s t x 5 t r t t r s r t s st t s x 6 t r t t r s r x 7 t r t t r s s 1 x 8 t r t t r s t s x 9 r t ss x 10 r rs r s t r x 11 r t tr2 x 12 t r t t r s t t t t r s t r t r rt r t rs t s t st tr s t 2 2 t tr t s r t rs t r t rs s r 0.02 t r t t 3 r t t r tr s t r r ss t s s f(x) r str t ts s t s t r t r t2 t t rs s r $50k rs r t tt st tr r s s t t ts r t t rs r r t rs t s r r t r t t f {1,11},ALE (x 1,x 11 ) r 4 rs r 6 s K = 500 r t ts ts K = 50 r t t r t t s t r t t ts

## R code for Example 3 ## Load relevant packages library(aleplot) library(gbm) ## Read data and fit a boosted tree supervised learning model data = read.csv("adult_data.csv", header = TRUE, strip.white = TRUE, na.strings = "?") data = na.omit(data) gbm.data <- gbm(income==">50k" ~., data= data[,-c(3,4)], distribution = "bernoulli", n.trees=6000, shrinkage=0.02, interaction.depth=3) ## Define the predictive function; note the additional arguments for the ## predict function in gbm yhat <- function(x.model, newdata) as.numeric(predict(x.model, newdata, n.trees = 6000, type="link")) ## Calculate and plot the ALE main and interaction effects for x_1, x_3, ## x_11, and {x_1, x_11} par(mfrow = c(2,2), mar = c(4,4,2,2)+ 0.1) ALE.1=ALEPlot(data[,-c(3,4,15)], gbm.data, pred.fun=yhat, J=1, K=500, ALE.3=ALEPlot(data[,-c(3,4,15)], gbm.data, pred.fun=yhat, J=3, K=500, ALE.11=ALEPlot(data[,-c(3,4,15)], gbm.data, pred.fun=yhat, J=11, K=500, ALE.1and11=ALEPlot(data[,-c(3,4,15)], gbm.data, pred.fun=yhat, J=c(1,11), K=50, NA.plot = FALSE) r t r r t t t r s ts t ts ts r r t r r t t s r t2 r r t r 2 r s s t t t s r 2 rs t r 2 s t 2 r s s t t t t r st s rr r ss t s t r s r r s t st r s r st r s t P Pr ss r s t 2 r s s t rs r r t t rs r t t st st r s s t r 2 30 50 rs r s r r 4 rs r 6 t r t t r s r s t r st r t s s r t r s r t2 r r t t t s ss t t r s rs r r t r t t r t t t t t t t s r t2 r s s s r 2 r s t r s r t2 r t rs r s r r t r 2 r s s ˆf {1,11},ALE (x 1,x 11 ) r s s 2 ts r 2 r s t r s s 2 ts r 2 r s r t rs r P r s t s s s 2 r s r s 2 rs 2 r t s r r s s t 2 r s r r s t r r t r 1 t s r t r r t r r t t t r t ts s r r 2 t ˆf {1,11},ALE (x 1,x 11 ) s x 1 r x 11 ts s t 2 r s tr t r t s t t t t ˆf {1,11},ALE (x 1,x 11 ) r s s 2 r 2 r s r t rs r s t 2 t t s r s rs r s ss t t r s t r t2 2 r r r t t s st t t r ˆf 11,ALE (x 11 )+ ˆf {1,11},ALE (75,x 11 ) r s s r r s s r x 11 = 35 t x 11 = 80 rs r r r t s st r s s 2 t ts r

2 r s s t 2 r s rs r r s ss t t r s t r t2 r r t (a) (b) f_1(x_1) 1.0 0.5 0.0 0.5 f_3(x_3) 0.5 0.0 0.5 1.0 1.5 20 40 60 80 x_1 (x1) (c) 5 10 15 x_3 (x5) (d) f_11(x_11) 1.0 0.5 0.0 0.5 1.0 x_11 (x13) 20 40 60 80 0 20 40 60 80 100 20 30 40 50 60 70 80 90 x_11 (x13) x_1 (x1) r r t t 1 s t st tr s s f(x) t ts r t rs r t s tt t s r r t r t t r 4 rs r 6 tt r t r t s t t r t t t t2 s t t tr s r t s r P P ts 1 r P P ts r s ss t t s ts t r t t tt t 2 t s r r t 1tr t r r s r t t 2 s r t 1 st s 3 t t s t s s t s 1 r ts r r P ts r s t 1tr t r 1 t 1 t t r t rs

s X = {X 1,X 2 } s r str t t x 2 = x 1 t t N(0,0.05 2 ) r s t t r t rs tr r s s s r t s Y = X 1 +X 2 2 +ǫ t ǫ N(0,0.12 ) r t n = 200 s r t s r t s t r t r s t t 2 s 2 t 10 s t s 2 r r t t t t t 2 r t r 0.0001 s r t rs r s s r 1 t 2 t t r t s 10 r ss t s t r t P ts ts r x 1 x 2 ## R code for Example 4 ## Load relevant packages library(aleplot) library(nnet) ## Generate some data and fit a neural network supervised learning model n = 200 x <- runif(n, min = 0, max = 1) x1 <- x + rnorm(n, 0, 0.05) x2 <- x + rnorm(n, 0, 0.05) y = x1 + x2^2 + rnorm(n, 0, 0.1) DAT = data.frame(y, x1, x2) nnet.dat <- nnet(y ~., data = DAT, linout = T, skip = F, size = 10, decay = 0.0001, maxit = 1000, trace = F) ## Define the predictive function yhat <- function(x.model, newdata) as.numeric(predict(x.model, newdata, type= "raw")) ## Calculate and plot the ALE and PD main effects of x1 and x2 par(mfrow = c(2,2), mar = c(4,4,2,2) + 0.1) ALE.1 = ALEPlot(DAT[,2:3], nnet.dat, pred.fun = yhat, J = 1, K = 50, PD.1 = PDPlot(DAT[,2:3], nnet.dat, pred.fun = yhat, J = 1, K = 50) ALE.2 = ALEPlot(DAT[,2:3], nnet.dat, pred.fun = yhat, J = 2, K = 50, PD.2 = PDPlot(DAT[,2:3], nnet.dat, pred.fun = yhat, J = 2, K = 50) ## Manually plot the ALE main effects on the same scale for easier ## comparison of the relative importance of the four predictor variables ## We also plot the true linear and quadratic effects in black for reference plot(ale.1$x.values, ALE.1$f.values, type="l", xlab="x1", ylab="ale_main_x1", xlim = c(0,1), ylim = c(-1,1), col = "blue", main = "(a)") curve(x - 0.5, from = 0, to = 1, add = TRUE) plot(pd.1$x.values, PD.1$f.values, type="l", xlab="x2", ylab="pd_x1", xlim = c(0,1), ylim = c(-1,1), col = "blue", main = "(b)") curve(x - 0.5, from = 0, to = 1, add = TRUE) plot(ale.2$x.values, ALE.2$f.values, type="l", xlab="x3", ylab="ale_main_x2", xlim = c(0,1), ylim = c(-1,1), col = "blue", main = "(c)") curve(x^2 - (1/3+0.05^2), from = 0, to = 1, add = TRUE) plot(pd.2$x.values, PD.2$f.values, type="l", xlab="x4", ylab="pd_x2", xlim = c(0,1), ylim = c(-1,1), col = "blue", main = "(d)") curve(x^2 - (1/3+0.05^2), from = 0, to = 1, add = TRUE) r s ts r t2 r t t 1 1 r t r s r r s t t t ts tt x 1 x 2 t s r s r t t tr r q r t ts tt t r t P ts r t s r s r t r r 2 t P ts s str t r 2 t P t r q r s 1tr t f r ts t t {x 1,x 2 } tr t r s t 1tr t f s r2 r t

(a) (b) ALE_main_x1 1.0 0.5 0.0 0.5 1.0 PD_x1 1.0 0.5 0.0 0.5 1.0 x1 (c) x2 (d) ALE_main_x2 1.0 0.5 0.0 0.5 1.0 PD_x2 1.0 0.5 0.0 0.5 1.0 x3 r r s ˆf 1,ALE (x 1 ) ˆf 1,PD (x 1 ) ˆf 2,ALE (x 2 ) ˆf 2,PD (x 2 ) r r t r s tt r r 3 t t 1 t t r s t tr t t r r X 1 q r t r X 2 t r s r t st t t t s r ts t s P ts r t s x4 1 r s ts s r r2 t t 1 r t s r t t t r r t s t 1 1 r t r r t r t s t n = 200 s r t s r r t r t s str t r t r t t s t r t rs s t r s ts r r t s r r r t ts ts t s r r s r t t tr r q r t ts r X 1 X 2 r s t 2 t r t P ts r t s

r r s ˆf 1,ALE (x 1 ) ˆf 1,PD (x 1 ) ˆf 2,ALE (x 2 ) ˆf 2,PD (x 2 ) r r t r s tt r t r r t s t 1 t t r s t tr t t r r X 1 q r t r X 2 t r 2 r s r t st t t t s r t 50 t r r t s

r s 2 s 3 t ts r t r r s 1 s r s r s s tt r t r r 2 t r 1 t r t st s t t st s 2 t tr t s r t rs r 3 st r r ss s r rs http://cran.r-project.org/package=gbm s 2 r t t st s t rt t r r r