UNIVtrRSITA DEGLI STUDI DI TRIESTE
|
|
- Ωσαννά Άκανθα Δασκαλοπούλου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 UNIVtrRSITA DEGLI STUDI DI TRIESTE XXVNI CICLO DEL DOTTORATO DI RICERCA IN ASSICURAZIONE E FINANZA: MATEMATICA E GESTIONE PRICING AND HEDGING GLWB AND GMWB IN THE HESTON AND IN THE BLACK-SCHOLES \MITH STOCHASTIC INTEREST RATE MODELS Settore scientifi co-rlisciplinare: SECS- S /06 DOTTORANDO DR. Á'NDREA MOLENT COORDINATORE PROF. GIA"NNI BOSI SUPERVISORE DI TESi PROF. ANTONINO ZA'NETTE fu--r^0on' lm"_ i,fl ANNO A'CCADEMTCO 2Ot4 / 2015
2
3 t ts tr t r t s s r t r t s t r r t t r t s r r t t st t t r t t s ss s t t r t t ss t ss t r r r t t t t t r t s t st r t q t s 1 st q ss t s r t tr r t r t st rt3 r t r r t r s r t t r t t t st s s t r r r s t s r t st t t s t 1 t s tt t s r t r r ss s s s r 1 t s s r 1 t s t t t s t2 t t t s t2 r tr t t
4 t st r tr s r s st t P rt r t q t s t s s P r r t s r s s r s P t s st t2 s st 2 P t s 2 r t s 2 r t r t st s t 2 r P t st s t r t str t r r t s tr t t s r t2 r s t t r str ts r t s r t s 2 t s t t t r t r s r t s r s s r ts r 1 s t r t s r t tr t r r t2 r s t Pr Pr tr t tr t rt t2 tr t st t r t rs t t tr t t t t s t t s
5 s t t t r s s rr r t t t r t2 r t st st s t S st s t r t s r 2 r t r t r r t Pr t t r t r t r r t P 2 r t st s t r t str t r Pr P t r r s ts t t s st t t t s t st t t t st st t t t st st t t st t t s t 2 s st 2 t s t st 2 t st st 2 st 2 s t s s Pr tr t tr ts rt t2 tr t t t P r t rs t t tr ts t rr t t s t s P 2 r t2 t st st s t S
6 r t s r 2 r t r t r r t Pr t t r t r t r r t P 2 r t st s t r t str t r Pr P t r r s ts t t t r r st t t t s t st t t t st st r t t t t t r r st t t t s t st t t t st st r t t 2 t r r st 2 t s t st 2 t st st r 2 t t r tr t 2 P ts r 2 t t t r t s rr r r st t s t st t st s s 1
7 tr t t s r r s s r ts s r t s t t t t t r r 2 t t s r ts r 1tr 2 t t s s t t st r s t st r t r 2 r s t t t r t t r st r t s t r t tr s tt rs s r r r r s ss t t t t r s r r t s t s r t s r 2 t r t s r t r s r 2 t r r st rs t s t t r s r t r t s t 1t ts s r t t r t r s s t t2 t t t t s t s t r t t r r t s r t t r s 1 t 2 t s r r t r t r ss s r s s t s r t r q st r r t t s t t r st rs s t s t r t st r st t t r ts t r t s s r ts r r t s t r s r ç s t st s r ts t t r t s t t s t t r st t r s t s r t2 r r r r t r t r t s r s r tr ts t ts t r t r s r t 2 r 2 t t t t s r t 2 r t s r 2 s rt r t 2 r ttr t r ts s 2 t t r t r t r r s t s s 2 r 2 t r s r s r r t s r rt ss 1 t r ts t t s t s t s t s r s t r t r s t t r r s s t s r t r st s t s t t r t s s t r ts t r r s s t r t s t2 s t r r t s t t r rt r 2 r t s t 2 r t t st r q r 2 t st rs t t s t t r st t r r t t r t r t t r t t s P t s s r s t 2 r s r r s ts t r t s r rs 2 s 1 t s t r s t st s r t t t r t s t s r r t r r s r r r s 2 s 2 t 2 s r t t s r s r t r ts 2 P s t t r t r
8 tr t 2 r s r s t t t r t s t 1t s r r s t t st st s st st t t2 t st r st st t r st r t t s t t s s s s t r s r rs s t r s t s rs r t r s t Pr ss r t tt 2 t s s s r s r P è é r t t é t q s tr P r s t s rs r r t s t r tr t st t s t st st t r st r t rst tr t st t t r str t 2 t 2 r r t r P t r s t t tr t r t t t t t rst s r t r r t r t s ss t t t P s t t r str t 2 s s t s t s t t t r s r s t r r t s r r rt t2 s s r s t r r t s t r ts r r t s 2 r tr t r t 2 r t r t t tr 2 r t t r s t s t t r t r t t st rt3 st sq r s r r ss st rt3 r s ts r r s r rs r r t t t r t t r tr t st t r t rt t st t s t s r t r t s r s t t ts st st t t2 st st t r st r t r r s t t s s t t2 t t r s r t rs s r t r t s t r t tr t r s t r 1 s s t r t s t s 2 rs tr t s t t s rs r t t q r tr s rt t t r t s r ts t r s r r 2 r t s r t 2 r t r t r t r t tr t s tt t r t t P 2 r t r t r t r t s q r tr s r t t t t t 2 tt t s r r r s t t s s s r s t r t r ts s t r t t t t s r ss 2 s r ss t r t t r t s
9 s r t2 t r rt2 r t r t s 1 ts t r s t r t s r2 t s r t s tr t t s s r t s r t2 s 2 r s r r r t2 t t s r ts r r rt s t t t s r t 2 ss 1 s r t s t 2 t r tr t s r r t s r st t 1 t r s r r2 st sq r s t r t s r s t 2 r 2 s t s r ts r s s r r ts 23 2 s r t rs t t t r rs2t t3 t t r r r s t 2 r r t s s r r P t s 2 s r t st t 2 t r s r r t rs s t r ts P 2s 2 2s t t t = 0 t r ss r GP r t s tr2 s r s t t t r P t t s 2 st st t ts s t 2 S t st t r t rs t 2 r ss t 2 t t t A t t s t B t s r t rs r t 3 t 2 A 0 = P B 0 = GP t s r t r t t st t da t = A t S t ds t α tot A t dt. r t r α tot s t t s t t s s tr t r t t t s 2 s 2 t s r 2 t r t r t s t r t r s t t t r t s r t r t t 1 r ss s t st t r t r tr t s s t t s s 2 t rs r2 t st rt t tr t t t s t r r t t s t s t t t s 2 r t t st r tr t t 2 r t s r t r s 2 r t rs t s r r s r t t t ts s 2 s t r s t t t s r s s s t t t t r r t s s 1 r t t s ts B t tr t 2 r r s s r r r t ts r rt r st s r s t s ts
10 t t r t t r s s s s s t t t t t t t s r s r s t t rt t2 s r rs s s r t t t s t2 rt t2 M : [0,T] R s t t t r t2 r s r rs t t t [t,t+dt] s q t M(t)dt t st t rs t r t t st P t r s t t t t i 1 t W ti = G t B 2+ t i, r G s st t s 2 t tr t t 2 s r t t r t s r t r 3 2 r t r γ i [0,2] s 2 t P t s rt W ti = γ i G t B 2+ t i rr s t t r t P t st t r t rs A t B t r t γ i t 2 t s rs r t (2+) t st t r t rs r t t r 2 t s rs r t (3+) t r t t r γ i = 0 t t r t s t t t tr t 2 r s ( A 3+ ti,bt 3+ ) ( i,t i = A 2+ ti,bt 2+ ) i (1+b ti ),t i. 0 < γ i 1 t P t r s t r r t t t st r r t t st t r s r ( A 3+ ti,bt 3+ ) ( ( ) ) i,t i = max 0,A 2+ ti W ti,b 2+ ti,t i. γ i ]1,2] t P t r s r t t 1 tt s r s 2 r r t s γ i = 2 rr s s t t t s rr r t r t s A = max ( 0,A 2+ t i G t B 2+ t i ). W ti = G t B 2+ t i +(γ i 1)A (1 κ ti ). r κ ti [0,1] s t2 r t r t tr t t st t r s r ( A 3+ ti,bt 3+ ) ( ( i,t i = max 0,A 2+ ti G t Bt 2+ i (γ i 1)A ),(2 γ i )Bt 2+ ) i,t i = ( (2 γ i )A,(2 γ i )B 2+ t i,t i ). s s r r ts 23 2 s r t rs t t t r t rs2t t t r r r r t s s r r P t s 2 s r t st t 2 t r s r r t rs s t r ts t r r s r rt s t t t t s tr s t r s 2 s r t st t t r t s rr r r ts rs2t 1 t r s 2 r s r 23 t rs s t s t r ts t s s t t r s t s tr ts
11 1 t t t = 0 t st r 2s t r P t t s r 2 r P s st st t s s S t r t t tr t t2 s s s t t t r 1 sts s t s r t t s {t i,i = 1,...N} s t s t t s t t s ts t st r t r s t s s s t i = t i+1 t i st t t s t t 2 t t tr ts t t s r t r s t2 t t s s t s t 2 t t t tr t t A t t t s s q t t 2 t 1 t s( ) t t r t rs st t r t t r t 1 t s (+) t t s r t rs t r t t t s s t t t tr ts st t r t rs t 2 r t A t,a 0 = P s t B t,b 0 = P t t s r s r t 3 2 t t t t r T 1 = 0 t t t tr t T 2 = t N t t t st ss t r s 2 t rst t r t s t 1 = 1 y r t 1 = 0.5 y t t t t i t P t r s s W i [ 0,Bt ] i r t2 t P s t 2s r s t t t r W i 1 s t r t t t2 s s t 2 r 2 t st r s { W i W i G f (W i ) = W i κ(w i G) W i > G, t st t r s r ( A + ti,b + t i,t i ) = ( max ( A ti W i ),B ti W i,t i ). t t T = t 2 t st t r s t s t P s 2 q t FP = max(a T2,(1 κ)b T2 ). 2 st t r t rs r t A t A 0 = P r t t r G st t r A t s t 2 q t t r G s t t t T 1 2 ts t t t T 1 + t t T 2 tr t t s t2 r ts s t ss r2 t t s t s ts s st t q t t r P t t tr t
12 1 s s 2 t tr t s ts r t r t r i r t rr r [0,T 1 ] t t T 1 T 1 > 0 t t s r s t t G s s t ] A + T 1 = max [P (1+i) T 1,A, G = T1 A + T 1 m(t 2 T 1 ). r t s t2 r t t P t r s t t tr t t s t t r t G r t r t t tr t t st t r t rs s t ( A + ti,g +,t i ) = ( max ( 0,A + ti G ),G,t i ). t s t 2 r t P 2 t r t t tr t r 2 t s s 2 t t 2 q t st st s r t S FP = G+(1 κ)max ( 0,A t G ). r t t s r t st t S t t tr t st st s t st rt t s r st st t t2 ts 2 s s { ds t = rs t dt+ v t S t dz S t S 0 = S 0, dv t = k(θ v t )dt+ω v t dzt v v 0 = v 0, r Z S Z v r r t s d Zt S,Zt v = ρdt s ρ = 1 ρ2 s t t s t st rt t s s t s r t st st t r st r t r ss 2 s t r 2 t r st r t s ds t = r t S t dt+σs t dzt S S 0 = S 0, dx t = kx t dt+dzt r X 0 = 0, r t = ωx t +β(t), r Z S Z r r r t s d Z S t,z r t = ρdt s ρ = 1 ρ2 Pr t s r t s t t s r r t t r t s t P t s t s t s r 2 r s t 2 tr s s t s r tr s P r r s t s r2 t s r t s t s rt s r s t tr s s
13 1 r tr s t t r t2 t r ts st t ss tr s r s t r r t s t t s r t 3 t st st t t2 t st st t r st r t t r r tr q r tr s t t t 1 t 2 t rst t r ts t ss t r ss s t t s s t s 1 s t t r r r t str t t tr s 2 r t r t s t s tr 2 r t s t s tr t r r t t t2 r s t 2 t t r st r t s s r t r str t r t t tr s t r t s t r s r t r ss v (r s r X) s r r t r 1 t t t t2 r s t t r st r t r t st t N N (0,1) B B(0.5) t r ss S t+ t t t s t s t r 2 s 2 S t+ t = S t exp[ (r ρ σ kθ) t+ ( ρ σ k 1 2 (r S t exp[ ρ σ kθ) t+ ( ρ σ k 1 2 ) ( v t+ t+ v t 2 ) ( v t+ t+ v t 2 r t s t S t+ t = S t exp[( rt+ t + r t 2 t r t r t ) t+ ρ σ ( v t+ t v t )+ ] (1 ρ 2 ) t v t N ) t+ ρ σ ( v t+ t v t )+ ] (1 ρ 2 ) t v t+ t N ) σ2 ( t+σ( Xt+ t + 2 X t (k t 1) ) ρ+ t ρn) ]. B = 0, B = 1. t r t r t s s t st t s t r t s r s t t s t t s r t s t st t r r t s t r r r s 2 s r t s t r r t 1 t s r t 3 t s r s t str s 2 r P t s t s r s t r t s s tr t r r t t t2 t t r st r t r P t t t t r s s t t tr s s t r t rr t t t t t2 r t t r st r t t r 2 t tr s r t s r q r r t st s t Y E t = ln(s t ) ρ ω v t, Y E 0 = ln(s 0 ) ρ ω v 0. ( dyt E = r v t 2 ρ ) ω k(θ v t) dt+ ρ v t d Z t S.
14 1 Y E r ss s s 2 s t s t rr t t t r ss v r 3 t v t t s t P t t s t s 2 t tr r 2 t s t Y U t = ln(s t ) ρσx t, Y U 0 = ln(s 0 ), t t r s ) dyt U = (r t σ2 2 +σρkx t dt+σ ρd Z t S. Y U r ss s s 2 s t s t rr t t t r ss X r 3 t X r t t s t P t t s t s 2 t tr t t r t s t P s r t t s s 2 V He t + ρ2 v ( 2 VHe EE + r v 2 ρ ) ω k(θ v) α tot VE He rv He +α m R(t)exp (E t + ω v ρ ) = 0, Vt HW + ρ2 σ 2 ) 2 VHW UU + ( r σ2 2 +σρk X α tot VU HW rv HW +α m R(t)exp ( U t +ρσ X ) = 0. 2 r P t s r t r2 r t t r s r t r s t2 st t2 r s ts s r P t t s t tr t s 2 P r s t s r P s t t t s s 2 s t rs t r t t t st t t V r s t P V t + vs2 2 V 2 S 2 + ω2 v 2 V 2 v 2 +rs V S +ρωsv 2 V V +k(θ v) S v v t s t V t + σ2 S 2 2 V 2 S 2 + ω2 2 V 2 r 2 +rs V S +ρωsσ 2 V V +k(θ r) S r r rv = 0, rv = 0. t s q t s s s t s t t s s t t s r t 3 t r (S, v) r s t 2 (S, r) t 2 r t r 1 t 2 t t t r rt r r r t s s t s s t θ = 1/2
15 1 s ts t r r t s t s t t t r t r t r α tot r s r t sts s r t r t s t r ts t 2 1 t t t t r t s r t 1 t r t r t q t2 t r s ts t 2 t r t t s r t s t st t s t r s ts r r2 t t s t s t r s st t t 2 r r t r s r t r s s r t r r t t 2 s t r t s s r r t r st sq r s r r ss t t2 r 1 t r t 2 t t V t s s s t t t t s t 2 t r t s r r t t s t t t P t s t t r str t 2 t 2 t t s s t 2 t s tt r r r t r st t t r ss r s t t r rt r t 2 r P t r r t st r s ts r s ts t s r r t sts r r s t t t s s t 2 r t 2 r s t t t t t r r t s s s r 3 s s t r r s ts t r t s t r r s P 2 2 r t s 2 s t s t s t r t s r r s t t r r s ts t r t s r ts t r t t2 s t r ts str t r s t r t s t s t r r t st r t s t 2 r t t t r s r t r t st t s t s t st t rs t s s r t r s r t r ts r t t t 2 s r s r Pr t tt r r s r r s s st s ts r r2 t s t P è r s r r t s t t s t
16 1
17 t r r t s s r t s t r s r t r t s t t r t s t r r r t s r s t s t r t t2 t r r s P 2 2 r t s r s t s t r s t t r r s s r t t t s t r 2 tr t ts t t s t t r s r tt r r r t r st r t t r r r s r r t t r s t r s t s r st t t r t s s rt s s r 2 t r t s r 1t s 2 s st t t s t t r t s r s t t s s t t s rt s t r s r t rs t t r s s r ts t s s r t r t t r t s t r2 1 t ˆ I = f (x)dx [0,1] d r f ( ) s r t r r s t I s E[f (U)] r U s r 2 str t r r [0,1] d 2 t tr r rs (U i,i 1) s 2 r 2 str t s t r r s [0,1] d t t r S N = 1 N N f (U i ) i=1 r s t E[f (U)] st s r 2 N t s t t2 s s sts r2 s r t t r 1 t I r r r t r N t s t t r
18 r t s s r s r t t t t r s r 2 t r t [0,1] d f s t ss r 2 s t t r r t t 2 s t t t r t t ts r t r t t r t s r t t t r st r t s tr t r r s t s2 t t str t N (S N I) r N t s t + r s r ts t tr t r s s rr2 ss s r s r s2 t t st t s r ( s r t s s t t t r r t t r t s r t r s 1/ ) N r r t r 1 t rr r s r 2 t r s N s r r t r t2 s t t s t 0 N t s t t2 rt ss t t r t s r s r t s 2 t s t t r t s r st s r t r 2 r [0,1] d t r d = 40 t s r t t t q r t r t s r q r t 2 ts t r t s t s s t s t r q r s t s t t r t rs (X 1,...,X d ) s r t s r t t t r t t t r t s s t r r t r r ss r r t r ss t t s r tr s r 3 t r s ss r st r t s r s s t t s r t t r st t s r t s 2 t s t st t s s r2 r s 2 t r 1 t rr r s r t r t r s s t t s s s t s st t st t t r r t t r t s t s t r s t r s ts st 2 t s t r t s t s t r r t r s t s N t r t t r s t s r r 2 t t r t r 2 r tr r rs t (X i,i 1) s q t t 2 str t r r s s t t E[ X 1 ] < + 1 lim n + n (X 1 + +X n ) = E[X 1 ] a.s. r r r s X 1 s t t r r r t tr r rs s t 2 X 1 s 2 str t t t s ts s t2 s 1 π(1+x 2 ) r r t s st t s t rr r ǫ n = E[X] 1 n (X 1 + +X n ). tr t r r s s t s2 t t str t Nǫ N
19 t r t s r tr t r t (X i,i 1) s q t t 2 str t r r s s t t E [ X1] 2 < + t σ 2 t t r X1 t t s [ σ 2 = E (X 1 E[X 1 ]) 2] = E [ X1] 2 E[X1 ] 2. ( ) n σ ǫ n r s str t t G r G s ss r r t 0 r 1 r r t s t r t s t t r c 1 < c 2 ( σ lim P n + n c 1 ǫ n σ ) ˆ c2 c 2 = n c 1 e x 2 2 dx 2π. r t 2 t r 1 t r r n r t ǫ n s ss r r t 0 r σ 2 /n t t t t s ss t t rr r s t s rt 2 r t ss r r s R rt ss t r r s s t t r r st s r t t P ( G 1.96) r r t r t2 s t 0.95 r s r t ǫ n 1.96 σ n t st t t r r s r s t s s t t t s r t st t t st r t σ t r r ts s2 t t s 2 s t s s s s r t 1 t t t X r r (X 1,...,X n ) s r t X t 2 X N t t r st t r E[X] 2 X N = 1 N st r st t r r t r s 2 N X i. i=1 σ 2 N = 1 N 1 N i=1 ( Xi X ) 2 N t s 1 r ss s t t r r t s t t t σ N 2 r r tt s ( ) σ N 2 = N 1 N ( ) X 2 N 1 N i X 2 N. i=1
20 r t s s r t s st r t s s t t X N σ N t s 2 N i=1 X i N i=1 X2 i r r r t t E [ X 2] < + t lim N + σ N 2 = σ2 st s r 2 t t E [ σ N] 2 = σ 2 t st t r s s s s t r 1 t t r 2 r σ 2 σ N t st r t r t r t2 r t 0.95 E[X] s t t r t r 2 [ X N 1.96 σ N, X N σ ] N. N N t r2 tt t t t s 2 t t σ N s r 2 r r s st t t rr r 2 r 1 t E[X] t X N ss t2 t rr r st t t s r st s r2 s t r t r t s t t s ss s t s t s t s rt tr t t s t s s r s t t 1 st t s r s t r t s r r t r t t s r t s r t s t r r s 2 s s tr t r ss r r s ss t rs t t r t s t r s t s r t s r s q s s r rs s st t st r rt s t s s q s t t 2 r 2 str t r r s r r t s r 2 r r t rs s r st r t t tr t t t s r s s t r r s t r r t t r st s q s t r r s r 2 str t [0, 1] t s st t st 2 s t s r r t t s 2 r t r r t rs a b m U 0 t r U 0 s t s t r t r m s t r r t r s t t t t r s r s q s t r t t r U n = (au n 1 +b)( m). r t t s s s t t U 0 t t r r st r s t r r s r t t s r r r t r s sts t 2 t r st r t r t r s s q s st t st 2 s st s q s t t 2 r 2 str t r r s r s t r t r t r s r s t t s r r r t r s st t st 2 t r rt2 s st s t s s r t sts r 1 s s r s ss s t t r t r t s t sq r t st r t r r t st r r t t st t r r s 2 t t 2 t s s t t t s r s ts r t r 2 str t r r s
21 t r t s r t r s s r t st s r t t t 2 t s s r a b m r t t ss st r ss r R s t t t s t2 2 ) 1 exp ( x2. 2π 2 st 2 s s t t ss s t 1 r t s t s s t r s t Pr s t t U V t t r r s r r 2 str t [0,1] t X Y 2 X = 2ln(U)sin(2πV), Y = 2ln(U)cos(2πV). X Y r t t ss r r s t r rs t t s t s t N t r 3 t s t s r ss s t t t rst r 3 t s s r r 2 r r r t r t 2 t X Y s t r t r s t t r t s t t t rr s t s X Y r s t r 3 t s r t t 2 t t t rst r 3 t s s t ss t r s t ss t r X = (X 1,...,X d) t 3 r t d d r tr 1 C = (c i,j ) 1 i,j n t c i,j = E [ X i X j] t s ss t r s s [ tr 1 C s r tr 1 s t s s t s r v R d v.cv = E (v.x) 2] 0 t r r s ts r r r t t t r 1 sts d d tr 1 A sq r r t C s t t AA = C, r A s t tr s s tr 1 A = (a i,j,1 i,j n) r r t sq r r t s t s2 tr tr 1 2 s 2 t t a ij = 0 r i < j A s r tr r tr 1 r t s 2 t s s ts s2 t s t t A s q 2 t r 2 t r t
22 r t s s r r t s 2 r s i r 2 t d r j < i d r 1 < i < j r 2 i d a 11 = c 11 a i1 = c i1 a 11. i 1 a ii = cii a ij 2, j=1 a ij = c ij j 1 k=1 a ika jk a jj, a ij = 0. s 2 t sq r r t s t s2 tr tr 1 s s t s 2 r t ss t t G = ( G 1,...,G d) s t r t ss r r s t r r s2 t s s r 2 s t t Y = AG s ss t r t 0 t r tr 1 2 AA = C s X Y r t ss t rs t t s r tr 1 t X Y r t s s s t t s t r t r t ss t r r t t t t r ( G 1,...,G d) t ss r s s 1 r t r t t r X = AG r r t t t t t r t s t r s ts t r t r s t t t r t σ/ N r s t r 2 t r t t N s t s s s q t s t s t t 2s s t r st t r r t t q t t2 t t s t 1 t t r r s s r r t s s t s r r t t q s s t t t r t s s s r t r s t s t q s t t t ts s r ss r t t t rs 2 s r s str t 1 t I = ˆ 1 0 g(x)dx. U s r t t r [0,1] t 1 U s t s s U t s I = 1 ˆ 1 [ ] 1 (g(x)+g(1 x))dx = E 2 2 (g(u)+g(1 U)). 0
23 t r t s r r r n t r r s U 1,...,U n r [0,1] r 1 t I 2 I 2n = 1 2n (g(u 1)+g(1 U 1 )+ +g(u n )+g(1 U n )). t r t 2 t s t r t t t st r t 2n r s I2n 0 = 1 2n (g(u 1)+g(U 2 )+ +g(u 2n 1 )+g(u 2n )). r t r s I 2n I2n 0 s r t t t s ss t t st r r r s t t f t t t t t s t t r r s s s s t r st ss t s2 t t s s t t t r t st r st t r s r ( I2n 0 ) 1 = 2n r(g(u 1)), r s r(i 2n ) = 1 ( ) 1 n r 2 (g(u 1) g(1 U 1 )) = 1 4n ( r(g(u 1)+ r(g(1 U 1 ))+2 (g(u 1 ),g(1 U 1 )))) = 1 2n ( r(g(u 1))+ (g(u 1 ),g(1 U 1 ))). r(i 2n ) r ( I 0 2n) 2 (g(u1 ),g(1 U 1 )) 0 r t t f s t t t s s 2s tr t s t t r t s t t t r t s s tt r t t st r s s r 3 s r t r t s s t tr s r t (U 1,...,U d ) (1 U 1,...,1 U d ). r r 2 X s r r t ts s R d T s tr s r t R d s t t t T (X) s t s s t X str t t t t t s t q t2 E[g(X)] = 1 E[g(X)+g(T (X))]. 2 2 (X 1,...,X n ) r t s t X s r t st t r I 2n = 1 2n (g(x 1)+g(T(X 1 )+ +g(x n )+g(t (X n ))) r t t I 0 2n = 1 2n (g(x 1)+g(X 2 )+ +g(x 2n 1 )+g(x 2n )). s t t s s r r t t t st t r I 2n s tt r t t r 2 (g(x),g(t (X))) 0
24 r t s s r t st r t q t s 1 st q ss t s t T > 0 1 t r t t r t2 r 1 t s s r r t2 s (Ω,A,P) r t tr t (F t ) t 0 n s F t r t t t s W t = ( Wt 1,...,Wt d ) s s r Y : Ω R n r r r F 0 s r t t s σ : [0,T] R n R n d b : [0,T] R n R n r tt t s s t st st r t q t { dx t = σ(t,x t )dw t +b(t,x t )dt = Y X 0 t s t s t t F t t t s R n r ss (X t ) t [0,T] s t t T 0 b(s,x s) + σ(s,x s ) 2 ds < + s t [0,T],X t = Y + t 0 σ(s,x s)dw s + t 0 b(s,x s)ds r s t 1 st q ss r t s s t st st rs t 2 s t3 t r r t s 2 s r 2 t s s r tô s s t t { x R n, σ(t,x) + b(t,x) K(1+ x ) ( ) K > 0, t [0,T], x R n, σ(t,x) σ(t,y) + b(t,x) b(t,y) K x y. t s 2 s t (X t ) t [0,T] X t s t r s t [ t t [0,T],X t = X t s r r E Y 2] < + t E [ ] sup X t 2 C t T r C s st t t t s t r Y ( 1+E [ Y 2]) r t t r t2 T str K r t r 2 X s 2 C = E [ e rt (X T K) +] t s s r r s t2 t s s 2 t r r 1 t s t s t r 2 ) (r σ2 X t = X 0 e σw T+ T 2 t st t C 2 t t r t t t 1 t2 r s s tt t r 1 st st t t2 t s s t r rt s t st t t r t s r t 3 t t s s 2 t s t r r X T r 1 t X T t r t s sts t r 1 t C 2 1 M M e rt ( Xi T K ) + i=1
25 t r t s r t X T i r s r rr r r t r s t r tt s s t t r s s r t 3 t rr r st t st rr r C 1 M M i=1 e rt ( Xi T K ) + [ = E e rt (X T K) +] [ E e rt ( XT K ) ] + + [ +E e rt ( XT K ) ] + 1 M M e rt ( Xi T K ) +. r st t st rr r t r s st s r t tr t t r s E[ ((XT K) +) 2 ] < + s M s r r t s t r s s r G N 1 (0,1) r t e rt ( ( r XT K ) ) + G M t s s r rt t t t [0,T] N s s s N 1 q s ts (0,T) r k {0,...,N} t k = kt N t s s ts t s t q t T/N s r t dx t = σ(t,x t )dw t +b(t,x t )dt, X 0 = y R n. r t s s t s r t 3 t { X0 = y X tk+1 = X tk +σ ( t k, X tk )( Wtk+1 W tk ) +b ( tk, X tk ) (tk+1 t k ). 1 t t s t t r t t t t s t t t 1t t st t t t s s t s t t r ts ( W tk+1 W tk ) i=1 0 k N 1 t t r ss N d ( 0, T N I d) r Id s t d s 3 t t2 tr 1 r s t t r s ts t r t s s t tr t t rs t r t 2 X t = X tk +σ ( t k, X tk ) (Wt W tk )+b ( t k, X tk ) (t tk ), 0 k N 1, t [t k,t k+1 ]. r s t t t r s s s t r st r s ts t t r t r t tr r t t s t ts b σ r 1 t t r t t t st t tr s r r t2 2 t s s r t s t s
26 r t s s r r tr r t t s s s t t t t σ, b r 2 t 2 t s s s t r t s s s s t t α,k > 0, x R n, (s,t) [0,T], σ(t,s) σ(s,x) + b(t,x) b(s,x) K(1+ x )(t s) α. r β = min(α,1/2) p 1, C p > 0, y R n, N N,E r r γ < β N γ sup t T Xt X N t [ sup t T X t X t N ] ( 2p C p 1+ y 2p) N 2βp. r s st s r 2 t 0 s N s t t2 s sup X t X N t ( [ 2p = E sup t T X t X t N ]) 1 2p 2p C N β s 2 t t t str r t t r t s 1 N β P rt r 2 t ts t t t r α 1 2 t str r t s 1 2 r t t f s t3 t t s t3 st t K t s s s t t t E[f (X T )] t r s r s t t E [ f (X T ) E ( f ( XN T ))] C N β. rst q t2 s sts r t s t t r t 1 t s 2 t 1 t t s t s t r t s s r2 r t 2 r s t E [ f ( XN T )] s s t E[f (XT )] t s s q t t r 2 t X N T s s t t X T s t r t r t t r s r str t s s t 2s s r s t sts t s s t t f tr r t s 2 s t r t r s t s rst r 2 2 r r r t t b σ t t s C r [0,T] R n t r t s t t f : R n R C t r t s 2 r t a = (a 1,...,a n ) N n, p,c > 0, x R n, a 1+ +a n f x a (x) 1 C(1+ x p ) xan n t r 1 sts s q (C l ) l 1 r rs s t t r L N t rr r s E [ f ( )] XN T E[f (XT )] = C 1 N + C 2 N C ( ) L 1 N L +O N L+1
27 t r t s rt r t s s t t [ ( )] E f XN T E[f (XT )] C N r s s t str r t r s ts r E [ f ( XN T )] E[f (XT )] C N. t t 2 t s s r s t α = 1 st rt3 r t r r t r t t r t r s s r s 2 s r r 2 ss ts r t t r t s s t st r ss s s t s r s ss t t r t q t2 r r s s ss P t s r t r s t rs tr r t s s t r t q s st rt t s t r t t t r 1 r s t s 2 t s s ts s ts t r 1 t t r t 2 s r t s t t rr s s r t t st r r s t t t t t 2 r r r t 1 t t s t t r t s 2 r r s t t2 r t t t r t q s 2 tr t t s r s t s st sq r s r r ss t s t t s s r 12 r t 1 t t s s t t s 2 st rt3 s r t t r t s t t tr t t rst st r st r 1 t t s s t r t r t st r t s t 2 t st r s r t t r r r s t t st rt3 r t t t 1t s r t t st s r r st s (Ω,A,P) q t s r t tr t (F j ) j=0,...,l r t s t t r L t s t s r t t r 3 t 2 (Z j ) j=0,...,l r ss r Z 0,Z 1,...,Z L r sq r t r r r s r t r st t sup E[Z τ ], τ T 0,L r T j,l t s t s t st t s t s {j,...,l} ss t st t r2 r r r t t r tr t (U j ) j=0,...,l t 2 r ss (Z j ) j=0,...,l 2 U j = ss s τ Tj,L E[Z τ F j ], j = 0,...,L. 2 r r r r tt s s { U L = Z L = max(z j,e[u j+1 F j ]), 0 j L 1. U j
28 r t s s r s U j = E [ Z τj F j ] t τ j = min{k j U k = Z k }. rt r E[U 0 ] = sup τ T0,L E[Z τ ] = E[Z τ0 ] 2 r r r r tt t r s t st t s τ j s s { τl = L τ j = j1 {Zj E[Z τj+1 F j]} +τ j+11 {Zj <E[Z τj+1 F j]}, j L 1. s r t t r s st r s r t r t t r s t s 2s ss t r t st rt3 t t s r q r s t t t r 2 r r r ss t t t r s (F j ) r (X j ) j=0,...,l t st t s (E,E) s t t r j = 0,...,L Z j = f (j,x j ), r s r t f (j, ) t U j = V (j,x j ) r s t V (j, ) E [ Z τj+1 F j ] = E [ Zτj+1 X j ]. s ss t t t t st t X0 = x s t r st s t t U 0 s s t r st rst st t st rt3 r t s t r 1 t t t 1 t t t r s t t X j 2 t rt r t t s r t 2 t r t s X j t s s r s q (e k (x)) k 1 s r r t s E s t s 2 t t s ss t r j = 0 t j = L 1 t s q (e k (X j )) k 1 s t t L 2 (σ(x j )) ss t r j = 0 t j = L 1 m 1 m k=1 λ ke k (X j ) = 0 s t λ k = 0 r k = 1 t m r j = 1 t L 1 t 2 Pj m t rt r t r L 2 (Ω) t t t r s r t 2 {e 1 (X j ),...,e m (X j )} tr t st t s τ [m] j τ [m] = L j τ [m] j = j1 { Z j P m j ( )} +τ [m] j+1 1{ Z [m] Z j <P τ j m j+1 ( Z τ [m] j+1 )},j L 1. r t s st t s t r 1 t t t ( [ ]) U0 m = max Z 0,E. Z τ [m] 1 t t Z 0 [ = f (0,x) ] s t r st s st t r t s t t t r 2 E Z [m] τ 2 t r r r ss t t s t N ( 1 ) ( ) ( ) t t s X (1) j, X (2) j,..., X (N) j t r (X j ) t 2 Z (n) j
29 t r t s t ss t 2 r j = 0 t L n = 1 t N ( ) st t r rs 2 t st t s 2 τ n,m,n L τ n,m,n L = L = j1 { Z (n) j α (m,n) j e m ( X (n) j τ [m] j ( ( Z (n) j = f j,x (n) j )} +τ n,m,n j+1 1 { Z (n) j <α (m,n) j e m ( X (n) j )) r t n )},j L 1. r x y t s t s r r t R m e m s t t r t (e 1,...,e m ) α (m,n) j s t st sq r st t r α (m,n) j = arg min r t t r j = 1 t L 1 α (m,n) j r 1 t r U0 m N a R m n=1 U m,n 0 = max ( Z (n) τ n,m,n j+1 a e m( ) ) X (n) 2 j. R m 2 r t r s τ n,m,n j r t ( Z 0, 1 N N n=1 Z (n) τ n,m,n 1 t t rs r t t r 2 1 m U m,n 0 r s st s r 2 t U m 0 s N s t t2 t t U m 0 r s t U 0 s m s t t2 ). t t st t s t s r t st r t t t 2 s t r r t r s t s r t st t s s t r r r s s st s t st s s t s r t t t t t2 r 2 ss t t r 2 ss t ts r r t 1 t t t r rt ts 2 s { ds t = rs t dt+ v t S t dzt S S 0 = S 0, dv t = k(θ v t )dt+ω v t dzt v v 0 = v 0, r Z S Z v r r t s d Zt S,Zt v = ρdt s s t r r r s s s r r s ts s t r r r s s r t 1 rs ss r ss t t 2 r str t ts r t rs t t s t t s r r rs str t t t t s r r s s t t 1t s t tr
30 r t s s r 2 2 t r t s t r s ts t s s t r s s r r s r r r s s t 1 s r t str t t r t s s s st s r t s r st t s t2 s r t 3 t r ss s t 0 r t sq r r t s t s t3 s s s s s t r s r t s t s r r t 2 t t s r t sq r r t s t s t r r t 2 t r t r t s s ss r t r t s t s 2 ts t2 t s rt r s σ r ω 2 4k s r s t r t s s s t r r s t t s rt t r st r t 2 r st t s r t st s r t t t s t2 r t r s r t st t t2 t st r st 2 t r r s ω t r t r ss s s t t r 0 r t sq r r t s r2 s s t s s t t 2 2 st t s s t r t r r ω t t t t r s t r r r t r s t t s ss t s t t t s s r d W s st r r t (W t,t 0) t t s q (F t ) t 0 ts t ss t tr t t t s t s s t s t s t d N D R d t t ss r s s t2 t r t d t r s 2 2 s r D = R d 1 + Rd 2 t d 1 +d 2 = d r 2 t 1 α = (α 1,...,α d ) N d α = α α d α = d l=1 α l tr t t s d } C {f (D) = C (D,R), α N d, C α > 0,e α N, x D, α f (x) C α (1+ x eα ) r s r R d s 2 t t (C α,e α ) α N d s s q r f C (D) s x D, α f (x) C α (1+ x eα ) t ss t s ss t s ss t t b : D R d σ : D M d dw (R) r s t t r 1 i,j d t t s x D b i (x) x D (σσ ) i,j (x) r C (D) r x D tr t r R d t 0,X x t = x+ ˆ t 0 b(x x s)ds+ ˆ t 0 σ(x x s)dw s. ss t t r 2 x D t r s q s t r t 0 t r r P ( t 0,X x t D) = 1. r t r t r ss t t t s 2 f C 2 (D,R),Lf (x) = d b i (x) i f (x)+ 1 2 i=1 d d d W i=1 j=1 k=1 σ i,k (x)σ j,k (x) i j f (x).
31 t r t s f C (D) t s t t r r t2 ss t s b σ t t r t t s L k f (x) r D t C (D) r 2 k N t s 2 r s rt t t t r t r L s t s s t r q r ss t s D t s 2 r s t s b(x) σ(x) s t s s ss t s t s t r t s r t 3 t s s r t t s 1 t r 3 T > 0 s r t t t t t r [0,T] t r r t s r t 3 t t n i = it/n r i = 0,...n t 2 tr s t r t s (ˆp x (t)(dz),t > 0,x D) D s s t t ˆp x (t) s r t2 D r t > 0 x D ( s r t 3 t s ) s t tr s t r t s(ˆp x (t)(dz),t > 0,x D) s s q ˆXn t n,0 i n D r r s s t t i r 0 i n ˆXn t n i s F t n i s r r r D [ ( ) ] t ˆXn t n s 2 E f ˆXn i+1 t n F t n i+1 i = D f (z) ˆp ˆXn t n i s ˆX t n n T/n i (T/n)(dz) t s 2 r t r t > 0 x D ˆXx t r r str t r t t r t2 ˆp x (t)(dz) s r t 3 t s ˆX t n n 0 i n i s t s t r 2 t r 2 ts t ts tr s t r t s t ν t r r s t s t CK (D,R) t s t ( C r ) t s t t s rt D t x D s r t 3 t s ˆXn t n,0 i n i s ν t r r s r t ( Xt X,t [0,T] ) [ ( )] f CK (D,R), K > 0, E[f (XT)] E x f ˆXn T K/n ν. ( )] q t t2 E[f (XT [f x)] E ˆXn T s t rr r ss t t f t r r r s r s t t s s s r ts r rt s s rst r t t r ss s { dxt x = (a kxt x )dt+σ Xt xdw t = x X x 0 t r t rs (a,k,σ) R + R R + r r t t t s t r ss r r x > 0 2a σ 2 t r ss (X t,t 0) s 2s s t 1 t
32 r t s s r tr s σ = 0 ss σ > 0 s r ss s d W = 1 D = R + tr ts r t r f C 2 (R +,R), L CIR f (x) = (a kx) x f (x)+ 1 2 σ2 x 2 xf (x) t t s t s s t r q r ss t s D t q t t s ψ k (t) = 1 e kt, ψ 0 (t) = t k K 3 (t) = ψ k (t)1 {4a/3<σ σ 2 2 <4a} 4 a+ σ a σ σ ψ k (t)1 {4a<σ σ2 2 } 4 a σ σ a+ σ σ +ψ k (t)1 {σ 2 4a/3} a σ 2 /4 2 [ t Y r s r t r s t t P Y = 3+ ] [ 6 = P Y = 3+ ] 6 = [ P Y = 3 ] [ 6 = P Y = 3 ] 6 = s r s s 6 s t ts t rst s rst ts st r ss r s r t t r s r t 3 t s s X CIR 0 (t,x) = xe kt + ( a σ 2 /4 ) ψ k (t), ( ( x+ X1 CIR σ ) ) + 2 (t,x) = 2 t X(t,x) = x+t σ 2 a σ2 4 rst t r t r r t 2 2 t r s t r s t r s t s r r s X CIR 0 ( ( t/2,x CIR 1 N,X CIR 0 (t/2,x) )) = ( ( ) ( = e kt 2 a σ2 t ψ 4 2 ) +xe kt 2 + wσ 2 ) 2 ) +( a σ2 ψ 4 ( ) t, N N (0,1) 2 st t t s r t s st rt t x t t r r r 3 r
33 t r t s Pr s t t ε ζ r s t 2 r r { 1,1} {1,2,3}, Y s t 2 r t t r s t r σ 2 4a r s σ 2 > 4a t s X ( ( ( ))) ( ( εt,x0 CIR t,x CIR 1 ty,x resp. X( εt,x CIR 1 ty,x CIR 0 (t,x) ))) ζ = 1, ( ˆX x,k=0 t = X0 CIR t, X ( ( )) ) ( ( ty, εt,x1 CIR ty,x resp. X1 CIR X( εt,x CIR 0 (t,x) ))) ζ = 2, ( ( ty, )) ( ( ty,x ( X CIR t,x1 CIR X(εt,x) resp. X1 CIR CIR 0 t, X(εt,x) ))) ζ = 3, 0 s t r t 0 x K 3 (t)t/ψ k (t) r x K 3 (t) t s ˆX t x kt = e ˆXx,k=0 ψ k (t) s t t t r r r s x [0,K 3 (t)] r 1 t t t s r t r r t t t s t t r rst ts t r 1 t t r 0 t t2 r r t ts t [ µ x 1,t = E µ x 2,t = E (Xt x ) 1] = xe kt +aψ k (t) [ (Xt x ) 2] = ( µ x 2 1,t) +σ 2 ψ k (t) [ µ x 3,t = E (Xt x ) 3] = µ x 1,tµ x 2,t +σ 2 ψ k (t) [aψ k (t)/2+xe kt] [ 2x 2 e 2kt +ψ k (t) s = µx 3,t µx 1,t µx 2,t ) 2, p = µ x 2,t (µ µx 1,t µx 3,t ( µ x ) 2 2,t ) 2 x 1,t µ x 2,t (µ x 1,t x ± (t,x) = s± s 2 4p, π(t,x) = µx 1,t x (t,x) 2 x + (t,x) x (t,x) Pr s t t U U ([0,1]) s r t s ˆX x t = x + (t,x)1 {U π(t,x)} +x (t,x)1 {U>π(t,x)}. s s s s t t t t r r r s x [0,K 3 (t)] t t t ) ( (a+ σ2 3xe kt +aψ k (t)) ] 2 r s s t r r r s t K 3 (t) s ˆXx t t s Pr s t r s Pr s t r x K 3 (t) r s x < K 3 (t) ˆp x (t)(dz) t ˆXx t ( ˆp x (t)(dz) ) s t t t r r r s r L CIR R + r r t s ˆXn t n,0 i n ss t t t tr s t r t s 0 (ˆp x (t)(dz),t > 0) st rt r ˆX t n n = x R + s t r r r s 0 [ ( )] f C (R +), K > 0, n N, E[f (XT)] E x f ˆXn T K/n 3
34 r t s s r t s r t st t s rt r t 2 t s t r ss t t st s r s r 2 s 2 2 t r t t r r s t t t r s s t r r r s r t t t r str t ts r t rs s s r t s tt t st t t s t s r t 2 r s r t 3 t rst r r t t st s s s t t t W Z t t r t s t s r t 3 t X 1 t X 2 t X 3 t X 4 t = X0 1 + t 0 t = 0 X1 sds ( a kx 1 s ) ds+σ t 0 X 1 s dw s = X0 3 + t 0 sds+ rx3 t 0 X 1 s Xs 3 t = 0 X3 sds (ρdw s + 1 ρ 2 dz s ) t X0 1 0 X3 0 > 0 r R ρ [ 1,1] (a,k,σ) R + R R + r ss s X 1 X 3 r r s t 2 t t t2 r ss t st r ss X 2 X 4 t r r s t t r s r t t s t ss r r r > 0 k > 0 ρ 0 t t s ss t s r t r q r r t s rst t s 2 t t t r s t t t t r2 t r s t r s r t st t t t r2 s t t t r t s r t 3 t s s r 2 ts t s r t 3 t s s s s t st r t r s 2 t t t s r 2 ts t ss t t t s r 2 ts s t r t b(x) t t t2 t σ(x) s r r t t st t s t σ(x) s t s r r t t s r t t t ts 1 t t r r t r r s s r s t s t t t r r s st t t rr r t t st r t s t ss t 2 t r s ts st t t r s t t t st r rs str t t r r r s s 2 t 2 s t r s r r r r 2 t r t 2 t r s ts t r s t r r s r s s t t r t r t L = L W +L Z r t t r t rs r ss t t t r s t s dxt 1 = ( a kx 1 ) t dst+σ X 1 t dw t dxt 1 = 0 dxt 2 = Xtdt 1 dxt 3 = rxtdt+ dxt 2 = 0 3 Xt 1 X3 tρdw t dxt 3 = (1 ρ 2 )Xt 1 = Xtds 3 X3 t dz st dxt 4 = 0. dx 4 t r t s t tr t t r s s s2 t t r t 1 t 2 r t rst s t t r r r s s r t s r r s r t 3 Xt 2 s t tr 3 r s r t t X 3 t r t 1 t 2 t t r ts X 1 X 2 [ ( Xt 3 = X0 3 exp r ρ ) [ ρ σ a t+ σ k 1 ] (X 2 t X 2 ) ρ ( 0 + X 1 2 σ t X0 1 ) ],
35 t r t s t X0(x) : x x+ ( a σ 2 /4 ) ψ k (t) t X1(x) : ( ( x+σ ) ) + 2 x ψ k (t)y/2 t Xt(x) : x x+ σ 2 a σ 2 /4 εψ k (t) t CIR3(x) : (x K 3 (t)){ if (ζ = 1) { if ( σ 2 4a ) {X1(x)X0(x)Xt(x)}else{X0(x)X1(x)Xt(x)} } if (ζ = 2) { if ( σ 2 4a ) {X1(x)Xt(x)X0(x)}else{X0(x)Xt(x)X1(x)} } if (ζ = 3) { if ( σ 2 4a ) {Xt(x)X1(x)X0(x)}else{Xt(x)X0(x)X1(x)} } x xe kt } s { s µ 3 µ 1 µ 2 µ 2 µ 2 1, p µ 1µ 3 µ 2 2, δ = s µ 2 µ 2 4p, π µ 1 (s δ)/2 2 δ 1 (U < π){x (s+δ)/2} s {x (s δ)/2} } r t t t 3 rd r r s t t 1t t st st rt r x t t st r U s s r 2 [0,1] ε,ζ Y s st t t s t s r t t r ts t s r t 3 t st s r t 3 X 4 X 2 s t tr 3 s st r t t rs r r s s s r r t r t r r t 2 t r t t t t s t s r t 3 t t t 1t t st t r s t s t s r t 3 t t ss t t L W r s L Z
36 r t s s r t HW (x 1,x 2,x 3,x 4 ) x 1 x 1 CIR3(x 1 ), x 1 x 1 +x 1 x 2 x 2 +(x x 1 )t x 4 x x 3 t x 3 x 3 exp[(r ρa/σ)t+ρ x 1 /σ +(ρk/σ 0.5)(x x 1 )t] x 4 x x 3 t x 1 x 1 + x 1 t HZ(x 1,x 2,x 3,x 4 ) : (1 ρ ) x 3 x 3 exp( 2 )x 1 tn t Heston(x 1,x 2,x 3,x 4 ) : (B = 1){HZ(x 1,x 2,x 3,x 4 ), HW (x 1,x 2,x 3,x 4 )} s {HW (x 1,x 2,x 3,x 4 ), HZ(x 1,x 2,x 3,x 4 )} r t r t st B r s r r t r N t st r ss r t t s t t s st r 2 st rt t t r st r t s s 2s t s r r s t r s s rt t t t s t 1 st s r s t t t r s s ts s t s r r t 1 t t t r rt t 2 s t { ds t = r t S t dt+σs t dz S t S 0 = S 0, dr t = k(θ t r t )dt+ωdz r t r 0 = r 0, r Z S Z r r r t s d Z S t,z r t = ρdt r ss r s r 3 r st r t r r ss r θ t s t st t t t s t r st t s t 2 t r 2 t r t s t 3 r s s 2 r t s r r r t s s t t r t r s t s t 1 t 2 t r t r s t P M (0,T) t t r t r t t t 0 r t t r t2 T r t st t s r r t r st r t s t 2 f M (0,T) = lnpm (0,T). T t s t t t s rt r t r ss r r tt s r X s st st r ss 2 r t = ωx t +β(t), dx t = kx t dt+dz r t, X 0 = 0,
37 t r t s β(t) s t β(t) = f M (0,t)+ ω2 2k 2 (1 exp( kt))2. t s s r 2 ds t = r t S t dt+σs t dzt S S 0 = S 0, dx t = kx t dt+dzt r X 0 = 0, r t = ωx t +β(t). rt r s s t r t s s ss P M (t,t) = e r 0(T t) f M (0,T) = r 0 1 t s β(t) = r 0 + ω2 2k 2 (1 exp( kt))2, θ t = r 0 + ω2 2k 2 (1 exp( 2kt)). r t s t s s2 t 1 t s r r t r r t r t r t s r t s 1 rst r t t r r t 0 s < t r s X t t s X udu r r t r str t t 2 F s t E[X t F s ] = X s e k(t s) [ˆ t ] E X u du F s = 1 s k X s r[x t F s ] = 1 2k [ˆ t ] r X u du F s s [ ˆ t ] X t, X u du F s s (1 e k(t s)) (1 e 2k(t s)) = 1 k 2 ( t s+ 2 k e k(t s) 1 2k e 2k(t s) 3 2k = 1 2k 2 ( 1 e k(t s)) 2. s r t t [ˆ t ˆ t ] r[x t F s ] = r kx u du+ dzu F r s s s [ˆ t [ˆ t [ˆ t = r kx u du F s ]+ r dzu F r s ]+2 kx u du; s s s [ˆ t [ˆ t ˆ t ] = k 2 r X u du F s ]+(t s) 2k X u du; dzu F r s, s s s ) ˆ t s dz r u F s ]
38 r t s s r t [ˆ t ] [ k 2 t r X u du,zt r Zt F r s X udu F s ]+(t s) r[x t F s ] s = s 2k = e k(t s) +k(t s) 1 k 2. r r [ˆ t ] [X t X s,zt r Zs F r s ] = dx u,zt r Zt r s [ˆ t ] = kx u du,zt r Zt r s [ˆ t = k X u du,zt r Zt r s = e k(t s) +k(t s) 1 k = 1 e k(t s). k [ˆ t ] + dzu,z r t r Zt r s ] + r[z r t Z r t] +(t s) t r r tr 1 ss t t t ss t r ( ˆ t ) Zt r Zt,X r t X s, X u du t 2 F s s ( t s ) ( 1 k 1 e k(t s) 1 k e k(t s) +k(t s) 1 ) ( 2 1 ) ( ) ( ) k 1 e k(t s) 1 2k 1 e 2k(t s) 1 2k 1 e k(t s) 2 ( 2 1 k e k(t s) +k(t s) 1 ) ( ) 1 2 2k 1 e k(t s) 2 ( ) 1 2 k t s+ 2 2 k e k(t s) 1 2k e 2k(t s) 3 2k t s ss t r t t ts s 2 s t s t s 1+e k(s t) k t s C = 0 e k(s t) ω k (t,s) 2k t s s k(t s)+e k(s t) 1 k 2 t s ek(s t) ω k (t,s) 2k 2 t s r ω k (t,s) = k(s t)+4e k(t s) +e 2k(t s) (k(t s) 2) 2 r rt s r t r t t s t r ss r 2 t t st s s t r s X 1 t r r s ts S t X 2 t r r s ts X t X 3 t r r s ts t s X udu
39 tt t s t BSHW (x 1,x 2,x 3 ) x 3 x 2 (1 e k(t s)) /k +C 1,3 G 0 +C 2,3 G 1 x 2 x 2 e k(t s) [ +C 1,2 G 0 +C 2,2 G 1 t x 1 x 1 exp x 3 + s β(u)du σ2 (t s)/2+σ t s (ρg 0 + )] 1 ρ 2 G 3 r t r t s t G 1,G 2,G 3 t st r ss r s tt t s s rt s s r 2 tt t s r t t t s r t s s s t 1 ss st r t s s 1 t r r t t st r s s t s s t s t s r ss s t t t st r t t t t r r 2 t t t t t rs u d r s r s t st t t t ss t r S 0 t t t t st t r S 1 t t t r s s r r s st 2 t s s 2 t ss s t r 1 r t ss t2 r s r s t st r s t s s r r st rt t r S 0 t 1t t st t ss t t t r 2 t t r S 0 u r S 0 d r d < u t r t s p u p d = 1 p u r s t 2 s s s r t t s t t s s s r t st t t s s t 2 V 0 t t 2 1 r s t r t t s s2 t ts s f u f u rr s t t t s 2 r s 2 t t 2 s r t r 2 t t2 t tr t 1 t t r tr r t t r t t t s s t rt s st t ss ts r s ss t t r B 0 = 1 t r r B 1 = e r t t r 2 ss t t t S 0 t t r st s r s t rt 2 δ t r s 2 Ψ t t s rt s Π 0 = δs 0 +Ψ, us 0 S 0 ds 0 r s r tt
40 r t s s r ts t r t r 3 st t t r Π u = δs 0 u+ψe r t, r Π d = δs 0 d+ψe r t. t s tr2 t rt 1 t 2 r t t t 2 { Π u = V u Π d = V d. t s s2st t r q t s t r s t δ = V u V d S 0 (u d) Ψ = e r tuv u dv d. u d t r r t r tr t t t s rt st 1 t 2 V 0 V 0 = δs 0 +Ψ = V u V d u d +e r tuv u dv d u d = e r t { e r t d u d V u + u er t u d V d }. t s rt t t t t t t s r t s s t t t r t s p u p d rt r t t r s t t s t 1 t t 2 s 2 r s ss rt ss t r r t q t s 1 t s t π u = er t d u d, π d = u er t u d 2 t t t t s r t s r s tr r t2 Q t r t r r t s t s t 1 t t 2 r t s r t s V 0 = e r t E Q [V 1 ] = e r t (π u V u +π d V d ), r t t t E Q s s t t t t t 1 t t s t t r s t t t r t2 s r Q r s s s s r s s r 2 t t t s r tt r rt t2 s r s t r st t s t r t t t 2 t r s r ss ts r r tr t t r t t s s ss t2 s r r t t s ss t r 1 t r r t r r 2 1 r s t 2 t r t t t t s s t t s t t t s r r t s r r
41 tt t s 3 u S 2 0 u S 0 us 0 u 2 ds 0 S 0 uds 0 ud 2 S 0 ds 0 2 d S 0 3 d S 0 r tt s t t 2t s t st r s rt t s s r t 3 t r s 2 t r s t r s tt r 2 t r s t s t s t rr s P t st tt t s r s t r t s r t 3 t r s s r r t tr s t r t s t t rt t 2 t s 2 t s t t t t u = 1/d s s t ss r2 t t s 2 st 2 st 2 s t s t r S 0 ud = S 0 du = S 0. s 2 s r t r t 2 r t t t tt s s t r r s t s t s s s r u d t t r 1 t t r 2 t s t r ss t r tt s r 1 t t r s tr r ss ds = rsdt+σsdw. t r t rs t s t t tt s r s r s ss t r rt s t t s t s r ss s r t t rt r S t t r s t t r t t r r S t+ t s s t t ln(s t+ t ) N (( r σ 2 /2 ) t,σ 2 t ). s r rt s t r str t E[S t+ t /S t ] = e r t r[s t+ t /S t ] = e 2r t( ) e σ2 t 1.
42 r t s s r r s r q r t t s r t 3 2 s s t t t s t t s ts t t t t s r t t s t t r r t rs p,u d r r 2 s u = 1/d s s t r t t t t s t t 2 ss t2 t tt t t r t 2 s E[S t+ t ] = pu S t +(1 p)d S t, p = er t d u d. t t t p s t r s tr r t2 s t t tr r t t s t t t tt r[s t+ t ] = S 2 t + ( pu 2 +(1 p)d 2) S 2 te 2r t. r s s r[s t+ t ] = Ste 2 2r t( ) e σ2 t 1. s t s t q t s t t r u = 1/d 2 t u = ( ) 1 e 2r t+σ2 t (1+e + ) 2r t+σ 2 t 2 4e 2r t 2e r t. s rst r r 1 s t t t rs r r t 2 s 2 t 1 r ss u 1+σ t+ σ2 2 t. t t s 1 s s t s 1 s t t s r r e σ t t t r tr 3 t u = e σ t, d = e σ t, p = er t d u d, s s 1 ss st ss t t t r s r t r st r t t t2 r st t t t r t rs t 2 t t t r tt r t s 1 t 2 r t 2 tt r t r 2 ss t r s t s r r t t t t s t t r t2 r t s 2 t t 2 s 2 q t r rs 2 r st t t t r t t r ss s s s r 1 t s s s 2 t r r r s ts r t t s tr s r s r r ss s r 1 t t s s s t t 2
43 tt t s s t r s r s t st r 2 t r t t r s t r t s s t str t t t 2 s r ss s t t r 2 t 2 2 s s r t s q r t r s r t s r ss s t t rr s s t s t s s str t s r 1 t s s r t st st r t q t dy t = µ(y,t)dt+σ(y,t)dw t r {W t,t 0} s st r r t µ(y,t) σ(y,t) 0 r t st t s r t st r t y t y 0 s st t s t s q r ss s t t r s str t t t t t r str t s q r 1 t s t s 1 tt rs t t t r [0,T] t t n q s t h = T/n r h s r st st r ss { h y t } t t r [0,T] s st t t s t 2 s s s st t r t2 q r s 1 q r 1 s t q = 1/2 t s 3 q t h t s t t s n + { h y t } r s str t t r t r t s r s r s s s q h (y,hk),y + h (y,hk) Y h (y,hk) t s r t s R [0, ) s t s 2 0 q h (y,hk) 1 < Y h (y,hk) Y + h (y,hk) < +, r y R k {0,...,n} st st r ss 2 h y t s 2 hy 0 = y 0 r h, hy t = y kh r kh t < (k +1)h, P [ hy (k+1)h = Y + h (y,hk) hk, ] hy kh = qh ( h y kh,bk), P [ hy (k+1)h = Y h (y,hk) hk, ] hy kh = 1 qh ( h y kh,bk), P [ hy (k+1)h = c ] = 0, r c Y h (y,hk), c Y + h (y,hk) st st r ss h y t s st t t t y 0 s 2 t t s h,2h,3h,...(n 1)h t t r ss t ss s t Y + b r t Y h Y + h Y h q h r t h t t r ss t 2 r t ( h y hk ) t t 1 hk 2 t st t ts t r s q t s t r ss s r s r 2 r s t r tr r s r st t s t s r { h y t } r s 2 h 0 t t r ss
44 r t s s r s t s r s t ss t s t t t t st st r t q t t s q r s rst t ss t s s r t t t t st st r t q t s ss t t s µ(y,t) σ(y,t) r t s σ(y,t) s t ss t t r t2 s t {y t } t st st t r q t y t = y 0 + ˆ t 0 µ(y s,s)ds+ 1 sts r 0 < t < s str t 2 q ˆ t 0 σ(y s,s)dw s, r ss t t str t t r r ss {y t } 0 t<t s r t r 3 2 r t s st rt t y 0 t t2 t r t2 y t s r t t r t t µ(y,t) s t σ 2 (y,t) { h y t } s r t str t t {y t } h 0 r rt s 1 4 st t t t 2 r q r t t h y 0 = y 0 r h t t t s 3 h y t s t s t 2 r r t s h 0 t t t r t h y t r s s s t r s t (y,t) t t t r h y t r s t σ 2 (y,t) t t t s ss r 2 s r t ss t ss t r δ > 0 T > 0 lim sup h 0 y δ 0 t T lim sup h 0 y δ 0 t T Y + h (y,t) y = 0, Y h (y,t) y = 0. r r 2 h > 0 t r t µ h (y,t) t s t σh 2 (y,t) t r ss s r 2 µ h (y,t) = { q h (y,t ) [ Y + h (y,t ) y ] +(1 q h (y,t )) [ Y h (y,t ) y ]} /h σ 2 h (y,t) = {q h (y,t ) [ Y + h (y,t ) y ] 2 +(1 qh (y,t )) [ Y h (y,t ) y ] 2 } /h s s t t r s t t s t r r y t r t t s h 0 r t r s t r t s t
45 tt t s t t = h t/h r t/h s t t r rt t/h 1t ss t r q r s t t µ h σ 2 h r r 2 t µ σ2 s ts t r y δ 0 t < T ss t r r2 T > 0 r2 δ > 0 lim sup µ h (y,t) µ(y,t) = 0, h 0 y δ 0 t T lim sup σh 2 h 0 (y,t) σ2 (y,t) = 0, y δ 0 t T r r ss t s { h y t } {y t }, r t s r r str t {y t } s t s t t t r 2 t str t s s q s t s t s st 1 st s t s s r 2 r s t s r tr r Y + h = y + hσ(y,t) Y h = y hσ(y,t) q h = hµ(y,t)/(2σ(y,t)). t r s q t s h s t t t r t s q h s t r t2 t Y + b t t s t s h [ σ(y,t)+σ ( Y b,t+h)] s t s h [ +σ(y,t) σ ( Y + b,t+h)] s r t s r t q s t r s t tr t r t t r s s t t st r r ss t s r s t s 2 t s s q s t t s r t s t t 2 1 tr s s ss r r s s s s t r t r 2 r s t r ss t r t r t s t r r s r t tr s t t 2 s r r s t t t r ss t t t st s t r r s r s t 2 t r t t σ(y, t) s st t t t s ts r q s t t s t2 s r t s s sts t t tr s r t t t r s t r st st r t q t t t r s st t2 r t s t str t t t 2 s tr t t t s t2 t s s r tr s r t X(y,t) s r t t y t 2 tô s ( dx(y t,t) = µ(y t,t) X(y t,t) + 1 y 2 σ2 (y t,t) 2 X(y t,t) y 2 + X(y ) ( t,t) dt+ σ(y t,t) X(y ) t,t) dw t. t y
46 r t s s r y q h 1-q h Y + h Y - h r s s q s X(y,t) t s t s 2 ˆ X(y,t) = dz σ(z,t) t s rt y t t r X(y,t) σ(y,t)dw t y sdw t t st t s t t2 t tr s r r ssx t = X(y t,t) s st t t s s t t 2 s tr r x r t s t t x s st t t r2 rr t t s q r ss s y tr s r r x t y 2 Y (x,t) = {y : X(y,t) = x}. t s s2 t s t t Y/ x = σ(y,t) 2 ss t t s s t t Y (x,t) s 2 t x r 1 t s t tr s r t tr r y s t t Y + h (x+ (x,t) = Y ) h,t+h Y h (x (x,t) = Y ) h,t+h. t t t t tr r y s r t t t t s t2 t t t tr r x s 2s s t t t t Y (x,t) x 2 r s s r s 1 s Y + h Y h = σ(y (x,t),t), r h = 0 2 s Y ± h (x,t) = Y (x,t)±σ(y (x,t),t) h+o(h), ( ) σ 2 (Y (x,t),t) = σ 2 (Y (x,t),t)+o h. s s s t t t s t h y t r s t t st t s r σ 2 (y,t) s h 0 2 t t t r t t t t r t t t s µ h (y,t) µ(y,t)
47 tt t s r 2 {(y,t) : y,t < δ} r r2 δ > 0 t t t 2 s q h = hµ(y (x,t),t)+y (x,t) Y h (x,t) Y + h (x,t) Y h (x,t) t s t t r t2 t s ts t r t 1 t 2 q t t r t t t s s t s tr s r ts rs t t r t2 q h s t t r t str t t t 2 s r 1 t t t r s t t s s r tr s r t s r 2 str t r r 1 t s tr s r t s r t r s r µ(y,t) = µy σ(y,t) = σy tr s r t s s X(y) = σ 1 ln(y) t rs tr s r t s Y (x) = e σx s s t tr s r t ss st t t t t 2 s tr tr s r t s r t r s s t r r t s t st s t s s x t r 2 q t t2 r t r t h r r t t t r t r t rt r r t s 2 r2 t 0 r s t r t s r2 σ(,t) = 0 t tr s r t 2 t t t t s t2 r tr t t r t s t t r s t t str t 2 r s r t s σ(, ) r 1 σ(y,t) = 0 r s y s r t s r s 2 ss t t r s t s rt t r ss t r s s r 1 t t t2 t s r tr 3 r st r r2 r st r s t r st r t s r s r r t2 ss r2 rs s t s ss r2 t r tt t t t s s 2 t st s rst s r t s σ(, ) s s r t s R [0, ) s r t s σ(0,t) = 0 µ(0,t) 0 r t 2 r r2 t 3 r t s rt t t s s s r t s σ(y,t) s r X(y,t) t x s rr s t 1tr s y ˆ X(y,t) = dz σ(z,t), x U (t) = lim y + X(y,t), x L (t) = lim y X(y,t). ss t s t r 1 t t 1 s s t2 ss t s x U (t) x L (t) r st ts
48 r t s s r t t rs tr s r s t r y : X(y,t) = x, x L < x < x U y(x,t) = + x U x x x L. s s t qh (x,t) = max[0,min[1,q h(x,t)]]. r 2 ss t s r t rr t s 2 ss t s ss t t s µ(y,t) σ 2 (y,t) r t s r2 r r r2 R > 0 r2 T > 0 t r s r T,R > 0 s t t T,R inf σ(y, t) 0 t T y R t s s r t2 ss t t s r s t t σ(y, r) s 2 r 3 r 1 t t t = r y = st s s r t t t r ss r 2 s t 1 t t2 t t ss t 2t s t s s r t r rt2 t t r T 0 < T < ( ) lim P B sup y t > B 0 t T = 0. st t t t r st ss t s r r t2 ss t rst s r r rt r t s σ y,σ t,σ yt,σ tt,y x,y xx,y t,y tt,y xt r 2 r (y,t) R [0, ) r t ss t s r h > 0 t x s s tr t σ x = 1 t h x 0 = X(y 0,0) t tr s t r t x r ss 2 hx h(k+1) = { hx hk + h t r t2 q b ( hx hk,hk), hx hk h t r t2 q b ( hx hk,hk). t y tr s s tr s st t r t r t s t x tr 2 rs tr s r t t s r h > 0 h y t = Y ( h X hk,hk) r hk t < h(k +1) 2 str t { h y t } s t t 2 s { h y t } {y t } s h 0 r {y t } s s t r t r t s t r s
49 tt t s s s r t2 t y = 0 σ(0,t) = 0,µ(0,t) 0 t s s t s t s s t t r r2 3 r t t r t r t t s r t r t r t t r ss t r t r x s r s x L (t) = lim y 0 X(y,t), t rs tr s r s 2 t t x s y : X(y,t) = x x L < x < x U Y (x,t) = + x U < x 0 x x L. s r ss t t x L x U t t rt t s t s r t s t t st s 3 s t s r t 2 r r 1 t 2 r rt t σ(y,t) t σ(y,t) s r2 s r y = 0 µ(y,t) s t s 2 t t t s t s r r r t t t r t t t s s x B > x L t t J + h (x,t) s t s st s t t r js t t ( J + h (x,t) = Y x+j ) h,t+h Y (x,t) µ(y (x,t),t) h x < x B 1 x x B J + h (x,t) s t r r s t t s t r t2 p h ss t 1 t t s r t s s t t t s t r ss t 1 st t tr 2 r tt t s t s r str t r r 0 r t t t s t2 t r s y s t r s s J + h s t t r s t r s t r t r t t t t s t2 r 2 J h (x,t) 2 t s st s t t r js t t ( J h (x,t) = t r Y (x,t) Y x j ) h,t+h µ(y (x,t),t) h ( r Y x j ) h,t+h = 0 r J h (x,t) s t r r s t t t r s t r t2 q h s t t t s r r r s t st t r Y h t 3 r tr s t s t r y r t r st t s Y ± h (x±j (x,t) = Y (x,t) h,t+h ) ± h, r t t t qh ss t s t r 2 t s
50 r t s s r ss t t σ(y,t) µ(y,t) t s R [0, ) r 1 sts r s t t ρ(u) r [0, ) t [0, ) s t t ρ(u) > 0, r u > 0, ˆ 1 lim ε 0 ε [ρ(u)] 2 du =. rt r r r2 R > 0 T > 0 t r 1 sts r T,R > 0 s t t sup y R, y R 0 t T sup y R, y R 0 t T σ(y,t) σ(y,t) T,R ρ( y y ), µ(y,t) µ(y,t) T,R y y, ss t r2 t s s t {(y,t) : 0 < y <,0 t < },σ y,σ t,σ yt σ tt 1 st r σ(y,t) s 2 r 3 r r 1 sts > 0 s t t r r2 T > 0 inf σ y (y,t) > 0. 0 t T 0 y rt r r Y xx,y t,y tt Y xt 1 st r (y,t) [0, ) [0, ) r s ts r t 0 σ(0,t) = 0 µ(0,t) 0 t r r s st t r t ss t s ss y 0 > 0 h x hk hy t s r r r t s t r t s s t Y ± h { hy t } {y t } s h 0 x B < { h y t } s t t 2 s 2 str t rt r 0 s t s rt { h y t } y t r ( ) ( ) P inf y t < 0 = P inf < 0 = 0 0 t< h 0 t< r s s t str t t t 2 s r 1 t s r s s t r 2 t s r s t s r s r t t s s t s r t r st r t s 2 s s t t s t t t s rt r t r ss r r tt s r t = ωx t +β(t),
51 tt t s r X s st st r ss 2 dx t = kx t dt+dw t X 0 = 0, β(t) s t r st t X t r ss s 1 r st r ss dy t = β(α y t )dt+σdw t r t s r ss s 1 t tr str t s q { h y t } r 1 t s t t t y 0 Y + h (y,t) = y +σ h, Y h (y,t) = y σ h, t hβ(α y)/(2σ) 0 1/2+ hβ(α y)/(2σ) 1 q h = 0, 1/2+ hβ(α y)/(2σ) < 0 1 t r s st st s t st s t r r s t st st t t2 r r t s s t r t t t2 t s s dv t = k(θ v t )dt+ω v t dw, v 0 = v 0, t k 0 µ 0 t t v 0 s t st t ss r2 tr s r t s ˆ dz X(v) = σ Z = 2 v σ, t x 0 = X(v 0 ) r s r r2 r v s t r s t t rs tr s r { σ 2 x 2 /4 x > 0 V (x) = 0 t r s s t r t s t s s r 0 t 0 s t s r st t r v ss t r k r θ q s 3 r s str t s 2 t s ss r2 t tr t s J + h (x) = t s st s t t r js t t ( 4hkθ/σ 2 +x 2 (1 kh) < x+j ) 2 h t s st s t t r js t t ( J h (x) = t r 4hkθ/σ 2 +x 2 (1 kh) x j ) 2 h r x j h 0,
52 r t s s r Process Vt Node (n,j) Process Xt Node (n,j) Node (3,8) j (3,8) C j (3,8) A j (3,8) B j (3,8) D Time t Node (3,2) j 0=0 j 1=0 j 2=1 j 3=2 j 4=4 j (3,2) A Time t r tr s r st t s V ± h (x±j (x) = V h) ± h, [ hk(θ V(x))+V(x) V ] h (x) R + q h (x) = V + h (x) V h (x) h (x) > 0 0 t r s. s J ± h (x) r r t r t t t 0 q h(x) 1 s 2 t t t r t r s t t s t r tr s tr s r t st t r t r s s 2 s s r t r s s t t s s t tr s r s r2 tr s t s t tr s t r t s r s t r r t t r 1 t t rst t ts t r ss s tr r r s rt t r t2 t t r 1 t rr rs t t r t s s t s rr r t t t s t r t r t r t s r t r t2 t s r r t s ss r2 t r t t tr s t s t s t tr s t 1 t 2 s ts t r ss s t s r r s t t tr s s r r st st t t2 r st st t r st r t 2 r s q r tr s t 2 r t t t t rst ts t st st r ss s s s t 1 r N > 0 h = T /N r s t Z r t t G ss r ss dg t = a(g t )dt+bdz t, t r t t s 2 2 t t s G t+s G s F s N ( µ(t,g s ),σ 2 (t) ) r r t t µ(t,g s ) s t 1 t t σ 2 (t) s t r t r t t
53 tt t s r ss µ(t,g s ) = E[G s+t G s F s ] = E [ˆ t+s s a(g u )du+ ˆ t+s s ] [ˆ t+s ] bdz u F s = E a(g u )du F s, s [ (ˆ t+s σ 2 (t) = Var[G s+t G s F s ] = E a(g u )du+ s ˆ t+s s ) 2 [ˆ t+s ] 2 bdz u F s ] E a(g u )du F s. s s t s q r tr t t t t rst t r ts q r tr t s 1 t r t2 T t r st s N t 2 G (n,j) r n r s r 0 t N j r 0 t 3n t h = T /N s G (n,j) = G 0 +(j 1.5n) σ 2 (h). r r t rst t r ts t r ss G ] M 1 = E[G t+h G t F t ] = µ(h,g t ), M 2 = E [(G t+h G t ) 2 F t = µ 2 (h,g t )+σ 2 (h), ] M 3 = E [(G t+h G t ) 3 F t = µ 3 (h,g t )+3µ(h,G t )σ 2 (h). t s 1 G (n,j) r µ t µ ( ) h,g (n,j) σ t σ 2 (h) s s t t t 1 t µ s t t s t s t t (n+1)h s 2 t s s t ss t t t t st h s s [ ] G0 µ j A (n,j) = +1.5(n+1), σ t rst t 1t t st s s r t t t r ss s s r t s s t rr ts t t t 1 t t r ss j A (n,j) s r t r t j B (n,j) = j A (n,j) 1, j C (n,j) = j A (n,j)+1, j B (n,j) = j D (n,j) 2. r 2 r t j A,j B,j C, j D G A G A = G (n+1,ja ) t s r t t r tt rs t s s r r t r t s r s r t t r ss Ĝn n = 0,...,N t Ĝ0 = G (0,0) s s t t Ĝn = G (n,j) t t t G A G B G C G D r t t r t s ] p A = P [Ĝn+1 = G A Ĝn = G (n,j) ] p B = P [Ĝn+1 = G B Ĝn = G (n,j) ] p C = P [Ĝn+1 = G C Ĝn = G (n,j) = (G A µ) ( (G A σ µ) 2 +σ 2) 2σ 3, = (µ G A +σ) ( (G A µ) 2 +σ 2) 2σ 3, = (µ G A +σ) ( (G A σ µ) 2 +2σ 2) 6σ 3,
54 r t s s r ] p D = P [Ĝn+1 = G D Ĝn = G (n,j) = 2σ2 (G A µ)+(g A µ) 3 6σ 3. G A σ < µ G A s 2 s t t t s r t s r ) [0,1] t r s s q t 1 t rst t r ts t r (Ĝn+1 Ĝn = G (n,j) r q t t rst t r ts t r ( ) G t+h G t = G (n,j) r 1 t t r ss G 2 s r t r ss Ḡ t t s st t t s s s Ḡt = Ĝ t/n r t s tr r s s s 2 st st r ss r t t2 s st t r s t ss s r t r ss t 2 t sq r r t ( d 4k θ ) 2 V t ω 2 V t = 8 dt+ ω V t 2 dz t. r 1 t t t ss r ss t r ω2 4 dt s r 1 t s t t r st t s s r t r s r 2 ( ( j n = max 0, r 1.5n 2 )) V 0 ω, h s t V (n,j) = ( max ( 0, V 0 +(j +j n 1.5n) ω h 2 )) 2. r j = 0,...,3n j n s t t j n s t r t t 2 s t q t 3 r j n > 0 t V (n,0) = 0 V (n,1) > 0 r r t t t r ss V t r 1 t s V t t V t t ts t s r t t ts t r ss V t 1 t s n j s r t r ss V r t t r s r s t t ss s rst t r ts r t st r ss s ψ(h) = (1 e kh )/k, M 1 = E[V t+h V t = v] = ve kh +θkψ(h), [ ] M 2 = E (V t+h ) 2 V t = v = M1 2 +ω 2 ψ(h) [ θkψ(h)/2+ve kh], [ ] [ ) M 3 = E (V t+h ) 3 V t = v = M 1 M 2 +ω 2 ψ(h) 2v 2 e 2kh +ψ(h) (kθ + ω2 (3ve kh +θkψ(h) )]. 2 r s t r s 2 2 t r r s s s r 1 t s t r t s t s t r s2st 2 t s t
55 tt t s E C A B D F r ss t s s t t s t r t s t st tr r ts rr s t t s s t t tr s t r t2 r tr2 t r t t s r r t t s A B C D t r t s t t s A r C 2 r 2 E s t rst r t C t s B r D 2 r t F s t s st r D s s r s t 9 t s t t st t st rt s s t D r s j D = j n t t s st s t r F t s s t D t r 2 t E s r t s tt ts t s t r s t t r t s tr2 t t t rst t r ts r t t t t r 1 t t rst t s t s s r t r t s s 2 s t s A,B,C,D µ G n+1,jb p AB =, p BA = 1 p AB, G n+1,ja G n+1,jb p CD = µ G n+1,jd G n+1,jc G n+1,jd, p DC = 1 p CD, p A = 5 8 p AB, p B = 5 8 p BA, p C = 3 8 p CD, p D = 3 8 p DC. t s ss t s t t t rst t t s r s q t M 1 s h 0 t s t r s t M 2 s r t r s r r r t sts t s st t t 2 t ts s r ss r2 t s ts r t t s t r t s t t r ss X s ss s s str s t r s X t s X ydy r r t r str t t 2 X s t r ( X (n,j) = j 3n ) 1 exp( 2kh), n = 0,...,N j = 0,...,3n. 2 2k t s 1 X (n,j) 1 exp( 2kh) H = exp( kh), K =, M 1 = X 2k (n,j) H,
56 r t s s r tr s t r t s r 2 [ M1 j A = K + 3(n+1) ], X A = X 2 (n+1,ja ). ( p A = (X A M 1 ) K 2 +(K +M 2K 3 1 X A ) 2), p B = (K+M 1 X A ) (K 2 +(M 2K 3 1 X A ) 2), ( p C = (K+M 1 X A ) 2K 2 +(K +M 6K 3 1 X A ) 2), p D = (X A M 1 ) (2K 2 +(M 6K 3 1 X A ) 2). P rt r t q t s t s s rt s s r 2 r t s s rt r t q t s P s r t r2 r t s r t r r r t r t st t s r s t s r t t t t r t s s r s t r t P s r t s ss t t 2 s r t 3 t P s t 2s t s t t2 t r 1 s r s t s r t s r s 2 r t r r t s t t t rt r t q t s r r t t t 1t t s r t st t r t rs t s r 1 t r t t r s t t r t2 r s t r s t r st r t t2 2 s t t t r 1 t r t2 1 s t r s rt r t s s s r t r t s t t s r t s r s P s t s r r t r st s rst t 2 r s t [0,T] t t2 2 s r t t t t r t2 t = T r2 t t s t r s t s s t r2 t s t t2 t t s r s t s r r t r r 1 t s tr t t rt r2 t s s P s r s 2 r t2 t t t r t s s r t str ts t r t s r s r t 3 t t P st s t 2 st r t t s r t s r t s P s 1 t r t t s t s r t s s P r r t s t t st r s t r s 2 ss t s r t t t s S t r s r B t r 2 s r t2 s r t t tô r ss t s r t r r s t r s r r t ds = µsdt+σsdw, db = rbdt
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
A Probabilistic Numerical Method for Fully Non-linear Parabolic Partial Differential Equations
A Probabilistic Numerical Metod for Fully Non-linear Parabolic Partial Differential Equations Aras Faim To cite tis version: Aras Faim. A Probabilistic Numerical Metod for Fully Non-linear Parabolic Partial
r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t
r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs
Alterazioni del sistema cardiovascolare nel volo spaziale
POLITECNICO DI TORINO Corso di Laurea in Ingegneria Aerospaziale Alterazioni del sistema cardiovascolare nel volo spaziale Relatore Ing. Stefania Scarsoglio Studente Marco Enea Anno accademico 2015 2016
Mesh Parameterization: Theory and Practice
Mesh Parameterization: Theory and Practice Kai Hormann, Bruno Lévy, Alla Sheffer To cite this version: Kai Hormann, Bruno Lévy, Alla Sheffer. Mesh Parameterization: Theory and Practice. This document is
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
Ax = b. 7x = 21. x = 21 7 = 3.
3 s st 3 r 3 t r 3 3 t s st t 3t s 3 3 r 3 3 st t t r 3 s t t r r r t st t rr 3t r t 3 3 rt3 3 t 3 3 r st 3 t 3 tr 3 r t3 t 3 s st t Ax = b. s t 3 t 3 3 r r t n r A tr 3 rr t 3 t n ts b 3 t t r r t x 3
P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s
Teor imov r. ta matem. statist. Vip. 94, 2016, stor
eor imov r. ta matem. statist. Vip. 94, 6, stor. 93 5 Abstract. e article is devoted to models of financial markets wit stocastic volatility, wic is defined by a functional of Ornstein-Ulenbeck process
LEM. Non-linear externalities in firm localization. Giulio Bottazzi Ugo Gragnolati * Fabio Vanni
LEM WORKING PAPER SERIES Non-linear externalities in firm localization Giulio Bottazzi Ugo Gragnolati * Fabio Vanni Institute of Economics, Scuola Superiore Sant'Anna, Pisa, Italy * University of Paris
E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets
E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets Benoît Combès To cite this version: Benoît Combès. E fficient computational tools for the statistical
Jeux d inondation dans les graphes
Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr st t t t Ø t q s ss P r s P 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t P r røs r Łs t r t t Ø t q s r Ø r t t r t q t rs tø
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio
r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s
r t r r é té tr q tr t q t t q t r t t rrêté stér ût Prés té r ré ér ès r é r r st P t ré r t érô t 2r ré ré s r t r tr q t s s r t t s t r tr q tr t q t t q t r t t r t t r t t à ré ér t é r t st é é
Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen
Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation date: GF F GF F SLE GF F D Ĉ = C { } Ĉ \ D D D = {z : z < 1} f : D D D D = D D, D = D D f f : D D
Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα
x + = 0 N = {,, 3....}, Z Q, b, b N c, d c, d N + b = c, b = d. N = =. < > P n P (n) P () n = P (n) P (n + ) n n + P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + ) P (n) n m P n P (n) P () P (), P (),...,
(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X
X, Y f X,Y x, y X x, Y y f X Y x y X x Y y X x, Y y Y y f X,Y x, y f Y y f X Y x y x y X Y f X,Y x, y f X Y x y f X,Y x, y f Y y x y X : Ω R Y : Ω E X < y Y Y y 0 X Y y x R x f X Y x y gy X Y gy gy : Ω
P r s r r t. tr t. r P
P r s r r t tr t r P r t s rés t t rs s r s r r t é ér s r q s t r r r r t str t q q s r s P rs t s r st r q r P P r s r r t t s rés t t r t s rés t t é ér s r q s t r r r r t r st r q rs s r s r r t str
Z = 1.2 X 1 + 1, 4 X 2 + 3, 3 X 3 + 0, 6 X 4 + 0, 999 X 5. X 1 X 2 X 2 X 3 X 4 X 4 X 5 X 4 X 4 Z = 0.717 X 1 + 0.847 X 2 + 3.107 X 3 + 0.420 X 4 + 0.998 X 5. X 5 X 4 Z = 6.56 X 1 + 3.26 X 2 + 6.72 X 3
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs
Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage
Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage José Marconi Rodrigues To cite this version: José Marconi Rodrigues. Transfert sécurisé d Images par combinaison
Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis
Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Daniel García-Lorenzo To cite this version: Daniel García-Lorenzo. Robust Segmentation of Focal Lesions on Multi-Sequence
Forêts aléatoires : aspects théoriques, sélection de variables et applications
Forêts aléatoires : aspects théoriques, sélection de variables et applications Robin Genuer To cite this version: Robin Genuer. Forêts aléatoires : aspects théoriques, sélection de variables et applications.
(1) P(Ω) = 1. i=1 A i) = i=1 P(A i)
Χρηματοοικονομικά Μαθηματικά Το συνεχές μοντέλο συνεχούς χρόνου Σ. Ξανθόπουλος Παν. Αιγαίου Χειμερινό Εξάμηνο 2015-2016 Χειμερινό Εξάμηνο 2015-2016 1 / Σύνοψη 1 Προκαταρκτικά 2 Διαδικασία Wiener ή Κίνηση
ss rt t r s t t t rs r ç s s rt t r t Pr r r q r ts P 2s s r r t t t t t st r t
Ô P ss rt t r s t t t rs r ç s s rt t r t Pr r r q r ts P 2s s r r t t t t t st r t FichaCatalografica :: Fichacatalografica https://www3.dti.ufv.br/bbt/ficha/cadastrarficha/visua... Ficha catalográfica
Assessment of otoacoustic emission probe fit at the workfloor
Assessment of otoacoustic emission probe fit at the workfloor t s st tt r st s s r r t rs t2 t P t rs str t t r 1 t s ér r tr st tr r2 t r r t s t t t r t s r ss r rr t 2 s r r 1 s r r t s s s r t s t
Analysis of a discrete element method and coupling with a compressible fluid flow method
Analysis of a discrete element method and coupling with a compressible fluid flow method Laurent Monasse To cite this version: Laurent Monasse. Analysis of a discrete element method and coupling with a
γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000
Consommation marchande et contraintes non monétaires au Canada ( )
Consommation marchande et contraintes non monétaires au Canada (1969-2008) Julien Boelaert, François Gardes To cite this version: Julien Boelaert, François Gardes. Consommation marchande et contraintes
Conditions aux bords dans des theories conformes non unitaires
Conditions aux bords dans des theories conformes non unitaires Jerome Dubail To cite this version: Jerome Dubail. Conditions aux bords dans des theories conformes non unitaires. Physique mathématique [math-ph].
J J l 2 J T l 1 J T J T l 2 l 1 J J l 1 c 0 J J J J J l 2 l 2 J J J T J T l 1 J J T J T J T J {e n } n N {e n } n N x X {λ n } n N R x = λ n e n {e n } n N {e n : n N} e n 0 n N k 1, k 2,..., k n N λ
Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat
Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat Pierre Coucheney, Patrick Maillé, runo Tuffin To cite this version: Pierre Coucheney, Patrick
m i N 1 F i = j i F ij + F x
N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,
ts s ts tr s t tr r n s s q t r t rs d n i : X n X n 1 r n 1 0 i n s t s 2 d n i dn+1 j = d n j dn+1 i+1 r 2 s s s s ts
r s r t r t t tr t t 2 t2 str t s s t2 s r PP rs t P r s r t r2 s r r s ts t 2 t2 str t s s s ts t2 t r2 r s ts r t t t2 s s r ss s q st r s t t s 2 r t t s t t st t t t 2 tr t s s s t r t s t s 2 s ts
Vers un assistant à la preuve en langue naturelle
Vers un assistant à la preuve en langue naturelle Thévenon Patrick To cite this version: Thévenon Patrick. Vers un assistant à la preuve en langue naturelle. Autre [cs.oh]. Université de Savoie, 2006.
Coupling strategies for compressible - low Mach number flows
Coupling strategies for compressible - low Mach number flows Yohan Penel, Stéphane Dellacherie, Bruno Després To cite this version: Yohan Penel, Stéphane Dellacherie, Bruno Després. Coupling strategies
Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées
Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées Noureddine Rhayma To cite this version: Noureddine Rhayma. Contribution à l évolution des méthodologies
Couplage dans les applications interactives de grande taille
Couplage dans les applications interactives de grande taille Jean-Denis Lesage To cite this version: Jean-Denis Lesage. Couplage dans les applications interactives de grande taille. Réseaux et télécommunications
t ts P ALEPlot t t P rt P ts r P ts t r P ts
t ts P ALEPlot 2 2 2 t t P rt P ts r P ts t r P ts t t r 1 t2 1 s r s r s r 1 1 tr s r t r s s rt t r s 2 s t t r r r t s s r t r t 2 t t r r t t2 t s s t t t s t t st 2 t t r t r t r s s t t r t s r t
L A TEX 2ε. mathematica 5.2
Διδασκων: Τσαπογας Γεωργιος Διαφορικη Γεωμετρια Προχειρες Σημειωσεις Πανεπιστήμιο Αιγαίου, Τμήμα Μαθηματικών Σάμος Εαρινό Εξάμηνο 2005 στοιχεοθεσια : Ξενιτιδης Κλεανθης L A TEX 2ε σχεδια : Dia mathematica
P P Ô. ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t
P P Ô P ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t FELIPE ANDRADE APOLÔNIO UM MODELO PARA DEFEITOS ESTRUTURAIS EM NANOMAGNETOS Dissertação apresentada à Universidade Federal
a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)
VISCOUS FLUID FLOWS Mechanical Engineering
NEER ENGI STRUCTURE PRESERVING FORMULATION OF HIGH VISCOUS FLUID FLOWS Mechanical Engineering Technical Report ME-TR-9 grad curl div constitutive div curl grad DATA SHEET Titel: Structure preserving formulation
X(f) E(ft) df x[i] = 1 F. x(t) E( ft) dt X(f) = x[i] = 1 F
Πανεπιστήμιο Θεσσαλίας ΗΥ240: Θεωρία Σημάτων και Συστημάτων 4..2006 Φυλλάδιο Τυπολόγιο μετασχηματισμών ourier, Laplace και Z Σύμβολα Για έναν πραγματικό αριθμό x, συμβολίζουμε με x, x, [x], τον αμέσως
ACI sécurité informatique KAA (Key Authentification Ambient)
ACI sécurité informatique KAA (Key Authentification Ambient) Samuel Galice, Veronique Legrand, Frédéric Le Mouël, Marine Minier, Stéphane Ubéda, Michel Morvan, Sylvain Sené, Laurent Guihéry, Agnès Rabagny,
Multi-GPU numerical simulation of electromagnetic waves
Multi-GPU numerical simulation of electromagnetic waves Philippe Helluy, Thomas Strub To cite this version: Philippe Helluy, Thomas Strub. Multi-GPU numerical simulation of electromagnetic waves. ESAIM:
ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t
ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t FichaCatalografica :: Fichacatalografica https://www3.dti.ufv.br/bbt/ficha/cadastrarficha/visua... Ficha catalográfica preparada
m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx
m r = F m r = F ( r) m r = F ( v) x F = F (x) m dv dt = F (x) d dt = dx dv dt dx = v dv dx vdv = F (x)dx 2 mv2 x 2 mv2 0 = F (x )dx x 0 K = 2 mv2 W x0 x = x x 0 F (x)dx K K 0 = W x0 x x, x 2 x K 2 K =
Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.
II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai
Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes
Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes Jérôme Baril To cite this version: Jérôme Baril. Modèles de représentation multi-résolution pour le rendu
Three essays on trade and transfers: country heterogeneity, preferential treatment and habit formation
Three essays on trade and transfers: country heterogeneity, preferential treatment and habit formation Jean-Marc Malambwe Kilolo To cite this version: Jean-Marc Malambwe Kilolo. Three essays on trade and
Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation
Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation Florent Jousse To cite this version: Florent Jousse. Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation.
!"#$ % &# &%#'()(! $ * +
,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))
ON THE MEASUREMENT OF
ON THE MEASUREMENT OF INVESTMENT TYPES: HETEROGENEITY IN CORPORATE TAX ELASTICITIES HENDRIK JUNGMANN, SIMON LORETZ WORKING PAPER NO. 2016-01 t s r t st t t2 s t r t2 r r t t 1 st t s r r t3 str t s r ts
a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)
( ) ( ) ( ) ( ) ( ) 槡 槡 槡 ( ) 槡 槡 槡 槡 ( ) ( )
3 3 Vol.3.3 0 3 JournalofHarbinEngineeringUniversity Mar.0 doi:0.3969/j.isn.006-7043.0.03.0 ARIMA GARCH,, 5000 :!""#$%&' *+&,$-.,/0 ' 3$,456$*+7&'89 $:;,/0 ?4@A$ ARI MA GARCHBCDE FG%&HIJKL$ B
UNIVERSITE DE PERPIGNAN VIA DOMITIA
Délivré par UNIVERSITE DE PERPIGNAN VIA DOMITIA Préparée au sein de l école doctorale Energie et Environnement Et de l unité de recherche Procédés, Matériaux et Énergie Solaire (PROMES-CNRS, UPR 8521)
k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)
QBER DISCUSSION PAPER No. 8/2013. On Assortative and Disassortative Mixing in Scale-Free Networks: The Case of Interbank Credit Networks
QBER DISCUSSION PAPER No. 8/2013 On Assortative and Disassortative Mixing in Scale-Free Networks: The Case of Interbank Credit Networks Karl Finger, Daniel Fricke and Thomas Lux ss rt t s ss rt t 1 r t
k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)
Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα
Δπηθακπύιηα Οινθιεξώκαηα Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα Επηθακπύιηα Οινθιεξώκαηα θαη εθαξκνγέο. Επηθακπύιην Οινθιήξωκα. Έζηω όηη ε βαζκωηή ζπλάξηεζε f(x,y,z) είλαη νξηζκέλε πάλω ζε κία
A hybrid PSTD/DG method to solve the linearized Euler equations
A hybrid PSTD/ method to solve the linearized Euler equations ú P á ñ 3 rt r 1 rt t t t r t rs t2 2 t r s r2 r r Ps s tr r r P t s s t t 2 r t r r P s s r r 2s s s2 t s s t t t s t r t s t r q t r r t
La naissance de la cohomologie des groupes
La naissance de la cohomologie des groupes Nicolas Basbois To cite this version: Nicolas Basbois. La naissance de la cohomologie des groupes. Mathématiques [math]. Université Nice Sophia Antipolis, 2009.
Points de torsion des courbes elliptiques et équations diophantiennes
Points de torsion des courbes elliptiques et équations diophantiennes Nicolas Billerey To cite this version: Nicolas Billerey. Points de torsion des courbes elliptiques et équations diophantiennes. Mathématiques
m 1, m 2 F 12, F 21 F12 = F 21
m 1, m 2 F 12, F 21 F12 = F 21 r 1, r 2 r = r 1 r 2 = r 1 r 2 ê r = rê r F 12 = f(r)ê r F 21 = f(r)ê r f(r) f(r) < 0 f(r) > 0 m 1 r1 = f(r)ê r m 2 r2 = f(r)ê r r = r 1 r 2 r 1 = 1 m 1 f(r)ê r r 2 = 1 m
P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r
r s s s t t P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r t t s st ä r t str t st t tt2 t s s t st
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
#%" )*& ##+," $ -,!./" %#/%0! %,!
-!"#$% -&!'"$ & #("$$, #%" )*& ##+," $ -,!./" %#/%0! %,! %!$"#" %!#0&!/" /+#0& 0.00.04. - 3 3,43 5 -, 4 $ $.. 04 ... 3. 6... 6.. #3 7 8... 6.. %9: 3 3 7....3. % 44 8... 6.4. 37; 3,, 443 8... 8.5. $; 3
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
Déformation et quantification par groupoïde des variétés toriques
Défomation et uantification pa goupoïde de vaiété toiue Fédéic Cadet To cite thi veion: Fédéic Cadet. Défomation et uantification pa goupoïde de vaiété toiue. Mathématiue [math]. Univeité d Oléan, 200.
Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques
Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques Raphael Chenouard, Patrick Sébastian, Laurent Granvilliers To cite this version: Raphael
B G [0; 1) S S # S y 1 ; y 3 0 t 20 y 2 ; y 4 0 t 20 y 1 y 2 h n t: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 1; 3: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 2; 4: r = 10 5 ; a = 10 6 t = 20
ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ελευθερίου Β. Χρυσούλα. Επιβλέπων: Νικόλαος Καραμπετάκης Καθηγητής Α.Π.Θ.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΕΛΕΓΧΟΥ Αναγνώριση συστημάτων με δεδομένη συνεχή και κρουστική συμπεριφορά
Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle
Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle Anahita Basirat To cite this version: Anahita Basirat.
Stratégies Efficaces et Modèles d Implantation pour les Langages Fonctionnels.
Stratégies Efficaces et Modèles d Implantation pour les Langages Fonctionnels. François-Régis Sinot To cite this version: François-Régis Sinot. Stratégies Efficaces et Modèles d Implantation pour les Langages
Résolution de problème inverse et propagation d incertitudes : application à la dynamique des gaz compressibles
Résolution de problème inverse et propagation d incertitudes : application à la dynamique des gaz compressibles Alexandre Birolleau To cite this version: Alexandre Birolleau. Résolution de problème inverse
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
A 1 A 2 A 3 B 1 B 2 B 3
16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F
1951 {0, 1} N = N \ {0} n m M n, m N F x i = (x i 1,..., xi m) x j = (x 1 j,..., xn j ) i j M M i j x i j m n M M M M T f : F m F f(m) f M (f(x 1 1,..., x1 m),..., f(x n 1,..., xn m)) T R F M R M R x
Langages dédiés au développement de services de communications
Langages dédiés au développement de services de communications Nicolas Palix To cite this version: Nicolas Palix. Langages dédiés au développement de services de communications. Réseaux et télécommunications
Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE)
Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE) Khadija Idlemouden To cite this version: Khadija Idlemouden. Annulations de la dette extérieure
Segmentation d IRM cérébrales multidimensionnelles par coupe de graphe
Segmentation d IRM cérébrales multidimensionnelles par coupe de graphe Jérémy Lecoeur To cite this version: Jérémy Lecoeur. Segmentation d IRM cérébrales multidimensionnelles par coupe de graphe. Informatique
Pierre Grandemange. To cite this version: HAL Id: tel https://tel.archives-ouvertes.fr/tel
Piégeage et accumulation de positons issus d un faisceau pulsé produit par un accélérateur pour l étude de l interaction gravitationnelle de l antimatière Pierre Grandemange To cite this version: Pierre
Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation
Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation Bertrand Marcon To cite this version: Bertrand Marcon. Hygromécanique des
φ(t) TE 0 φ(z) φ(z) φ(z) φ(z) η(λ) G(z,λ) λ φ(z) η(λ) η(λ) = t CIGS 0 G(z,λ)φ(z)dz t CIGS η(λ) φ(z) 0 z
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
Développement d un nouveau multi-détecteur de neutrons
Développement d un nouveau multi-détecteur de neutrons M. Sénoville To cite this version: M. Sénoville. Développement d un nouveau multi-détecteur de neutrons. Physique Nucléaire Expérimentale [nucl-ex].
Traitement STAP en environnement hétérogène. Application à la détection radar et implémentation sur GPU
Traitement STAP en environnement hétérogène. Application à la détection radar et implémentation sur GPU Jean-François Degurse To cite this version: Jean-François Degurse. Traitement STAP en environnement
Pathological synchronization in neuronal populations : a control theoretic perspective
Pathological synchronization in neuronal populations : a control theoretic perspective Alessio Franci To cite this version: Alessio Franci. Pathological synchronization in neuronal populations : a control
!"#!"!"# $ "# '()!* '+!*, -"*!" $ "#. /01 023 43 56789:3 4 ;8< = 7 >/? 44= 7 @ 90A 98BB8: ;4B0C BD :0 E D:84F3 B8: ;4BG H ;8
d 2 y dt 2 xdy dt + d2 x
y t t ysin y d y + d y y t z + y ty yz yz t z y + t + y + y + t y + t + y + + 4 y 4 + t t + 5 t Ae cos + Be sin 5t + 7 5 y + t / m_nadjafikhah@iustacir http://webpagesiustacir/m_nadjafikhah/courses/ode/fa5pdf
Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine
Logique et Interaction : une Étude Sémantique de la
Logique et Interaction : une Étude Sémantique de la Totalité Pierre Clairambault To cite this version: Pierre Clairambault. Logique et Interaction : une Étude Sémantique de la Totalité. Autre [cs.oh].
HONDA. Έτος κατασκευής
Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V
C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,
1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =
Mohamed-Salem Louly. To cite this version: HAL Id: tel https://tel.archives-ouvertes.fr/tel
Deux modèles matématiques de l évolution d un bassin sédimentaire. Pénomènes d érosion-sédimentation-transport en géologie. Application en prospection pétrolière Moamed-Salem Louly To cite tis version:
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
Analyse de modèles pour ITER ; Traitement des conditions aux limites de systèmes modélisant le plasma de bord dans un tokamak
Analyse de modèles pour ITER ; Traitement des conditions aux limites de systèmes modélisant le plasma de bord dans un tokamak Thomas Auphan To cite this version: Thomas Auphan. Analyse de modèles pour
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max