UNIVtrRSITA DEGLI STUDI DI TRIESTE

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "UNIVtrRSITA DEGLI STUDI DI TRIESTE"

Transcript

1 UNIVtrRSITA DEGLI STUDI DI TRIESTE XXVNI CICLO DEL DOTTORATO DI RICERCA IN ASSICURAZIONE E FINANZA: MATEMATICA E GESTIONE PRICING AND HEDGING GLWB AND GMWB IN THE HESTON AND IN THE BLACK-SCHOLES \MITH STOCHASTIC INTEREST RATE MODELS Settore scientifi co-rlisciplinare: SECS- S /06 DOTTORANDO DR. Á'NDREA MOLENT COORDINATORE PROF. GIA"NNI BOSI SUPERVISORE DI TESi PROF. ANTONINO ZA'NETTE fu--r^0on' lm"_ i,fl ANNO A'CCADEMTCO 2Ot4 / 2015

2

3 t ts tr t r t s s r t r t s t r r t t r t s r r t t st t t r t t s ss s t t r t t ss t ss t r r r t t t t t r t s t st r t q t s 1 st q ss t s r t tr r t r t st rt3 r t r r t r s r t t r t t t st s s t r r r s t s r t st t t s t 1 t s tt t s r t r r ss s s s r 1 t s s r 1 t s t t t s t2 t t t s t2 r tr t t

4 t st r tr s r s st t P rt r t q t s t s s P r r t s r s s r s P t s st t2 s st 2 P t s 2 r t s 2 r t r t st s t 2 r P t st s t r t str t r r t s tr t t s r t2 r s t t r str ts r t s r t s 2 t s t t t r t r s r t s r s s r ts r 1 s t r t s r t tr t r r t2 r s t Pr Pr tr t tr t rt t2 tr t st t r t rs t t tr t t t t s t t s

5 s t t t r s s rr r t t t r t2 r t st st s t S st s t r t s r 2 r t r t r r t Pr t t r t r t r r t P 2 r t st s t r t str t r Pr P t r r s ts t t s st t t t s t st t t t st st t t t st st t t st t t s t 2 s st 2 t s t st 2 t st st 2 st 2 s t s s Pr tr t tr ts rt t2 tr t t t P r t rs t t tr ts t rr t t s t s P 2 r t2 t st st s t S

6 r t s r 2 r t r t r r t Pr t t r t r t r r t P 2 r t st s t r t str t r Pr P t r r s ts t t t r r st t t t s t st t t t st st r t t t t t r r st t t t s t st t t t st st r t t 2 t r r st 2 t s t st 2 t st st r 2 t t r tr t 2 P ts r 2 t t t r t s rr r r st t s t st t st s s 1

7 tr t t s r r s s r ts s r t s t t t t t r r 2 t t s r ts r 1tr 2 t t s s t t st r s t st r t r 2 r s t t t r t t r st r t s t r t tr s tt rs s r r r r s ss t t t t r s r r t s t s r t s r 2 t r t s r t r s r 2 t r r st rs t s t t r s r t r t s t 1t ts s r t t r t r s s t t2 t t t t s t s t r t t r r t s r t t r s 1 t 2 t s r r t r t r ss s r s s t s r t r q st r r t t s t t r st rs s t s t r t st r st t t r ts t r t s s r ts r r t s t r s r ç s t st s r ts t t r t s t t s t t r st t r s t s r t2 r r r r t r t r t s r s r tr ts t ts t r t r s r t 2 r 2 t t t t s r t 2 r t s r 2 s rt r t 2 r ttr t r ts s 2 t t r t r t r r s t s s 2 r 2 t r s r s r r t s r rt ss 1 t r ts t t s t s t s t s r s t r t r s t t r r s s t s r t r st s t s t t r t s s t r ts t r r s s t r t s t2 s t r r t s t t r rt r 2 r t s t 2 r t t st r q r 2 t st rs t t s t t r st t r r t t r t r t t r t t s P t s s r s t 2 r s r r s ts t r t s r rs 2 s 1 t s t r s t st s r t t t r t s t s r r t r r s r r r s 2 s 2 t 2 s r t t s r s r t r ts 2 P s t t r t r

8 tr t 2 r s r s t t t r t s t 1t s r r s t t st st s st st t t2 t st r st st t r st r t t s t t s s s s t r s r rs s t r s t s rs r t r s t Pr ss r t tt 2 t s s s r s r P è é r t t é t q s tr P r s t s rs r r t s t r tr t st t s t st st t r st r t rst tr t st t t r str t 2 t 2 r r t r P t r s t t tr t r t t t t t rst s r t r r t r t s ss t t t P s t t r str t 2 s s t s t s t t t r s r s t r r t s r r rt t2 s s r s t r r t s t r ts r r t s 2 r tr t r t 2 r t r t t tr 2 r t t r s t s t t r t r t t st rt3 st sq r s r r ss st rt3 r s ts r r s r rs r r t t t r t t r tr t st t r t rt t st t s t s r t r t s r s t t ts st st t t2 st st t r st r t r r s t t s s t t2 t t r s r t rs s r t r t s t r t tr t r s t r 1 s s t r t s t s 2 rs tr t s t t s rs r t t q r tr s rt t t r t s r ts t r s r r 2 r t s r t 2 r t r t r t r t tr t s tt t r t t P 2 r t r t r t r t s q r tr s r t t t t t 2 tt t s r r r s t t s s s r s t r t r ts s t r t t t t s r ss 2 s r ss t r t t r t s

9 s r t2 t r rt2 r t r t s 1 ts t r s t r t s r2 t s r t s tr t t s s r t s r t2 s 2 r s r r r t2 t t s r ts r r rt s t t t s r t 2 ss 1 s r t s t 2 t r tr t s r r t s r st t 1 t r s r r2 st sq r s t r t s r s t 2 r 2 s t s r ts r s s r r ts 23 2 s r t rs t t t r rs2t t3 t t r r r s t 2 r r t s s r r P t s 2 s r t st t 2 t r s r r t rs s t r ts P 2s 2 2s t t t = 0 t r ss r GP r t s tr2 s r s t t t r P t t s 2 st st t ts s t 2 S t st t r t rs t 2 r ss t 2 t t t A t t s t B t s r t rs r t 3 t 2 A 0 = P B 0 = GP t s r t r t t st t da t = A t S t ds t α tot A t dt. r t r α tot s t t s t t s s tr t r t t t s 2 s 2 t s r 2 t r t r t s t r t r s t t t r t s r t r t t 1 r ss s t st t r t r tr t s s t t s s 2 t rs r2 t st rt t tr t t t s t r r t t s t s t t t s 2 r t t st r tr t t 2 r t s r t r s 2 r t rs t s r r s r t t t ts s 2 s t r s t t t s r s s s t t t t r r t s s 1 r t t s ts B t tr t 2 r r s s r r r t ts r rt r st s r s t s ts

10 t t r t t r s s s s s t t t t t t t s r s r s t t rt t2 s r rs s s r t t t s t2 rt t2 M : [0,T] R s t t t r t2 r s r rs t t t [t,t+dt] s q t M(t)dt t st t rs t r t t st P t r s t t t t i 1 t W ti = G t B 2+ t i, r G s st t s 2 t tr t t 2 s r t t r t s r t r 3 2 r t r γ i [0,2] s 2 t P t s rt W ti = γ i G t B 2+ t i rr s t t r t P t st t r t rs A t B t r t γ i t 2 t s rs r t (2+) t st t r t rs r t t r 2 t s rs r t (3+) t r t t r γ i = 0 t t r t s t t t tr t 2 r s ( A 3+ ti,bt 3+ ) ( i,t i = A 2+ ti,bt 2+ ) i (1+b ti ),t i. 0 < γ i 1 t P t r s t r r t t t st r r t t st t r s r ( A 3+ ti,bt 3+ ) ( ( ) ) i,t i = max 0,A 2+ ti W ti,b 2+ ti,t i. γ i ]1,2] t P t r s r t t 1 tt s r s 2 r r t s γ i = 2 rr s s t t t s rr r t r t s A = max ( 0,A 2+ t i G t B 2+ t i ). W ti = G t B 2+ t i +(γ i 1)A (1 κ ti ). r κ ti [0,1] s t2 r t r t tr t t st t r s r ( A 3+ ti,bt 3+ ) ( ( i,t i = max 0,A 2+ ti G t Bt 2+ i (γ i 1)A ),(2 γ i )Bt 2+ ) i,t i = ( (2 γ i )A,(2 γ i )B 2+ t i,t i ). s s r r ts 23 2 s r t rs t t t r t rs2t t t r r r r t s s r r P t s 2 s r t st t 2 t r s r r t rs s t r ts t r r s r rt s t t t t s tr s t r s 2 s r t st t t r t s rr r r ts rs2t 1 t r s 2 r s r 23 t rs s t s t r ts t s s t t r s t s tr ts

11 1 t t t = 0 t st r 2s t r P t t s r 2 r P s st st t s s S t r t t tr t t2 s s s t t t r 1 sts s t s r t t s {t i,i = 1,...N} s t s t t s t t s ts t st r t r s t s s s t i = t i+1 t i st t t s t t 2 t t tr ts t t s r t r s t2 t t s s t s t 2 t t t tr t t A t t t s s q t t 2 t 1 t s( ) t t r t rs st t r t t r t 1 t s (+) t t s r t rs t r t t t s s t t t tr ts st t r t rs t 2 r t A t,a 0 = P s t B t,b 0 = P t t s r s r t 3 2 t t t t r T 1 = 0 t t t tr t T 2 = t N t t t st ss t r s 2 t rst t r t s t 1 = 1 y r t 1 = 0.5 y t t t t i t P t r s s W i [ 0,Bt ] i r t2 t P s t 2s r s t t t r W i 1 s t r t t t2 s s t 2 r 2 t st r s { W i W i G f (W i ) = W i κ(w i G) W i > G, t st t r s r ( A + ti,b + t i,t i ) = ( max ( A ti W i ),B ti W i,t i ). t t T = t 2 t st t r s t s t P s 2 q t FP = max(a T2,(1 κ)b T2 ). 2 st t r t rs r t A t A 0 = P r t t r G st t r A t s t 2 q t t r G s t t t T 1 2 ts t t t T 1 + t t T 2 tr t t s t2 r ts s t ss r2 t t s t s ts s st t q t t r P t t tr t

12 1 s s 2 t tr t s ts r t r t r i r t rr r [0,T 1 ] t t T 1 T 1 > 0 t t s r s t t G s s t ] A + T 1 = max [P (1+i) T 1,A, G = T1 A + T 1 m(t 2 T 1 ). r t s t2 r t t P t r s t t tr t t s t t r t G r t r t t tr t t st t r t rs s t ( A + ti,g +,t i ) = ( max ( 0,A + ti G ),G,t i ). t s t 2 r t P 2 t r t t tr t r 2 t s s 2 t t 2 q t st st s r t S FP = G+(1 κ)max ( 0,A t G ). r t t s r t st t S t t tr t st st s t st rt t s r st st t t2 ts 2 s s { ds t = rs t dt+ v t S t dz S t S 0 = S 0, dv t = k(θ v t )dt+ω v t dzt v v 0 = v 0, r Z S Z v r r t s d Zt S,Zt v = ρdt s ρ = 1 ρ2 s t t s t st rt t s s t s r t st st t r st r t r ss 2 s t r 2 t r st r t s ds t = r t S t dt+σs t dzt S S 0 = S 0, dx t = kx t dt+dzt r X 0 = 0, r t = ωx t +β(t), r Z S Z r r r t s d Z S t,z r t = ρdt s ρ = 1 ρ2 Pr t s r t s t t s r r t t r t s t P t s t s t s r 2 r s t 2 tr s s t s r tr s P r r s t s r2 t s r t s t s rt s r s t tr s s

13 1 r tr s t t r t2 t r ts st t ss tr s r s t r r t s t t s r t 3 t st st t t2 t st st t r st r t t r r tr q r tr s t t t 1 t 2 t rst t r ts t ss t r ss s t t s s t s 1 s t t r r r t str t t tr s 2 r t r t s t s tr 2 r t s t s tr t r r t t t2 r s t 2 t t r st r t s s r t r str t r t t tr s t r t s t r s r t r ss v (r s r X) s r r t r 1 t t t t2 r s t t r st r t r t st t N N (0,1) B B(0.5) t r ss S t+ t t t s t s t r 2 s 2 S t+ t = S t exp[ (r ρ σ kθ) t+ ( ρ σ k 1 2 (r S t exp[ ρ σ kθ) t+ ( ρ σ k 1 2 ) ( v t+ t+ v t 2 ) ( v t+ t+ v t 2 r t s t S t+ t = S t exp[( rt+ t + r t 2 t r t r t ) t+ ρ σ ( v t+ t v t )+ ] (1 ρ 2 ) t v t N ) t+ ρ σ ( v t+ t v t )+ ] (1 ρ 2 ) t v t+ t N ) σ2 ( t+σ( Xt+ t + 2 X t (k t 1) ) ρ+ t ρn) ]. B = 0, B = 1. t r t r t s s t st t s t r t s r s t t s t t s r t s t st t r r t s t r r r s 2 s r t s t r r t 1 t s r t 3 t s r s t str s 2 r P t s t s r s t r t s s tr t r r t t t2 t t r st r t r P t t t t r s s t t tr s s t r t rr t t t t t2 r t t r st r t t r 2 t tr s r t s r q r r t st s t Y E t = ln(s t ) ρ ω v t, Y E 0 = ln(s 0 ) ρ ω v 0. ( dyt E = r v t 2 ρ ) ω k(θ v t) dt+ ρ v t d Z t S.

14 1 Y E r ss s s 2 s t s t rr t t t r ss v r 3 t v t t s t P t t s t s 2 t tr r 2 t s t Y U t = ln(s t ) ρσx t, Y U 0 = ln(s 0 ), t t r s ) dyt U = (r t σ2 2 +σρkx t dt+σ ρd Z t S. Y U r ss s s 2 s t s t rr t t t r ss X r 3 t X r t t s t P t t s t s 2 t tr t t r t s t P s r t t s s 2 V He t + ρ2 v ( 2 VHe EE + r v 2 ρ ) ω k(θ v) α tot VE He rv He +α m R(t)exp (E t + ω v ρ ) = 0, Vt HW + ρ2 σ 2 ) 2 VHW UU + ( r σ2 2 +σρk X α tot VU HW rv HW +α m R(t)exp ( U t +ρσ X ) = 0. 2 r P t s r t r2 r t t r s r t r s t2 st t2 r s ts s r P t t s t tr t s 2 P r s t s r P s t t t s s 2 s t rs t r t t t st t t V r s t P V t + vs2 2 V 2 S 2 + ω2 v 2 V 2 v 2 +rs V S +ρωsv 2 V V +k(θ v) S v v t s t V t + σ2 S 2 2 V 2 S 2 + ω2 2 V 2 r 2 +rs V S +ρωsσ 2 V V +k(θ r) S r r rv = 0, rv = 0. t s q t s s s t s t t s s t t s r t 3 t r (S, v) r s t 2 (S, r) t 2 r t r 1 t 2 t t t r rt r r r t s s t s s t θ = 1/2

15 1 s ts t r r t s t s t t t r t r t r α tot r s r t sts s r t r t s t r ts t 2 1 t t t t r t s r t 1 t r t r t q t2 t r s ts t 2 t r t t s r t s t st t s t r s ts r r2 t t s t s t r s st t t 2 r r t r s r t r s s r t r r t t 2 s t r t s s r r t r st sq r s r r ss t t2 r 1 t r t 2 t t V t s s s t t t t s t 2 t r t s r r t t s t t t P t s t t r str t 2 t 2 t t s s t 2 t s tt r r r t r st t t r ss r s t t r rt r t 2 r P t r r t st r s ts r s ts t s r r t sts r r s t t t s s t 2 r t 2 r s t t t t t r r t s s s r 3 s s t r r s ts t r t s t r r s P 2 2 r t s 2 s t s t s t r t s r r s t t r r s ts t r t s r ts t r t t2 s t r ts str t r s t r t s t s t r r t st r t s t 2 r t t t r s r t r t st t s t s t st t rs t s s r t r s r t r ts r t t t 2 s r s r Pr t tt r r s r r s s st s ts r r2 t s t P è r s r r t s t t s t

16 1

17 t r r t s s r t s t r s r t r t s t t r t s t r r r t s r s t s t r t t2 t r r s P 2 2 r t s r s t s t r s t t r r s s r t t t s t r 2 tr t ts t t s t t r s r tt r r r t r st r t t r r r s r r t t r s t r s t s r st t t r t s s rt s s r 2 t r t s r 1t s 2 s st t t s t t r t s r s t t s s t t s rt s t r s r t rs t t r s s r ts t s s r t r t t r t s t r2 1 t ˆ I = f (x)dx [0,1] d r f ( ) s r t r r s t I s E[f (U)] r U s r 2 str t r r [0,1] d 2 t tr r rs (U i,i 1) s 2 r 2 str t s t r r s [0,1] d t t r S N = 1 N N f (U i ) i=1 r s t E[f (U)] st s r 2 N t s t t2 s s sts r2 s r t t r 1 t I r r r t r N t s t t r

18 r t s s r s r t t t t r s r 2 t r t [0,1] d f s t ss r 2 s t t r r t t 2 s t t t r t t ts r t r t t r t s r t t t r st r t s tr t r r s t s2 t t str t N (S N I) r N t s t + r s r ts t tr t r s s rr2 ss s r s r s2 t t st t s r ( s r t s s t t t r r t t r t s r t r s 1/ ) N r r t r 1 t rr r s r 2 t r s N s r r t r t2 s t t s t 0 N t s t t2 rt ss t t r t s r s r t s 2 t s t t r t s r st s r t r 2 r [0,1] d t r d = 40 t s r t t t q r t r t s r q r t 2 ts t r t s t s s t s t r q r s t s t t r t rs (X 1,...,X d ) s r t s r t t t r t t t r t s s t r r t r r ss r r t r ss t t s r tr s r 3 t r s ss r st r t s r s s t t s r t t r st t s r t s 2 t s t st t s s r2 r s 2 t r 1 t rr r s r t r t r s s t t s s s t s st t st t t r r t t r t s t s t r s t r s ts st 2 t s t r t s t s t r r t r s t s N t r t t r s t s r r 2 t t r t r 2 r tr r rs t (X i,i 1) s q t t 2 str t r r s s t t E[ X 1 ] < + 1 lim n + n (X 1 + +X n ) = E[X 1 ] a.s. r r r s X 1 s t t r r r t tr r rs s t 2 X 1 s 2 str t t t s ts s t2 s 1 π(1+x 2 ) r r t s st t s t rr r ǫ n = E[X] 1 n (X 1 + +X n ). tr t r r s s t s2 t t str t Nǫ N

19 t r t s r tr t r t (X i,i 1) s q t t 2 str t r r s s t t E [ X1] 2 < + t σ 2 t t r X1 t t s [ σ 2 = E (X 1 E[X 1 ]) 2] = E [ X1] 2 E[X1 ] 2. ( ) n σ ǫ n r s str t t G r G s ss r r t 0 r 1 r r t s t r t s t t r c 1 < c 2 ( σ lim P n + n c 1 ǫ n σ ) ˆ c2 c 2 = n c 1 e x 2 2 dx 2π. r t 2 t r 1 t r r n r t ǫ n s ss r r t 0 r σ 2 /n t t t t s ss t t rr r s t s rt 2 r t ss r r s R rt ss t r r s s t t r r st s r t t P ( G 1.96) r r t r t2 s t 0.95 r s r t ǫ n 1.96 σ n t st t t r r s r s t s s t t t s r t st t t st r t σ t r r ts s2 t t s 2 s t s s s s r t 1 t t t X r r (X 1,...,X n ) s r t X t 2 X N t t r st t r E[X] 2 X N = 1 N st r st t r r t r s 2 N X i. i=1 σ 2 N = 1 N 1 N i=1 ( Xi X ) 2 N t s 1 r ss s t t r r t s t t t σ N 2 r r tt s ( ) σ N 2 = N 1 N ( ) X 2 N 1 N i X 2 N. i=1

20 r t s s r t s st r t s s t t X N σ N t s 2 N i=1 X i N i=1 X2 i r r r t t E [ X 2] < + t lim N + σ N 2 = σ2 st s r 2 t t E [ σ N] 2 = σ 2 t st t r s s s s t r 1 t t r 2 r σ 2 σ N t st r t r t r t2 r t 0.95 E[X] s t t r t r 2 [ X N 1.96 σ N, X N σ ] N. N N t r2 tt t t t s 2 t t σ N s r 2 r r s st t t rr r 2 r 1 t E[X] t X N ss t2 t rr r st t t s r st s r2 s t r t r t s t t s ss s t s t s t s rt tr t t s t s s r s t t 1 st t s r s t r t s r r t r t t s r t s r t s t r r s 2 s s tr t r ss r r s ss t rs t t r t s t r s t s r t s r s q s s r rs s st t st r rt s t s s q s t t 2 r 2 str t r r s r r t s r 2 r r t rs s r st r t t tr t t t s r s s t r r s t r r t t r st s q s t r r s r 2 str t [0, 1] t s st t st 2 s t s r r t t s 2 r t r r t rs a b m U 0 t r U 0 s t s t r t r m s t r r t r s t t t t r s r s q s t r t t r U n = (au n 1 +b)( m). r t t s s s t t U 0 t t r r st r s t r r s r t t s r r r t r s sts t 2 t r st r t r t r s s q s st t st 2 s st s q s t t 2 r 2 str t r r s r s t r t r t r s r s t t s r r r t r s st t st 2 t r rt2 s st s t s s r t sts r 1 s s r s ss s t t r t r t s t sq r t st r t r r t st r r t t st t r r s 2 t t 2 t s s t t t s r s ts r t r 2 str t r r s

21 t r t s r t r s s r t st s r t t t 2 t s s r a b m r t t ss st r ss r R s t t t s t2 2 ) 1 exp ( x2. 2π 2 st 2 s s t t ss s t 1 r t s t s s t r s t Pr s t t U V t t r r s r r 2 str t [0,1] t X Y 2 X = 2ln(U)sin(2πV), Y = 2ln(U)cos(2πV). X Y r t t ss r r s t r rs t t s t s t N t r 3 t s t s r ss s t t t rst r 3 t s s r r 2 r r r t r t 2 t X Y s t r t r s t t r t s t t t rr s t s X Y r s t r 3 t s r t t 2 t t t rst r 3 t s s t ss t r s t ss t r X = (X 1,...,X d) t 3 r t d d r tr 1 C = (c i,j ) 1 i,j n t c i,j = E [ X i X j] t s ss t r s s [ tr 1 C s r tr 1 s t s s t s r v R d v.cv = E (v.x) 2] 0 t r r s ts r r r t t t r 1 sts d d tr 1 A sq r r t C s t t AA = C, r A s t tr s s tr 1 A = (a i,j,1 i,j n) r r t sq r r t s t s2 tr tr 1 2 s 2 t t a ij = 0 r i < j A s r tr r tr 1 r t s 2 t s s ts s2 t s t t A s q 2 t r 2 t r t

22 r t s s r r t s 2 r s i r 2 t d r j < i d r 1 < i < j r 2 i d a 11 = c 11 a i1 = c i1 a 11. i 1 a ii = cii a ij 2, j=1 a ij = c ij j 1 k=1 a ika jk a jj, a ij = 0. s 2 t sq r r t s t s2 tr tr 1 s s t s 2 r t ss t t G = ( G 1,...,G d) s t r t ss r r s t r r s2 t s s r 2 s t t Y = AG s ss t r t 0 t r tr 1 2 AA = C s X Y r t ss t rs t t s r tr 1 t X Y r t s s s t t s t r t r t ss t r r t t t t r ( G 1,...,G d) t ss r s s 1 r t r t t r X = AG r r t t t t t r t s t r s ts t r t r s t t t r t σ/ N r s t r 2 t r t t N s t s s s q t s t s t t 2s s t r st t r r t t q t t2 t t s t 1 t t r r s s r r t s s t s r r t t q s s t t t r t s s s r t r s t s t q s t t t ts s r ss r t t t rs 2 s r s str t 1 t I = ˆ 1 0 g(x)dx. U s r t t r [0,1] t 1 U s t s s U t s I = 1 ˆ 1 [ ] 1 (g(x)+g(1 x))dx = E 2 2 (g(u)+g(1 U)). 0

23 t r t s r r r n t r r s U 1,...,U n r [0,1] r 1 t I 2 I 2n = 1 2n (g(u 1)+g(1 U 1 )+ +g(u n )+g(1 U n )). t r t 2 t s t r t t t st r t 2n r s I2n 0 = 1 2n (g(u 1)+g(U 2 )+ +g(u 2n 1 )+g(u 2n )). r t r s I 2n I2n 0 s r t t t s ss t t st r r r s t t f t t t t t s t t r r s s s s t r st ss t s2 t t s s t t t r t st r st t r s r ( I2n 0 ) 1 = 2n r(g(u 1)), r s r(i 2n ) = 1 ( ) 1 n r 2 (g(u 1) g(1 U 1 )) = 1 4n ( r(g(u 1)+ r(g(1 U 1 ))+2 (g(u 1 ),g(1 U 1 )))) = 1 2n ( r(g(u 1))+ (g(u 1 ),g(1 U 1 ))). r(i 2n ) r ( I 0 2n) 2 (g(u1 ),g(1 U 1 )) 0 r t t f s t t t s s 2s tr t s t t r t s t t t r t s s tt r t t st r s s r 3 s r t r t s s t tr s r t (U 1,...,U d ) (1 U 1,...,1 U d ). r r 2 X s r r t ts s R d T s tr s r t R d s t t t T (X) s t s s t X str t t t t t s t q t2 E[g(X)] = 1 E[g(X)+g(T (X))]. 2 2 (X 1,...,X n ) r t s t X s r t st t r I 2n = 1 2n (g(x 1)+g(T(X 1 )+ +g(x n )+g(t (X n ))) r t t I 0 2n = 1 2n (g(x 1)+g(X 2 )+ +g(x 2n 1 )+g(x 2n )). s t t s s r r t t t st t r I 2n s tt r t t r 2 (g(x),g(t (X))) 0

24 r t s s r t st r t q t s 1 st q ss t s t T > 0 1 t r t t r t2 r 1 t s s r r t2 s (Ω,A,P) r t tr t (F t ) t 0 n s F t r t t t s W t = ( Wt 1,...,Wt d ) s s r Y : Ω R n r r r F 0 s r t t s σ : [0,T] R n R n d b : [0,T] R n R n r tt t s s t st st r t q t { dx t = σ(t,x t )dw t +b(t,x t )dt = Y X 0 t s t s t t F t t t s R n r ss (X t ) t [0,T] s t t T 0 b(s,x s) + σ(s,x s ) 2 ds < + s t [0,T],X t = Y + t 0 σ(s,x s)dw s + t 0 b(s,x s)ds r s t 1 st q ss r t s s t st st rs t 2 s t3 t r r t s 2 s r 2 t s s r tô s s t t { x R n, σ(t,x) + b(t,x) K(1+ x ) ( ) K > 0, t [0,T], x R n, σ(t,x) σ(t,y) + b(t,x) b(t,y) K x y. t s 2 s t (X t ) t [0,T] X t s t r s t [ t t [0,T],X t = X t s r r E Y 2] < + t E [ ] sup X t 2 C t T r C s st t t t s t r Y ( 1+E [ Y 2]) r t t r t2 T str K r t r 2 X s 2 C = E [ e rt (X T K) +] t s s r r s t2 t s s 2 t r r 1 t s t s t r 2 ) (r σ2 X t = X 0 e σw T+ T 2 t st t C 2 t t r t t t 1 t2 r s s tt t r 1 st st t t2 t s s t r rt s t st t t r t s r t 3 t t s s 2 t s t r r X T r 1 t X T t r t s sts t r 1 t C 2 1 M M e rt ( Xi T K ) + i=1

25 t r t s r t X T i r s r rr r r t r s t r tt s s t t r s s r t 3 t rr r st t st rr r C 1 M M i=1 e rt ( Xi T K ) + [ = E e rt (X T K) +] [ E e rt ( XT K ) ] + + [ +E e rt ( XT K ) ] + 1 M M e rt ( Xi T K ) +. r st t st rr r t r s st s r t tr t t r s E[ ((XT K) +) 2 ] < + s M s r r t s t r s s r G N 1 (0,1) r t e rt ( ( r XT K ) ) + G M t s s r rt t t t [0,T] N s s s N 1 q s ts (0,T) r k {0,...,N} t k = kt N t s s ts t s t q t T/N s r t dx t = σ(t,x t )dw t +b(t,x t )dt, X 0 = y R n. r t s s t s r t 3 t { X0 = y X tk+1 = X tk +σ ( t k, X tk )( Wtk+1 W tk ) +b ( tk, X tk ) (tk+1 t k ). 1 t t s t t r t t t t s t t t 1t t st t t t s s t s t t r ts ( W tk+1 W tk ) i=1 0 k N 1 t t r ss N d ( 0, T N I d) r Id s t d s 3 t t2 tr 1 r s t t r s ts t r t s s t tr t t rs t r t 2 X t = X tk +σ ( t k, X tk ) (Wt W tk )+b ( t k, X tk ) (t tk ), 0 k N 1, t [t k,t k+1 ]. r s t t t r s s s t r st r s ts t t r t r t tr r t t s t ts b σ r 1 t t r t t t st t tr s r r t2 2 t s s r t s t s

26 r t s s r r tr r t t s s s t t t t σ, b r 2 t 2 t s s s t r t s s s s t t α,k > 0, x R n, (s,t) [0,T], σ(t,s) σ(s,x) + b(t,x) b(s,x) K(1+ x )(t s) α. r β = min(α,1/2) p 1, C p > 0, y R n, N N,E r r γ < β N γ sup t T Xt X N t [ sup t T X t X t N ] ( 2p C p 1+ y 2p) N 2βp. r s st s r 2 t 0 s N s t t2 s sup X t X N t ( [ 2p = E sup t T X t X t N ]) 1 2p 2p C N β s 2 t t t str r t t r t s 1 N β P rt r 2 t ts t t t r α 1 2 t str r t s 1 2 r t t f s t3 t t s t3 st t K t s s s t t t E[f (X T )] t r s r s t t E [ f (X T ) E ( f ( XN T ))] C N β. rst q t2 s sts r t s t t r t 1 t s 2 t 1 t t s t s t r t s s r2 r t 2 r s t E [ f ( XN T )] s s t E[f (XT )] t s s q t t r 2 t X N T s s t t X T s t r t r t t r s r str t s s t 2s s r s t sts t s s t t f tr r t s 2 s t r t r s t s rst r 2 2 r r r t t b σ t t s C r [0,T] R n t r t s t t f : R n R C t r t s 2 r t a = (a 1,...,a n ) N n, p,c > 0, x R n, a 1+ +a n f x a (x) 1 C(1+ x p ) xan n t r 1 sts s q (C l ) l 1 r rs s t t r L N t rr r s E [ f ( )] XN T E[f (XT )] = C 1 N + C 2 N C ( ) L 1 N L +O N L+1

27 t r t s rt r t s s t t [ ( )] E f XN T E[f (XT )] C N r s s t str r t r s ts r E [ f ( XN T )] E[f (XT )] C N. t t 2 t s s r s t α = 1 st rt3 r t r r t r t t r t r s s r s 2 s r r 2 ss ts r t t r t s s t st r ss s s t s r s ss t t r t q t2 r r s s ss P t s r t r s t rs tr r t s s t r t q s st rt t s t r t t t r 1 r s t s 2 t s s ts s ts t r 1 t t r t 2 s r t s t t rr s s r t t st r r s t t t t t 2 r r r t 1 t t s t t r t s 2 r r s t t2 r t t t r t q s 2 tr t t s r s t s st sq r s r r ss t s t t s s r 12 r t 1 t t s s t t s 2 st rt3 s r t t r t s t t tr t t rst st r st r 1 t t s s t r t r t st r t s t 2 t st r s r t t r r r s t t st rt3 r t t t 1t s r t t st s r r st s (Ω,A,P) q t s r t tr t (F j ) j=0,...,l r t s t t r L t s t s r t t r 3 t 2 (Z j ) j=0,...,l r ss r Z 0,Z 1,...,Z L r sq r t r r r s r t r st t sup E[Z τ ], τ T 0,L r T j,l t s t s t st t s t s {j,...,l} ss t st t r2 r r r t t r tr t (U j ) j=0,...,l t 2 r ss (Z j ) j=0,...,l 2 U j = ss s τ Tj,L E[Z τ F j ], j = 0,...,L. 2 r r r r tt s s { U L = Z L = max(z j,e[u j+1 F j ]), 0 j L 1. U j

28 r t s s r s U j = E [ Z τj F j ] t τ j = min{k j U k = Z k }. rt r E[U 0 ] = sup τ T0,L E[Z τ ] = E[Z τ0 ] 2 r r r r tt t r s t st t s τ j s s { τl = L τ j = j1 {Zj E[Z τj+1 F j]} +τ j+11 {Zj <E[Z τj+1 F j]}, j L 1. s r t t r s st r s r t r t t r s t s 2s ss t r t st rt3 t t s r q r s t t t r 2 r r r ss t t t r s (F j ) r (X j ) j=0,...,l t st t s (E,E) s t t r j = 0,...,L Z j = f (j,x j ), r s r t f (j, ) t U j = V (j,x j ) r s t V (j, ) E [ Z τj+1 F j ] = E [ Zτj+1 X j ]. s ss t t t t st t X0 = x s t r st s t t U 0 s s t r st rst st t st rt3 r t s t r 1 t t t 1 t t t r s t t X j 2 t rt r t t s r t 2 t r t s X j t s s r s q (e k (x)) k 1 s r r t s E s t s 2 t t s ss t r j = 0 t j = L 1 t s q (e k (X j )) k 1 s t t L 2 (σ(x j )) ss t r j = 0 t j = L 1 m 1 m k=1 λ ke k (X j ) = 0 s t λ k = 0 r k = 1 t m r j = 1 t L 1 t 2 Pj m t rt r t r L 2 (Ω) t t t r s r t 2 {e 1 (X j ),...,e m (X j )} tr t st t s τ [m] j τ [m] = L j τ [m] j = j1 { Z j P m j ( )} +τ [m] j+1 1{ Z [m] Z j <P τ j m j+1 ( Z τ [m] j+1 )},j L 1. r t s st t s t r 1 t t t ( [ ]) U0 m = max Z 0,E. Z τ [m] 1 t t Z 0 [ = f (0,x) ] s t r st s st t r t s t t t r 2 E Z [m] τ 2 t r r r ss t t s t N ( 1 ) ( ) ( ) t t s X (1) j, X (2) j,..., X (N) j t r (X j ) t 2 Z (n) j

29 t r t s t ss t 2 r j = 0 t L n = 1 t N ( ) st t r rs 2 t st t s 2 τ n,m,n L τ n,m,n L = L = j1 { Z (n) j α (m,n) j e m ( X (n) j τ [m] j ( ( Z (n) j = f j,x (n) j )} +τ n,m,n j+1 1 { Z (n) j <α (m,n) j e m ( X (n) j )) r t n )},j L 1. r x y t s t s r r t R m e m s t t r t (e 1,...,e m ) α (m,n) j s t st sq r st t r α (m,n) j = arg min r t t r j = 1 t L 1 α (m,n) j r 1 t r U0 m N a R m n=1 U m,n 0 = max ( Z (n) τ n,m,n j+1 a e m( ) ) X (n) 2 j. R m 2 r t r s τ n,m,n j r t ( Z 0, 1 N N n=1 Z (n) τ n,m,n 1 t t rs r t t r 2 1 m U m,n 0 r s st s r 2 t U m 0 s N s t t2 t t U m 0 r s t U 0 s m s t t2 ). t t st t s t s r t st r t t t 2 s t r r t r s t s r t st t s s t r r r s s st s t st s s t s r t t t t t2 r 2 ss t t r 2 ss t ts r r t 1 t t t r rt ts 2 s { ds t = rs t dt+ v t S t dzt S S 0 = S 0, dv t = k(θ v t )dt+ω v t dzt v v 0 = v 0, r Z S Z v r r t s d Zt S,Zt v = ρdt s s t r r r s s s r r s ts s t r r r s s r t 1 rs ss r ss t t 2 r str t ts r t rs t t s t t s r r rs str t t t t s r r s s t t 1t s t tr

30 r t s s r 2 2 t r t s t r s ts t s s t r s s r r s r r r s s t 1 s r t str t t r t s s s st s r t s r st t s t2 s r t 3 t r ss s t 0 r t sq r r t s t s t3 s s s s s t r s r t s t s r r t 2 t t s r t sq r r t s t s t r r t 2 t r t r t s s ss r t r t s t s 2 ts t2 t s rt r s σ r ω 2 4k s r s t r t s s s t r r s t t s rt t r st r t 2 r st t s r t st s r t t t s t2 r t r s r t st t t2 t st r st 2 t r r s ω t r t r ss s s t t r 0 r t sq r r t s r2 s s t s s t t 2 2 st t s s t r t r r ω t t t t r s t r r r t r s t t s ss t s t t t s s r d W s st r r t (W t,t 0) t t s q (F t ) t 0 ts t ss t tr t t t s t s s t s t s t d N D R d t t ss r s s t2 t r t d t r s 2 2 s r D = R d 1 + Rd 2 t d 1 +d 2 = d r 2 t 1 α = (α 1,...,α d ) N d α = α α d α = d l=1 α l tr t t s d } C {f (D) = C (D,R), α N d, C α > 0,e α N, x D, α f (x) C α (1+ x eα ) r s r R d s 2 t t (C α,e α ) α N d s s q r f C (D) s x D, α f (x) C α (1+ x eα ) t ss t s ss t s ss t t b : D R d σ : D M d dw (R) r s t t r 1 i,j d t t s x D b i (x) x D (σσ ) i,j (x) r C (D) r x D tr t r R d t 0,X x t = x+ ˆ t 0 b(x x s)ds+ ˆ t 0 σ(x x s)dw s. ss t t r 2 x D t r s q s t r t 0 t r r P ( t 0,X x t D) = 1. r t r t r ss t t t s 2 f C 2 (D,R),Lf (x) = d b i (x) i f (x)+ 1 2 i=1 d d d W i=1 j=1 k=1 σ i,k (x)σ j,k (x) i j f (x).

31 t r t s f C (D) t s t t r r t2 ss t s b σ t t r t t s L k f (x) r D t C (D) r 2 k N t s 2 r s rt t t t r t r L s t s s t r q r ss t s D t s 2 r s t s b(x) σ(x) s t s s ss t s t s t r t s r t 3 t s s r t t s 1 t r 3 T > 0 s r t t t t t r [0,T] t r r t s r t 3 t t n i = it/n r i = 0,...n t 2 tr s t r t s (ˆp x (t)(dz),t > 0,x D) D s s t t ˆp x (t) s r t2 D r t > 0 x D ( s r t 3 t s ) s t tr s t r t s(ˆp x (t)(dz),t > 0,x D) s s q ˆXn t n,0 i n D r r s s t t i r 0 i n ˆXn t n i s F t n i s r r r D [ ( ) ] t ˆXn t n s 2 E f ˆXn i+1 t n F t n i+1 i = D f (z) ˆp ˆXn t n i s ˆX t n n T/n i (T/n)(dz) t s 2 r t r t > 0 x D ˆXx t r r str t r t t r t2 ˆp x (t)(dz) s r t 3 t s ˆX t n n 0 i n i s t s t r 2 t r 2 ts t ts tr s t r t s t ν t r r s t s t CK (D,R) t s t ( C r ) t s t t s rt D t x D s r t 3 t s ˆXn t n,0 i n i s ν t r r s r t ( Xt X,t [0,T] ) [ ( )] f CK (D,R), K > 0, E[f (XT)] E x f ˆXn T K/n ν. ( )] q t t2 E[f (XT [f x)] E ˆXn T s t rr r ss t t f t r r r s r s t t s s s r ts r rt s s rst r t t r ss s { dxt x = (a kxt x )dt+σ Xt xdw t = x X x 0 t r t rs (a,k,σ) R + R R + r r t t t s t r ss r r x > 0 2a σ 2 t r ss (X t,t 0) s 2s s t 1 t

32 r t s s r tr s σ = 0 ss σ > 0 s r ss s d W = 1 D = R + tr ts r t r f C 2 (R +,R), L CIR f (x) = (a kx) x f (x)+ 1 2 σ2 x 2 xf (x) t t s t s s t r q r ss t s D t q t t s ψ k (t) = 1 e kt, ψ 0 (t) = t k K 3 (t) = ψ k (t)1 {4a/3<σ σ 2 2 <4a} 4 a+ σ a σ σ ψ k (t)1 {4a<σ σ2 2 } 4 a σ σ a+ σ σ +ψ k (t)1 {σ 2 4a/3} a σ 2 /4 2 [ t Y r s r t r s t t P Y = 3+ ] [ 6 = P Y = 3+ ] 6 = [ P Y = 3 ] [ 6 = P Y = 3 ] 6 = s r s s 6 s t ts t rst s rst ts st r ss r s r t t r s r t 3 t s s X CIR 0 (t,x) = xe kt + ( a σ 2 /4 ) ψ k (t), ( ( x+ X1 CIR σ ) ) + 2 (t,x) = 2 t X(t,x) = x+t σ 2 a σ2 4 rst t r t r r t 2 2 t r s t r s t r s t s r r s X CIR 0 ( ( t/2,x CIR 1 N,X CIR 0 (t/2,x) )) = ( ( ) ( = e kt 2 a σ2 t ψ 4 2 ) +xe kt 2 + wσ 2 ) 2 ) +( a σ2 ψ 4 ( ) t, N N (0,1) 2 st t t s r t s st rt t x t t r r r 3 r

33 t r t s Pr s t t ε ζ r s t 2 r r { 1,1} {1,2,3}, Y s t 2 r t t r s t r σ 2 4a r s σ 2 > 4a t s X ( ( ( ))) ( ( εt,x0 CIR t,x CIR 1 ty,x resp. X( εt,x CIR 1 ty,x CIR 0 (t,x) ))) ζ = 1, ( ˆX x,k=0 t = X0 CIR t, X ( ( )) ) ( ( ty, εt,x1 CIR ty,x resp. X1 CIR X( εt,x CIR 0 (t,x) ))) ζ = 2, ( ( ty, )) ( ( ty,x ( X CIR t,x1 CIR X(εt,x) resp. X1 CIR CIR 0 t, X(εt,x) ))) ζ = 3, 0 s t r t 0 x K 3 (t)t/ψ k (t) r x K 3 (t) t s ˆX t x kt = e ˆXx,k=0 ψ k (t) s t t t r r r s x [0,K 3 (t)] r 1 t t t s r t r r t t t s t t r rst ts t r 1 t t r 0 t t2 r r t ts t [ µ x 1,t = E µ x 2,t = E (Xt x ) 1] = xe kt +aψ k (t) [ (Xt x ) 2] = ( µ x 2 1,t) +σ 2 ψ k (t) [ µ x 3,t = E (Xt x ) 3] = µ x 1,tµ x 2,t +σ 2 ψ k (t) [aψ k (t)/2+xe kt] [ 2x 2 e 2kt +ψ k (t) s = µx 3,t µx 1,t µx 2,t ) 2, p = µ x 2,t (µ µx 1,t µx 3,t ( µ x ) 2 2,t ) 2 x 1,t µ x 2,t (µ x 1,t x ± (t,x) = s± s 2 4p, π(t,x) = µx 1,t x (t,x) 2 x + (t,x) x (t,x) Pr s t t U U ([0,1]) s r t s ˆX x t = x + (t,x)1 {U π(t,x)} +x (t,x)1 {U>π(t,x)}. s s s s t t t t r r r s x [0,K 3 (t)] t t t ) ( (a+ σ2 3xe kt +aψ k (t)) ] 2 r s s t r r r s t K 3 (t) s ˆXx t t s Pr s t r s Pr s t r x K 3 (t) r s x < K 3 (t) ˆp x (t)(dz) t ˆXx t ( ˆp x (t)(dz) ) s t t t r r r s r L CIR R + r r t s ˆXn t n,0 i n ss t t t tr s t r t s 0 (ˆp x (t)(dz),t > 0) st rt r ˆX t n n = x R + s t r r r s 0 [ ( )] f C (R +), K > 0, n N, E[f (XT)] E x f ˆXn T K/n 3

34 r t s s r t s r t st t s rt r t 2 t s t r ss t t st s r s r 2 s 2 2 t r t t r r s t t t r s s t r r r s r t t t r str t ts r t rs s s r t s tt t st t t s t s r t 2 r s r t 3 t rst r r t t st s s s t t t W Z t t r t s t s r t 3 t X 1 t X 2 t X 3 t X 4 t = X0 1 + t 0 t = 0 X1 sds ( a kx 1 s ) ds+σ t 0 X 1 s dw s = X0 3 + t 0 sds+ rx3 t 0 X 1 s Xs 3 t = 0 X3 sds (ρdw s + 1 ρ 2 dz s ) t X0 1 0 X3 0 > 0 r R ρ [ 1,1] (a,k,σ) R + R R + r ss s X 1 X 3 r r s t 2 t t t2 r ss t st r ss X 2 X 4 t r r s t t r s r t t s t ss r r r > 0 k > 0 ρ 0 t t s ss t s r t r q r r t s rst t s 2 t t t r s t t t t r2 t r s t r s r t st t t t r2 s t t t r t s r t 3 t s s r 2 ts t s r t 3 t s s s s t st r t r s 2 t t t s r 2 ts t ss t t t s r 2 ts s t r t b(x) t t t2 t σ(x) s r r t t st t s t σ(x) s t s r r t t s r t t t ts 1 t t r r t r r s s r s t s t t t r r s st t t rr r t t st r t s t ss t 2 t r s ts st t t r s t t t st r rs str t t r r r s s 2 t 2 s t r s r r r r 2 t r t 2 t r s ts t r s t r r s r s s t t r t r t L = L W +L Z r t t r t rs r ss t t t r s t s dxt 1 = ( a kx 1 ) t dst+σ X 1 t dw t dxt 1 = 0 dxt 2 = Xtdt 1 dxt 3 = rxtdt+ dxt 2 = 0 3 Xt 1 X3 tρdw t dxt 3 = (1 ρ 2 )Xt 1 = Xtds 3 X3 t dz st dxt 4 = 0. dx 4 t r t s t tr t t r s s s2 t t r t 1 t 2 r t rst s t t r r r s s r t s r r s r t 3 Xt 2 s t tr 3 r s r t t X 3 t r t 1 t 2 t t r ts X 1 X 2 [ ( Xt 3 = X0 3 exp r ρ ) [ ρ σ a t+ σ k 1 ] (X 2 t X 2 ) ρ ( 0 + X 1 2 σ t X0 1 ) ],

35 t r t s t X0(x) : x x+ ( a σ 2 /4 ) ψ k (t) t X1(x) : ( ( x+σ ) ) + 2 x ψ k (t)y/2 t Xt(x) : x x+ σ 2 a σ 2 /4 εψ k (t) t CIR3(x) : (x K 3 (t)){ if (ζ = 1) { if ( σ 2 4a ) {X1(x)X0(x)Xt(x)}else{X0(x)X1(x)Xt(x)} } if (ζ = 2) { if ( σ 2 4a ) {X1(x)Xt(x)X0(x)}else{X0(x)Xt(x)X1(x)} } if (ζ = 3) { if ( σ 2 4a ) {Xt(x)X1(x)X0(x)}else{Xt(x)X0(x)X1(x)} } x xe kt } s { s µ 3 µ 1 µ 2 µ 2 µ 2 1, p µ 1µ 3 µ 2 2, δ = s µ 2 µ 2 4p, π µ 1 (s δ)/2 2 δ 1 (U < π){x (s+δ)/2} s {x (s δ)/2} } r t t t 3 rd r r s t t 1t t st st rt r x t t st r U s s r 2 [0,1] ε,ζ Y s st t t s t s r t t r ts t s r t 3 t st s r t 3 X 4 X 2 s t tr 3 s st r t t rs r r s s s r r t r t r r t 2 t r t t t t s t s r t 3 t t t 1t t st t r s t s t s r t 3 t t ss t t L W r s L Z

36 r t s s r t HW (x 1,x 2,x 3,x 4 ) x 1 x 1 CIR3(x 1 ), x 1 x 1 +x 1 x 2 x 2 +(x x 1 )t x 4 x x 3 t x 3 x 3 exp[(r ρa/σ)t+ρ x 1 /σ +(ρk/σ 0.5)(x x 1 )t] x 4 x x 3 t x 1 x 1 + x 1 t HZ(x 1,x 2,x 3,x 4 ) : (1 ρ ) x 3 x 3 exp( 2 )x 1 tn t Heston(x 1,x 2,x 3,x 4 ) : (B = 1){HZ(x 1,x 2,x 3,x 4 ), HW (x 1,x 2,x 3,x 4 )} s {HW (x 1,x 2,x 3,x 4 ), HZ(x 1,x 2,x 3,x 4 )} r t r t st B r s r r t r N t st r ss r t t s t t s st r 2 st rt t t r st r t s s 2s t s r r s t r s s rt t t t s t 1 st s r s t t t r s s ts s t s r r t 1 t t t r rt t 2 s t { ds t = r t S t dt+σs t dz S t S 0 = S 0, dr t = k(θ t r t )dt+ωdz r t r 0 = r 0, r Z S Z r r r t s d Z S t,z r t = ρdt r ss r s r 3 r st r t r r ss r θ t s t st t t t s t r st t s t 2 t r 2 t r t s t 3 r s s 2 r t s r r r t s s t t r t r s t s t 1 t 2 t r t r s t P M (0,T) t t r t r t t t 0 r t t r t2 T r t st t s r r t r st r t s t 2 f M (0,T) = lnpm (0,T). T t s t t t s rt r t r ss r r tt s r X s st st r ss 2 r t = ωx t +β(t), dx t = kx t dt+dz r t, X 0 = 0,

37 t r t s β(t) s t β(t) = f M (0,t)+ ω2 2k 2 (1 exp( kt))2. t s s r 2 ds t = r t S t dt+σs t dzt S S 0 = S 0, dx t = kx t dt+dzt r X 0 = 0, r t = ωx t +β(t). rt r s s t r t s s ss P M (t,t) = e r 0(T t) f M (0,T) = r 0 1 t s β(t) = r 0 + ω2 2k 2 (1 exp( kt))2, θ t = r 0 + ω2 2k 2 (1 exp( 2kt)). r t s t s s2 t 1 t s r r t r r t r t r t s r t s 1 rst r t t r r t 0 s < t r s X t t s X udu r r t r str t t 2 F s t E[X t F s ] = X s e k(t s) [ˆ t ] E X u du F s = 1 s k X s r[x t F s ] = 1 2k [ˆ t ] r X u du F s s [ ˆ t ] X t, X u du F s s (1 e k(t s)) (1 e 2k(t s)) = 1 k 2 ( t s+ 2 k e k(t s) 1 2k e 2k(t s) 3 2k = 1 2k 2 ( 1 e k(t s)) 2. s r t t [ˆ t ˆ t ] r[x t F s ] = r kx u du+ dzu F r s s s [ˆ t [ˆ t [ˆ t = r kx u du F s ]+ r dzu F r s ]+2 kx u du; s s s [ˆ t [ˆ t ˆ t ] = k 2 r X u du F s ]+(t s) 2k X u du; dzu F r s, s s s ) ˆ t s dz r u F s ]

38 r t s s r t [ˆ t ] [ k 2 t r X u du,zt r Zt F r s X udu F s ]+(t s) r[x t F s ] s = s 2k = e k(t s) +k(t s) 1 k 2. r r [ˆ t ] [X t X s,zt r Zs F r s ] = dx u,zt r Zt r s [ˆ t ] = kx u du,zt r Zt r s [ˆ t = k X u du,zt r Zt r s = e k(t s) +k(t s) 1 k = 1 e k(t s). k [ˆ t ] + dzu,z r t r Zt r s ] + r[z r t Z r t] +(t s) t r r tr 1 ss t t t ss t r ( ˆ t ) Zt r Zt,X r t X s, X u du t 2 F s s ( t s ) ( 1 k 1 e k(t s) 1 k e k(t s) +k(t s) 1 ) ( 2 1 ) ( ) ( ) k 1 e k(t s) 1 2k 1 e 2k(t s) 1 2k 1 e k(t s) 2 ( 2 1 k e k(t s) +k(t s) 1 ) ( ) 1 2 2k 1 e k(t s) 2 ( ) 1 2 k t s+ 2 2 k e k(t s) 1 2k e 2k(t s) 3 2k t s ss t r t t ts s 2 s t s t s 1+e k(s t) k t s C = 0 e k(s t) ω k (t,s) 2k t s s k(t s)+e k(s t) 1 k 2 t s ek(s t) ω k (t,s) 2k 2 t s r ω k (t,s) = k(s t)+4e k(t s) +e 2k(t s) (k(t s) 2) 2 r rt s r t r t t s t r ss r 2 t t st s s t r s X 1 t r r s ts S t X 2 t r r s ts X t X 3 t r r s ts t s X udu

39 tt t s t BSHW (x 1,x 2,x 3 ) x 3 x 2 (1 e k(t s)) /k +C 1,3 G 0 +C 2,3 G 1 x 2 x 2 e k(t s) [ +C 1,2 G 0 +C 2,2 G 1 t x 1 x 1 exp x 3 + s β(u)du σ2 (t s)/2+σ t s (ρg 0 + )] 1 ρ 2 G 3 r t r t s t G 1,G 2,G 3 t st r ss r s tt t s s rt s s r 2 tt t s r t t t s r t s s s t 1 ss st r t s s 1 t r r t t st r s s t s s t s t s r ss s t t t st r t t t t r r 2 t t t t t rs u d r s r s t st t t t ss t r S 0 t t t t st t r S 1 t t t r s s r r s st 2 t s s 2 t ss s t r 1 r t ss t2 r s r s t st r s t s s r r st rt t r S 0 t 1t t st t ss t t t r 2 t t r S 0 u r S 0 d r d < u t r t s p u p d = 1 p u r s t 2 s s s r t t s t t s s s r t st t t s s t 2 V 0 t t 2 1 r s t r t t s s2 t ts s f u f u rr s t t t s 2 r s 2 t t 2 s r t r 2 t t2 t tr t 1 t t r tr r t t r t t t s s t rt s st t ss ts r s ss t t r B 0 = 1 t r r B 1 = e r t t r 2 ss t t t S 0 t t r st s r s t rt 2 δ t r s 2 Ψ t t s rt s Π 0 = δs 0 +Ψ, us 0 S 0 ds 0 r s r tt

40 r t s s r ts t r t r 3 st t t r Π u = δs 0 u+ψe r t, r Π d = δs 0 d+ψe r t. t s tr2 t rt 1 t 2 r t t t 2 { Π u = V u Π d = V d. t s s2st t r q t s t r s t δ = V u V d S 0 (u d) Ψ = e r tuv u dv d. u d t r r t r tr t t t s rt st 1 t 2 V 0 V 0 = δs 0 +Ψ = V u V d u d +e r tuv u dv d u d = e r t { e r t d u d V u + u er t u d V d }. t s rt t t t t t t s r t s s t t t r t s p u p d rt r t t r s t t s t 1 t t 2 s 2 r s ss rt ss t r r t q t s 1 t s t π u = er t d u d, π d = u er t u d 2 t t t t s r t s r s tr r t2 Q t r t r r t s t s t 1 t t 2 r t s r t s V 0 = e r t E Q [V 1 ] = e r t (π u V u +π d V d ), r t t t E Q s s t t t t t 1 t t s t t r s t t t r t2 s r Q r s s s s r s s r 2 t t t s r tt r rt t2 s r s t r st t s t r t t t 2 t r s r ss ts r r tr t t r t t s s ss t2 s r r t t s ss t r 1 t r r t r r 2 1 r s t 2 t r t t t t s s t t s t t t s r r t s r r

41 tt t s 3 u S 2 0 u S 0 us 0 u 2 ds 0 S 0 uds 0 ud 2 S 0 ds 0 2 d S 0 3 d S 0 r tt s t t 2t s t st r s rt t s s r t 3 t r s 2 t r s t r s tt r 2 t r s t s t s t rr s P t st tt t s r s t r t s r t 3 t r s s r r t tr s t r t s t t rt t 2 t s 2 t s t t t t u = 1/d s s t ss r2 t t s 2 st 2 st 2 s t s t r S 0 ud = S 0 du = S 0. s 2 s r t r t 2 r t t t tt s s t r r s t s t s s s r u d t t r 1 t t r 2 t s t r ss t r tt s r 1 t t r s tr r ss ds = rsdt+σsdw. t r t rs t s t t tt s r s r s ss t r rt s t t s t s r ss s r t t rt r S t t r s t t r t t r r S t+ t s s t t ln(s t+ t ) N (( r σ 2 /2 ) t,σ 2 t ). s r rt s t r str t E[S t+ t /S t ] = e r t r[s t+ t /S t ] = e 2r t( ) e σ2 t 1.

42 r t s s r r s r q r t t s r t 3 2 s s t t t s t t s ts t t t t s r t t s t t r r t rs p,u d r r 2 s u = 1/d s s t r t t t t s t t 2 ss t2 t tt t t r t 2 s E[S t+ t ] = pu S t +(1 p)d S t, p = er t d u d. t t t p s t r s tr r t2 s t t tr r t t s t t t tt r[s t+ t ] = S 2 t + ( pu 2 +(1 p)d 2) S 2 te 2r t. r s s r[s t+ t ] = Ste 2 2r t( ) e σ2 t 1. s t s t q t s t t r u = 1/d 2 t u = ( ) 1 e 2r t+σ2 t (1+e + ) 2r t+σ 2 t 2 4e 2r t 2e r t. s rst r r 1 s t t t rs r r t 2 s 2 t 1 r ss u 1+σ t+ σ2 2 t. t t s 1 s s t s 1 s t t s r r e σ t t t r tr 3 t u = e σ t, d = e σ t, p = er t d u d, s s 1 ss st ss t t t r s r t r st r t t t2 r st t t t r t rs t 2 t t t r tt r t s 1 t 2 r t 2 tt r t r 2 ss t r s t s r r t t t t s t t r t2 r t s 2 t t 2 s 2 q t r rs 2 r st t t t r t t r ss s s s r 1 t s s s 2 t r r r s ts r t t s tr s r s r r ss s r 1 t t s s s t t 2

43 tt t s s t r s r s t st r 2 t r t t r s t r t s s t str t t t 2 s r ss s t t r 2 t 2 2 s s r t s q r t r s r t s r ss s t t rr s s t s t s s str t s r 1 t s s r t st st r t q t dy t = µ(y,t)dt+σ(y,t)dw t r {W t,t 0} s st r r t µ(y,t) σ(y,t) 0 r t st t s r t st r t y t y 0 s st t s t s q r ss s t t r s str t t t t t r str t s q r 1 t s t s 1 tt rs t t t r [0,T] t t n q s t h = T/n r h s r st st r ss { h y t } t t r [0,T] s st t t s t 2 s s s st t r t2 q r s 1 q r 1 s t q = 1/2 t s 3 q t h t s t t s n + { h y t } r s str t t r t r t s r s r s s s q h (y,hk),y + h (y,hk) Y h (y,hk) t s r t s R [0, ) s t s 2 0 q h (y,hk) 1 < Y h (y,hk) Y + h (y,hk) < +, r y R k {0,...,n} st st r ss 2 h y t s 2 hy 0 = y 0 r h, hy t = y kh r kh t < (k +1)h, P [ hy (k+1)h = Y + h (y,hk) hk, ] hy kh = qh ( h y kh,bk), P [ hy (k+1)h = Y h (y,hk) hk, ] hy kh = 1 qh ( h y kh,bk), P [ hy (k+1)h = c ] = 0, r c Y h (y,hk), c Y + h (y,hk) st st r ss h y t s st t t t y 0 s 2 t t s h,2h,3h,...(n 1)h t t r ss t ss s t Y + b r t Y h Y + h Y h q h r t h t t r ss t 2 r t ( h y hk ) t t 1 hk 2 t st t ts t r s q t s t r ss s r s r 2 r s t r tr r s r st t s t s r { h y t } r s 2 h 0 t t r ss

44 r t s s r s t s r s t ss t s t t t t st st r t q t t s q r s rst t ss t s s r t t t t st st r t q t s ss t t s µ(y,t) σ(y,t) r t s σ(y,t) s t ss t t r t2 s t {y t } t st st t r q t y t = y 0 + ˆ t 0 µ(y s,s)ds+ 1 sts r 0 < t < s str t 2 q ˆ t 0 σ(y s,s)dw s, r ss t t str t t r r ss {y t } 0 t<t s r t r 3 2 r t s st rt t y 0 t t2 t r t2 y t s r t t r t t µ(y,t) s t σ 2 (y,t) { h y t } s r t str t t {y t } h 0 r rt s 1 4 st t t t 2 r q r t t h y 0 = y 0 r h t t t s 3 h y t s t s t 2 r r t s h 0 t t t r t h y t r s s s t r s t (y,t) t t t r h y t r s t σ 2 (y,t) t t t s ss r 2 s r t ss t ss t r δ > 0 T > 0 lim sup h 0 y δ 0 t T lim sup h 0 y δ 0 t T Y + h (y,t) y = 0, Y h (y,t) y = 0. r r 2 h > 0 t r t µ h (y,t) t s t σh 2 (y,t) t r ss s r 2 µ h (y,t) = { q h (y,t ) [ Y + h (y,t ) y ] +(1 q h (y,t )) [ Y h (y,t ) y ]} /h σ 2 h (y,t) = {q h (y,t ) [ Y + h (y,t ) y ] 2 +(1 qh (y,t )) [ Y h (y,t ) y ] 2 } /h s s t t r s t t s t r r y t r t t s h 0 r t r s t r t s t

45 tt t s t t = h t/h r t/h s t t r rt t/h 1t ss t r q r s t t µ h σ 2 h r r 2 t µ σ2 s ts t r y δ 0 t < T ss t r r2 T > 0 r2 δ > 0 lim sup µ h (y,t) µ(y,t) = 0, h 0 y δ 0 t T lim sup σh 2 h 0 (y,t) σ2 (y,t) = 0, y δ 0 t T r r ss t s { h y t } {y t }, r t s r r str t {y t } s t s t t t r 2 t str t s s q s t s t s st 1 st s t s s r 2 r s t s r tr r Y + h = y + hσ(y,t) Y h = y hσ(y,t) q h = hµ(y,t)/(2σ(y,t)). t r s q t s h s t t t r t s q h s t r t2 t Y + b t t s t s h [ σ(y,t)+σ ( Y b,t+h)] s t s h [ +σ(y,t) σ ( Y + b,t+h)] s r t s r t q s t r s t tr t r t t r s s t t st r r ss t s r s t s 2 t s s q s t t s r t s t t 2 1 tr s s ss r r s s s s t r t r 2 r s t r ss t r t r t s t r r s r t tr s t t 2 s r r s t t t r ss t t t st s t r r s r s t 2 t r t t σ(y, t) s st t t t s ts r q s t t s t2 s r t s s sts t t tr s r t t t r s t r st st r t q t t t r s st t2 r t s t str t t t 2 s tr t t t s t2 t s s r tr s r t X(y,t) s r t t y t 2 tô s ( dx(y t,t) = µ(y t,t) X(y t,t) + 1 y 2 σ2 (y t,t) 2 X(y t,t) y 2 + X(y ) ( t,t) dt+ σ(y t,t) X(y ) t,t) dw t. t y

46 r t s s r y q h 1-q h Y + h Y - h r s s q s X(y,t) t s t s 2 ˆ X(y,t) = dz σ(z,t) t s rt y t t r X(y,t) σ(y,t)dw t y sdw t t st t s t t2 t tr s r r ssx t = X(y t,t) s st t t s s t t 2 s tr r x r t s t t x s st t t r2 rr t t s q r ss s y tr s r r x t y 2 Y (x,t) = {y : X(y,t) = x}. t s s2 t s t t Y/ x = σ(y,t) 2 ss t t s s t t Y (x,t) s 2 t x r 1 t s t tr s r t tr r y s t t Y + h (x+ (x,t) = Y ) h,t+h Y h (x (x,t) = Y ) h,t+h. t t t t tr r y s r t t t t s t2 t t t tr r x s 2s s t t t t Y (x,t) x 2 r s s r s 1 s Y + h Y h = σ(y (x,t),t), r h = 0 2 s Y ± h (x,t) = Y (x,t)±σ(y (x,t),t) h+o(h), ( ) σ 2 (Y (x,t),t) = σ 2 (Y (x,t),t)+o h. s s s t t t s t h y t r s t t st t s r σ 2 (y,t) s h 0 2 t t t r t t t t r t t t s µ h (y,t) µ(y,t)

47 tt t s r 2 {(y,t) : y,t < δ} r r2 δ > 0 t t t 2 s q h = hµ(y (x,t),t)+y (x,t) Y h (x,t) Y + h (x,t) Y h (x,t) t s t t r t2 t s ts t r t 1 t 2 q t t r t t t s s t s tr s r ts rs t t r t2 q h s t t r t str t t t 2 s r 1 t t t r s t t s s r tr s r t s r 2 str t r r 1 t s tr s r t s r t r s r µ(y,t) = µy σ(y,t) = σy tr s r t s s X(y) = σ 1 ln(y) t rs tr s r t s Y (x) = e σx s s t tr s r t ss st t t t t 2 s tr tr s r t s r t r s s t r r t s t st s t s s x t r 2 q t t2 r t r t h r r t t t r t r t rt r r t s 2 r2 t 0 r s t r t s r2 σ(,t) = 0 t tr s r t 2 t t t t s t2 r tr t t r t s t t r s t t str t 2 r s r t s σ(, ) r 1 σ(y,t) = 0 r s y s r t s r s 2 ss t t r s t s rt t r ss t r s s r 1 t t t2 t s r tr 3 r st r r2 r st r s t r st r t s r s r r t2 ss r2 rs s t s ss r2 t r tt t t t s s 2 t st s rst s r t s σ(, ) s s r t s R [0, ) s r t s σ(0,t) = 0 µ(0,t) 0 r t 2 r r2 t 3 r t s rt t t s s s r t s σ(y,t) s r X(y,t) t x s rr s t 1tr s y ˆ X(y,t) = dz σ(z,t), x U (t) = lim y + X(y,t), x L (t) = lim y X(y,t). ss t s t r 1 t t 1 s s t2 ss t s x U (t) x L (t) r st ts

48 r t s s r t t rs tr s r s t r y : X(y,t) = x, x L < x < x U y(x,t) = + x U x x x L. s s t qh (x,t) = max[0,min[1,q h(x,t)]]. r 2 ss t s r t rr t s 2 ss t s ss t t s µ(y,t) σ 2 (y,t) r t s r2 r r r2 R > 0 r2 T > 0 t r s r T,R > 0 s t t T,R inf σ(y, t) 0 t T y R t s s r t2 ss t t s r s t t σ(y, r) s 2 r 3 r 1 t t t = r y = st s s r t t t r ss r 2 s t 1 t t2 t t ss t 2t s t s s r t r rt2 t t r T 0 < T < ( ) lim P B sup y t > B 0 t T = 0. st t t t r st ss t s r r t2 ss t rst s r r rt r t s σ y,σ t,σ yt,σ tt,y x,y xx,y t,y tt,y xt r 2 r (y,t) R [0, ) r t ss t s r h > 0 t x s s tr t σ x = 1 t h x 0 = X(y 0,0) t tr s t r t x r ss 2 hx h(k+1) = { hx hk + h t r t2 q b ( hx hk,hk), hx hk h t r t2 q b ( hx hk,hk). t y tr s s tr s st t r t r t s t x tr 2 rs tr s r t t s r h > 0 h y t = Y ( h X hk,hk) r hk t < h(k +1) 2 str t { h y t } s t t 2 s { h y t } {y t } s h 0 r {y t } s s t r t r t s t r s

49 tt t s s s r t2 t y = 0 σ(0,t) = 0,µ(0,t) 0 t s s t s t s s t t r r2 3 r t t r t r t t s r t r t r t t r ss t r t r x s r s x L (t) = lim y 0 X(y,t), t rs tr s r s 2 t t x s y : X(y,t) = x x L < x < x U Y (x,t) = + x U < x 0 x x L. s r ss t t x L x U t t rt t s t s r t s t t st s 3 s t s r t 2 r r 1 t 2 r rt t σ(y,t) t σ(y,t) s r2 s r y = 0 µ(y,t) s t s 2 t t t s t s r r r t t t r t t t s s x B > x L t t J + h (x,t) s t s st s t t r js t t ( J + h (x,t) = Y x+j ) h,t+h Y (x,t) µ(y (x,t),t) h x < x B 1 x x B J + h (x,t) s t r r s t t s t r t2 p h ss t 1 t t s r t s s t t t s t r ss t 1 st t tr 2 r tt t s t s r str t r r 0 r t t t s t2 t r s y s t r s s J + h s t t r s t r s t r t r t t t t s t2 r 2 J h (x,t) 2 t s st s t t r js t t ( J h (x,t) = t r Y (x,t) Y x j ) h,t+h µ(y (x,t),t) h ( r Y x j ) h,t+h = 0 r J h (x,t) s t r r s t t t r s t r t2 q h s t t t s r r r s t st t r Y h t 3 r tr s t s t r y r t r st t s Y ± h (x±j (x,t) = Y (x,t) h,t+h ) ± h, r t t t qh ss t s t r 2 t s

50 r t s s r ss t t σ(y,t) µ(y,t) t s R [0, ) r 1 sts r s t t ρ(u) r [0, ) t [0, ) s t t ρ(u) > 0, r u > 0, ˆ 1 lim ε 0 ε [ρ(u)] 2 du =. rt r r r2 R > 0 T > 0 t r 1 sts r T,R > 0 s t t sup y R, y R 0 t T sup y R, y R 0 t T σ(y,t) σ(y,t) T,R ρ( y y ), µ(y,t) µ(y,t) T,R y y, ss t r2 t s s t {(y,t) : 0 < y <,0 t < },σ y,σ t,σ yt σ tt 1 st r σ(y,t) s 2 r 3 r r 1 sts > 0 s t t r r2 T > 0 inf σ y (y,t) > 0. 0 t T 0 y rt r r Y xx,y t,y tt Y xt 1 st r (y,t) [0, ) [0, ) r s ts r t 0 σ(0,t) = 0 µ(0,t) 0 t r r s st t r t ss t s ss y 0 > 0 h x hk hy t s r r r t s t r t s s t Y ± h { hy t } {y t } s h 0 x B < { h y t } s t t 2 s 2 str t rt r 0 s t s rt { h y t } y t r ( ) ( ) P inf y t < 0 = P inf < 0 = 0 0 t< h 0 t< r s s t str t t t 2 s r 1 t s r s s t r 2 t s r s t s r s r t t s s t s r t r st r t s 2 s s t t s t t t s rt r t r ss r r tt s r t = ωx t +β(t),

51 tt t s r X s st st r ss 2 dx t = kx t dt+dw t X 0 = 0, β(t) s t r st t X t r ss s 1 r st r ss dy t = β(α y t )dt+σdw t r t s r ss s 1 t tr str t s q { h y t } r 1 t s t t t y 0 Y + h (y,t) = y +σ h, Y h (y,t) = y σ h, t hβ(α y)/(2σ) 0 1/2+ hβ(α y)/(2σ) 1 q h = 0, 1/2+ hβ(α y)/(2σ) < 0 1 t r s st st s t st s t r r s t st st t t2 r r t s s t r t t t2 t s s dv t = k(θ v t )dt+ω v t dw, v 0 = v 0, t k 0 µ 0 t t v 0 s t st t ss r2 tr s r t s ˆ dz X(v) = σ Z = 2 v σ, t x 0 = X(v 0 ) r s r r2 r v s t r s t t rs tr s r { σ 2 x 2 /4 x > 0 V (x) = 0 t r s s t r t s t s s r 0 t 0 s t s r st t r v ss t r k r θ q s 3 r s str t s 2 t s ss r2 t tr t s J + h (x) = t s st s t t r js t t ( 4hkθ/σ 2 +x 2 (1 kh) < x+j ) 2 h t s st s t t r js t t ( J h (x) = t r 4hkθ/σ 2 +x 2 (1 kh) x j ) 2 h r x j h 0,

52 r t s s r Process Vt Node (n,j) Process Xt Node (n,j) Node (3,8) j (3,8) C j (3,8) A j (3,8) B j (3,8) D Time t Node (3,2) j 0=0 j 1=0 j 2=1 j 3=2 j 4=4 j (3,2) A Time t r tr s r st t s V ± h (x±j (x) = V h) ± h, [ hk(θ V(x))+V(x) V ] h (x) R + q h (x) = V + h (x) V h (x) h (x) > 0 0 t r s. s J ± h (x) r r t r t t t 0 q h(x) 1 s 2 t t t r t r s t t s t r tr s tr s r t st t r t r s s 2 s s r t r s s t t s s t tr s r s r2 tr s t s t tr s t r t s r s t r r t t r 1 t t rst t ts t r ss s tr r r s rt t r t2 t t r 1 t rr rs t t r t s s t s rr r t t t s t r t r t r t s r t r t2 t s r r t s ss r2 t r t t tr s t s t s t tr s t 1 t 2 s ts t r ss s t s r r s t t tr s s r r st st t t2 r st st t r st r t 2 r s q r tr s t 2 r t t t t rst ts t st st r ss s s s t 1 r N > 0 h = T /N r s t Z r t t G ss r ss dg t = a(g t )dt+bdz t, t r t t s 2 2 t t s G t+s G s F s N ( µ(t,g s ),σ 2 (t) ) r r t t µ(t,g s ) s t 1 t t σ 2 (t) s t r t r t t

53 tt t s r ss µ(t,g s ) = E[G s+t G s F s ] = E [ˆ t+s s a(g u )du+ ˆ t+s s ] [ˆ t+s ] bdz u F s = E a(g u )du F s, s [ (ˆ t+s σ 2 (t) = Var[G s+t G s F s ] = E a(g u )du+ s ˆ t+s s ) 2 [ˆ t+s ] 2 bdz u F s ] E a(g u )du F s. s s t s q r tr t t t t rst t r ts q r tr t s 1 t r t2 T t r st s N t 2 G (n,j) r n r s r 0 t N j r 0 t 3n t h = T /N s G (n,j) = G 0 +(j 1.5n) σ 2 (h). r r t rst t r ts t r ss G ] M 1 = E[G t+h G t F t ] = µ(h,g t ), M 2 = E [(G t+h G t ) 2 F t = µ 2 (h,g t )+σ 2 (h), ] M 3 = E [(G t+h G t ) 3 F t = µ 3 (h,g t )+3µ(h,G t )σ 2 (h). t s 1 G (n,j) r µ t µ ( ) h,g (n,j) σ t σ 2 (h) s s t t t 1 t µ s t t s t s t t (n+1)h s 2 t s s t ss t t t t st h s s [ ] G0 µ j A (n,j) = +1.5(n+1), σ t rst t 1t t st s s r t t t r ss s s r t s s t rr ts t t t 1 t t r ss j A (n,j) s r t r t j B (n,j) = j A (n,j) 1, j C (n,j) = j A (n,j)+1, j B (n,j) = j D (n,j) 2. r 2 r t j A,j B,j C, j D G A G A = G (n+1,ja ) t s r t t r tt rs t s s r r t r t s r s r t t r ss Ĝn n = 0,...,N t Ĝ0 = G (0,0) s s t t Ĝn = G (n,j) t t t G A G B G C G D r t t r t s ] p A = P [Ĝn+1 = G A Ĝn = G (n,j) ] p B = P [Ĝn+1 = G B Ĝn = G (n,j) ] p C = P [Ĝn+1 = G C Ĝn = G (n,j) = (G A µ) ( (G A σ µ) 2 +σ 2) 2σ 3, = (µ G A +σ) ( (G A µ) 2 +σ 2) 2σ 3, = (µ G A +σ) ( (G A σ µ) 2 +2σ 2) 6σ 3,

54 r t s s r ] p D = P [Ĝn+1 = G D Ĝn = G (n,j) = 2σ2 (G A µ)+(g A µ) 3 6σ 3. G A σ < µ G A s 2 s t t t s r t s r ) [0,1] t r s s q t 1 t rst t r ts t r (Ĝn+1 Ĝn = G (n,j) r q t t rst t r ts t r ( ) G t+h G t = G (n,j) r 1 t t r ss G 2 s r t r ss Ḡ t t s st t t s s s Ḡt = Ĝ t/n r t s tr r s s s 2 st st r ss r t t2 s st t r s t ss s r t r ss t 2 t sq r r t ( d 4k θ ) 2 V t ω 2 V t = 8 dt+ ω V t 2 dz t. r 1 t t t ss r ss t r ω2 4 dt s r 1 t s t t r st t s s r t r s r 2 ( ( j n = max 0, r 1.5n 2 )) V 0 ω, h s t V (n,j) = ( max ( 0, V 0 +(j +j n 1.5n) ω h 2 )) 2. r j = 0,...,3n j n s t t j n s t r t t 2 s t q t 3 r j n > 0 t V (n,0) = 0 V (n,1) > 0 r r t t t r ss V t r 1 t s V t t V t t ts t s r t t ts t r ss V t 1 t s n j s r t r ss V r t t r s r s t t ss s rst t r ts r t st r ss s ψ(h) = (1 e kh )/k, M 1 = E[V t+h V t = v] = ve kh +θkψ(h), [ ] M 2 = E (V t+h ) 2 V t = v = M1 2 +ω 2 ψ(h) [ θkψ(h)/2+ve kh], [ ] [ ) M 3 = E (V t+h ) 3 V t = v = M 1 M 2 +ω 2 ψ(h) 2v 2 e 2kh +ψ(h) (kθ + ω2 (3ve kh +θkψ(h) )]. 2 r s t r s 2 2 t r r s s s r 1 t s t r t s t s t r s2st 2 t s t

55 tt t s E C A B D F r ss t s s t t s t r t s t st tr r ts rr s t t s s t t tr s t r t2 r tr2 t r t t s r r t t s A B C D t r t s t t s A r C 2 r 2 E s t rst r t C t s B r D 2 r t F s t s st r D s s r s t 9 t s t t st t st rt s s t D r s j D = j n t t s st s t r F t s s t D t r 2 t E s r t s tt ts t s t r s t t r t s tr2 t t t rst t r ts r t t t t r 1 t t rst t s t s s r t r t s s 2 s t s A,B,C,D µ G n+1,jb p AB =, p BA = 1 p AB, G n+1,ja G n+1,jb p CD = µ G n+1,jd G n+1,jc G n+1,jd, p DC = 1 p CD, p A = 5 8 p AB, p B = 5 8 p BA, p C = 3 8 p CD, p D = 3 8 p DC. t s ss t s t t t rst t t s r s q t M 1 s h 0 t s t r s t M 2 s r t r s r r r t sts t s st t t 2 t ts s r ss r2 t s ts r t t s t r t s t t r ss X s ss s s str s t r s X t s X ydy r r t r str t t 2 X s t r ( X (n,j) = j 3n ) 1 exp( 2kh), n = 0,...,N j = 0,...,3n. 2 2k t s 1 X (n,j) 1 exp( 2kh) H = exp( kh), K =, M 1 = X 2k (n,j) H,

56 r t s s r tr s t r t s r 2 [ M1 j A = K + 3(n+1) ], X A = X 2 (n+1,ja ). ( p A = (X A M 1 ) K 2 +(K +M 2K 3 1 X A ) 2), p B = (K+M 1 X A ) (K 2 +(M 2K 3 1 X A ) 2), ( p C = (K+M 1 X A ) 2K 2 +(K +M 6K 3 1 X A ) 2), p D = (X A M 1 ) (2K 2 +(M 6K 3 1 X A ) 2). P rt r t q t s t s s rt s s r 2 r t s s rt r t q t s P s r t r2 r t s r t r r r t r t st t s r s t s r t t t t r t s s r s t r t P s r t s ss t t 2 s r t 3 t P s t 2s t s t t2 t r 1 s r s t s r t s r s 2 r t r r t s t t t rt r t q t s r r t t t 1t t s r t st t r t rs t s r 1 t r t t r s t t r t2 r s t r s t r st r t t2 2 s t t t r 1 t r t2 1 s t r s rt r t s s s r t r t s t t s r t s r s P s t s r r t r st s rst t 2 r s t [0,T] t t2 2 s r t t t t r t2 t = T r2 t t s t r s t s s t r2 t s t t2 t t s r s t s r r t r r 1 t s tr t t rt r2 t s s P s r s 2 r t2 t t t r t s s r t str ts t r t s r s r t 3 t t P st s t 2 st r t t s r t s r t s P s 1 t r t t s t s r t s s P r r t s t t st r s t r s 2 ss t s r t t t s S t r s r B t r 2 s r t2 s r t t tô r ss t s r t r r s t r s r r t ds = µsdt+σsdw, db = rbdt

57 P rt r t q t s t s t V t t s t r 2 2 tô s ( V dv = t +µs V S + 1 ) ( 2 σ2 S 2 2 V S 2 dt+ σs V ) dw. S r tt S = S(t) B = B(t) V = V(t) dw = dw (t) r t t s ss t rt s r s s t t s rt r t s t t t r str ts t s r t s s t 2 t str ts r t 2 r r t rt t t r t str ts s t rr t ts s t s rt Π t t s r s t t t r 2 st s t t t rt s r s ss t t s s s t t s t r t s r t2 t t rt t t t s Π(t) = V(t)+ S(t) s ss t s t t dπ = dv + ds s r t dπ = dv + ds ( V = t +µs V S + 1 ) ( 2 σ2 S 2 2 V S 2 + µs dt+ σs V ) S + σs dw. rt st t t r s rst s t t t st r s ss s t t t s t r t r t dw s 3 r s t t = V S st t t r q t s t t t rt s t r ss ( V dπ = t + 1 ) 2 σ2 S 2 2 V S 2 dt. s t r s t t t rt st r t r s r r t s s t t t s t r s ss rt s dπ = rπdt r t ( V t σ2 S 2 2 V S 2 dπ = rπdt ) dt = r ( V V S S ) dt r t dt r t s s r rr 2 s t s P V t σ2 S 2 2 V S 2 +rs V rv = 0. S rt s r t s t s t r t r t st t s t t r r t t s t t s r s t st s s t r t r t r tr t t s P 2 t t r t2 s s 2 s r 2 t φ t t 2 2 t t r r 2 s s t r t { V t σ2 S 2 2 V S 2 +rs V S rv = 0 V(T,S) = φ(s) s s r q t s 2 t r t

58 r t s s r r s s r s P tr t t r t t s P rst tr t t s r t 3 t t r s t t t r S r s t t t r [0,S max ] t I t r s t S = S max /I r S max s t s r t r 1 t t r t s 2 t r s ss s s r t 3 t r i {0,1,...,I}, { Vi t σ2 Si 2 V i+1 2V i +V i 1 V +rs i+1 V i 1 S 2 i 2 S rv i = 0 V i (T) = φ(s i ), r S i = i S t s t i t s r t 3 t t V i (t) s t t r 1 t V(t,S i ) s s2st r r2 r t q t s s r 3 t t t s t s t t r r σ s str t r r ( t ) t t r S = 0 T P 0 s t 2 s S 0 = 0 V(t,0) = φ(0)exp t rds r r t t s t t s2st s s t r r t r2 t t S = S max t t i = I s V I+1 s r r t r r s 2 t t s t r r t r2 t t S = S max rst s sts s s r r t s V (t,s) S s r s r 1 t s V(t,S max ) t s s t V I s s t t s s s r t r2 t t s r (V i ) 0 i I 1 r 1 t s t t φ(s) = (S K) r s t ( t φ(s) ) = (S K) + T t s t t lim S + V(t,S) = 0 r s V I (t) = S max Kexp t rds rr r tr 2 t s rt r2 t s st t t r t s s s t s2 t t r t r t s V r 1 t s t t t s t s s r2 t r t s V/ S(t,S max ) = 0 t t t s V I+1 (t) = V I (t) t t s r t t s s t s r (V i ) 0 i I r t t s S max s s s t 2 r r t t q t2 t t 2 ss ss 2 s r s s t t r s t s t t S max t s s r t t s r t 3 t r t s t t t t r [0,T] t N t r s t t = T/N t r t t r t 2 t r r r t s r ss 2 s

59 P rt r t q t s t s { V n+1 i Vi n t V N i = φ(s i ) { V n+1 i Vi n t + σ2 S 2 i 2 + σ2 S 2 i 2 Vi N = φ(s i ) V n+1 i Vi n t Vi N = φ(s i ). ( σ 2 S 2 i 2 V n+1 i+1 2Vn+1 i +V n+1 i 1 S 2 +rs i V n+1 V n i+1 2Vn i +Vn i 1 S 2 ( σ 2 Si 2 V n+1 i+1 2Vn+1 2 V n i+1 2Vn i +Vn i 1 S 2 i+1 Vn+1 i 1 S rv n+1 +rs i V n i+1 Vn i 1 S rv n i = 0 +rs i V n i+1 Vn i 1 S ) rvi n + ) i +V n+1 i 1 V +rs n+1 i+1 Vn+1 i 1 S 2 i S rvi n+1 i = 0 = 0 r V n i s t t r 1 t V(t n,s i ) t t n = n t t t t s t s r t 3 t s t s 1 t r s t s (Vi n) ( 0 i I r 1 t 2 t r t s Vi n+1 ) t tr r2 t t 0 i I t r s s t r s r r s s t s (Vi n) ( 0 i I r t r t s Vi n+1 ) t r t r s t r 0 i I s2st s r r t t t t r s r t s s r s t r s2st r t s r t t s t s t t t s 2 t r 1 sts t ss s t s t r t t s r s ss t t t r t t s s st t t s t s t t s s q r 1 t s r q r s tr 1 t r t t s t s t r t r st s t r t s st t2 s st 2 r r t 23 t r t t r s r t 3 t s s t rst t r s t t s s s t tr t rt t t s rst s t s st 2 r t s s t s st t t 1 t s t s t t r s t rr r t s t 3 r t s r t 3 t r t rs t t 3 r r t 1t t s sts r V n i r 2 V(t n,s i ) t t t r t r s t t 3 r t S t t 3 r 2 s 2 r 1 s s t t r r s t 2 r t r r t r s r r 2 C ( t+ S 2) r s C ( t 2 + S 2) r C t s st t s s r s t r t s V r r r s r s st t s r t 3 t s s r r t s t r r r 1 r s t s rt t t s t st t2 r s s s t st t r t s t t t r s s r 2 st t t t s r t 3 t r t rs t s t r t t t t r2 t s r t s s r rt2 s r 2 s t s t r t s r t t r r 1 t r s t t s t t P t s r t 3 t r t rs t t 3 r r r s t st t s t t rs 2 s st t st s r t 3 t s s r t

60 r t s s r st t r s 2 t st t s st 2 rr r r 1 t rr r r t s s r 2 C ( t+ S 2) t t t t st t C t s st t s s t s t V r r r s s s r r r t2 V. r 1 r s r t rs t 2 t t t r s ts t t t s r t = T r t tt r t t s t t r r s r s t s t s t s t 2 r r t r t = T r s t t s r s ts r q r t s 2 t r s s t s r t rr rs t s s 2 t t t t r s r s r t t st t2 L r t s r s t s t ts s r t t s r t 1 r t st t2 L 2 r t t t r s r t t r 2 st t t r t r t r s r t 1 r s r t 1 r s t t r rt t t s r t t 1 r t t t s t st t s t t t t r r s s r s t t t s t s s t s s r 2 str t st L r r t s s t tr tr s t r r t s 1 t t r t s t s t P t r 2 s t s 2 s r t 1 r t s s ss t r rt s t t r s r t 3 t s s r 2 t t t t 2 r s st t t t r t s t t t 1 t s s st r t ss t s t s t r t C S 2 r C t s s t st t t r t s s r t 2 st s t t 1 t s t s (Vi n) 0 i I r2 r 2 t r t s ( Vi n+1 ) t t t st st s t 2 0 i I s t r s t t t s t st t r t st t2 r t t r t t s s r q r t r s t r s2st t t st t r t t 2 r str t t t st t r s t t sts t s r 2 r t t s s s t t rs t r2 str t r t r s S s t r t r 2 t s q t t2 s 2s s t ts r t L = ln(s) s s r ss t t t tr t 2 S s r t P(t,L) = V(t,exp(L)) t t t t t t t r 2 t r L 2 tô s t t t P s t s t t P t r2 t s { ( ) P t + 1 P 2 σ2 2 + r σ2 P L 2 2 L rp = 0 P(T,L) = φ(exp(l)) s r s t s t r t 2 S t t s t r s t s t tt r t s r t 3 t P t r t s r s t rr s s t t r r r S = 0 s s ss t s s t t 2 tt rs s t r t r r t s r t2 V

61 P rt r t q t s t s (a) (0,3) (1,3) (2,3) (3,3) (0,2) (1,2) (2,2) (3,2) (0,1) (1,1) (2,1) (3,1) (0,0) (1,0) (2,0) (3,0) (b) r r t r Ω s r t 3 2 t t r t s (a) t r ts r r s 1 r s (b) r ts r r s t s P t s t s s r r r 1 s s t st s r t s t s s r t s r t t s r t s t s ss t r t t t t t V t s t s t P t R + R d t d = 2 r d 2 r 1 s r 1 t P r t st s V t + vs2 2 V 2 S 2 + ω2 v 2 V 2 v 2 +rs V S +ρωsv 2 V V +k(θ v) S v v rv = 0 t s t t s V t + σ2 S 2 2 V 2 S 2 + ω2 2 V 2 r 2 +rs V S +ρωsσ 2 V S r +k(θ t r) V r rv = 0 s P r rt r 2 st s t r s s r t s r s 2 t r t s t t r t t tr 1 2 t s s r s s r t t r t r t t t s rst s 2 P rs s r s r P s s t t s 2 s 2 t s r t s t r ss t r t st 1 s t q t u t = 2 u x u (x,y,t) Ω [0,T], y2 u(x,y,t) = 0 (x,y) Ω, t > 0 u(x,y,0) = u 0 (x,y) (x,y) Ω,

62 r t s s r r Ω s t sq r s s r Ω s t r2 Ω t tr t r s t t st s s t s r t 3 t s t r t s q t s t t (i, j) t q t u i,j t = u i 1,j 2u i,j +u i+1,j h 2 + u i,j 1 2u i,j +u i,j+1 h 2 i = 1,2,...,N I, j = 1,2,...,N J. st tr t t t r s t r t s q t t tr t t r t t t r t r 1 t s r s t t q t s u n+1 2 i,j u n i,j 1 2 t = u u n+1 i,j u n 1 2 i,j 1 2 t = u n+ 1 2 i 1,j 2un+1 2 h 2 n+ 1 2 i 1,j 2un+1 2 i,j +u n+1 2 i+1,j h 2 i,j +u n+1 2 i+1,j + un i,j 1 2un i,j +un i,j+1 h 2, + un+1 i,j 1 2un+1 i,j +u n+1 i,j+1 h 2. ss q t s s r t 1 t r t t q t s r t rt s ( I NI t ) 2 A u n+1 2,j = Eu n,j 1 +Du n,j +Fu n,j+1, r I NI s t t t2 tr 1 j = 1,2,...,N J, u n,j = { u n 1,j,u n 2,j,...,u n N I,j} T, j = 1,2,...,NJ u n,0 = u n,n J +1 = 0, u n 0,j = u n N I +1,j = 0, 2 1 A = 1 1 h 2 h 2 t D = 1 h } {{ } N I,, h 2 t

63 2 r t s E = F = I NI. r r t 2 N J t q t s2st s q t t tr t tr s t r s t rst st s r q t t t t t s st 2 q t st s t s r r s s s r r t q t t t ss tr 1 q t s2st rr s t q t s ( I NJ t ) 2 A u n+1 i, = Eu n+1 2 i 1, +Dun+1 2 i, +Fu n+1 2 i+1,, i = 1,2,...,N I. tr s r t s s 1 t t t r r r s N J N J r t r t N I N I t st s t r t r t t N J t r q t s2st s t tr t tr s q t t t u n+1 2,j,j = 1,...,N J r r t r ts t N I t r q t s2st s t tr t tr s q t t t u n+1 i,,j = 1,...,N I 2 r t s 2 r t s r tr r t 2 r 2 r s t t s tr s t s P r t s r r s t t t t s s q r tr s r s t s t 2 r t r t s t s s t 2 t r s r s r r t s s t s 2 r s t s tr s t s rst s tr s t t t s r t t s r s t s t r r r r s r t r t t r t tr s r t s r r t t t2 r t t r st r t s t r 2 t t st s 2 t s r s r t s t t t2 r ss t t r st r t r ss s s r 2 st rt r t (0,0) t tr r t s r t r r t t r t s t t 1t s t R s r t r r t t ss A,B,C,D t r t s p A,p B,p C,p D s s r t t t s t r ss t t st st s t s s r t t s

64 r t s s r st r 1 t t (S t,v t ) [0,T] 2 s r t r ss ( Sk t, v k t )k=0,...,t/ t t ( S0, v 0 ) = (S0,v 0 ) r s r r t t t t2 t N N (0,1) B B(0.5) t S t+ t 2 (r S t exp[ ρ σ S t+ t = kθ) t+ ( ρ σ k ) ( v ) 1 t+ t+ v t 2 2 t+ ρ σ ( v t+ t v t )+ ] (1 ρ 2 ) t v t N (r S t exp[ ρ σ kθ) t+ ( ρ σ k ) ( v ) 1 t+ t+ v t 2 2 t+ ρ σ ( v t+ t v t )+ ] (1 ρ 2 ) t v t+ t N B = 0, B = 1. r t s t r r N t r t t ss r t S t r r B t s t t r t r ss t t t st r ss s s t t s tt rs r t t s tt t rs s s t r 1 t t (S t,x t ) [0,T] 2 s r t r ss ( Sk t, X k t )k=0,...,t/ t t ( S0, X 0 ) = (S0,0) t t r st r t 2 r t = ω X t +β(t) t N N (0,1) t S t+ t 2 S t+ t = S t exp[( rt t + r t 2 ) σ2 ( t+σ( Xt+ t + 2 X t (k t 1) ) ρ+ t ρn) ]. 2 r P t 2 r P t s r s t tr t r t s t s t r r r s r s s t st r t s t 2 s r t r 1 t s t t2 t t2 r ss r t r st r ss t r tr r t r s t t r2 r st r t st s s t tr s r t t ss t r r ss t t r s r ss t rr t r t t t t2 r ss 2 t t t t t r t r s t t t t t t t2 r ss s r t r t t t t t t tr s r r 2 ss t r r ss str ss t t s 2 t 2 s r t r 2 ss t r s r ss t t s s t s t rt r r st t rt r t ρ = 1 ρ 2 r t Z S t = ρz V t + ρ Z S t r Z S s r t rr t t Z V { ds t = rs t dt+ ( v t S t ρdz V t + ρd Z t S ) v 0 = v 0, dv t = k(θ v t )dt+ω v t dzt V S 0 = S 0, d ZS t,zt V = 0,

65 2 r t s t r ss Y E t = ln(s t ) ρ ω v t, Y E S t = exp 0 = ln(s 0 ) ρ ω v 0, ( Yt E + ρ ) ω V t. ( dyt E = r v t 2 ρ ) ω k(θ v t) dt+ ρ v t d Z t S. s r ss Y E t s rt t s t s r ss rr t t V t tr t s r t s t t P t s t tr s t t rt r t ρ = 1 ρ 2 r t Z S t = ρz r t + ρ Z S t r Z S s r t rr t t Z r t r ss ( ds t = r t S t dt+σs t ρdz r t + ρd Z S ) t S 0 = S 0, dx t = kx t dt+dzt r X 0 = 0, r t = ωx t +β(t), Y U t = ln(s t ) ρσx t, Y U 0 = ln(s 0 ), S t = exp ( Y U t +ρσx t ). ) dyt U = (r t σ2 2 +σρkx t dt+σ ρd Z t S. d ZS t,z r t = 0, s r ssy U t s rt t s t s r ss rr t t X t tr t s r t s t t P t s t tr r t str t r str t r s r t s r t s st tr P s r s s r r t s tr t s t t t2 r t t r st r t t t r t s r P r 3 t t tr t t t2 r t t r st r t tr s t r t t q r tr t t rst t r ts t r ss t P s s t t r r t s t P t t t s t t t 2 t s t t st t s t r r t ts t ts r r t t s t P s s t st t t r q r s 2 r 1 t2 s t s r s2st t tr tr 1 t t st s s s r s r t t X t V t r ss s r r rt s t t 2 t tr s r t t r r 2 s t tr s t t t s t 2 t r 1 t r r r t r r t2 p n,j t s t s rt 0 t 2 t t s t t r t t tr r s r s t 2

66 r t s s r r t r t s s t s t t st r st s r t r P s 1 t t rs r t t tr s t r t s 2 r t s s p n,j > 0 s rt t q r s t t t t t r t t s r s r s r r s s

67 t r r t s tr t t s t r s r t t r s r t s s r ts r t t r st t s r t2 t r r t2 r t r r t t t s s t r r t r s r r ts s ts r t t st st t rt t2 r s s 2 s t r r r t s t r s t ss rr ts s t t q r t r st s t r r s t t s t r t 1 rr st t s r t st r t r t r 2 s tr t t 2 r r t r r t t t P s r 2 r t s r r r s t r 2 ts t t P t r t 2 r t s t r t r 2s tr t 2 t r s r s 2 t s r s r s r s 2 ts r t s r tr t s t t t t s t rst 2 rs t 2 r s r 1 2 r 2 r t 2 s s t s ss t s s s t t t 2 r r st t t s t st t t r r t st t t s s st t t s r r t2 2 t s t t st st s s 2 r t str ts r s t t t r r t s r s t t r st ts t t r t r t t r r s r t s s st t r s s st s t s r s t t r str ts t r t s r t2 2 st t s t 2 r r t s s r rt t 2s rst s 2 t t P r r 2 ts r t r st s r t 2 t r rs s t s t r rs r t t st t ss t2 t t t r

68 r t s r t r t P t s ss ts s 2 t t t P s r t s r r s st rt 2 ts t r2 s r t t r s t t2 2 t st t t t r s 2 ts 2 r2 s t t r t s t r t t t t t t r s t s ss t t r t t r s r t 1 rr t s t P 2s t 1 s t st t s r s t2 t t r s s 2 2 s tr s r s 2 r st t t t t r t t t 2 t 1 t t t t tr s r t P t s s 2 t t r t 1 t r s t r r2 t 1 r t s r 1 r t t t r t r q t t r t t t t r s s s t t t t s st t t t 1 t t t 2 t t t r t t r 2 t st rt t t r r t r r t s r t s r s s 2 t s s t s 2 t s t s r t t s t P s r s 2 ts t t r st t t s r 1 s t s r s 2 ts t t st t t r t st 2 s t t t st t t r s r r s r t t s r r t t t P t t rt s r s 2 ts t 1 t 1 t t 2s 1 r t t r st s r 2 2 r s t t s t r st r t r 2 t t s 2 r r t 3% r 2 r r t t s t P t2 2 tr s r s 2 r st t t t t r t t 2 t 1 s st t s t s 2 t 2 s rr r r s r s ss 2 t s t t t 2 t s t P 2 r s r s 2 ts s st t s 2 s s 2 t r 2 s t r t s str 2 ts t r r t r s r 2 t 2 s s t r str 2 ts 2 r s t 2 ts st r st t2 tr ts s t s t2 2 ts st r r t t s ts s s 2 rs r r t r s s s t r t t s s s r t r r2 r t 2 t s r s t2 tr t 2 r t

69 t t t r t r s t s t r 2 ts t t r 1 t r 2 ts t t r2 s t r r t t st t t s t r 2 t rt t t r t t t P s ts r r 2 ts t s t t t r 2 r t t t r s st rt r r r t2 2 ts t s t2 tr ts r str t r s t t s s t t t r s t s t r st rt r t2 2 ts r t t r r s s t t2 t t t r t r s t r s t t t t r s rs s ts s r2 s s s s s r r t r t r t 2 t r s t r s r t s s r s 2 ts s r r t r s s s s s s r t t t t P t s st t t r t s t r t r t t t 2 s r t r t t r s 2 ts s t r s r 1 t r t t t t s s t 2 r t r t r s 2 ts s t r s t r 2 st t t s r r r s st t t s t t st t r r r t t r t t t r r t t t t t r 1 ts t t s rs s t r rr s r r r t r t s s t s r t r t t r s s 1tr r s P 2s r t r 2 s s r s r s 2 t t t t r t t r t st t t r s r r t s s r t t t t s t r s r s t r t s t t r 2 t t t t r t t r r t t t t t2 t t t r r t t t s s 2 t r t t t2 s t r t r t t t r t t r t s r t r t2 2 ts t r s t 2 s t r s s st t ss s t s rt t t 2 ts t t2 s t 3 st rt t 2 t t s t s s t r t s t t t t t r s rt 2 ts r t t r t t s s t s t ts t t2 t r t t t r r t r t st ts st s r t r s 2 t t t t r t t t r 1 r t t r t r st t 2 r t t t st t t s r s t r t2 r t s r s t tr t s r tr ts

70 r t s s t r t s r s 1 s r t s 2 r t ts t2 1 t r s t t r s t r r t t r t t s t s s r t t t s 2 s 1 t r t2 t ts s t r t t r r r t r s t r t t r r s r r t r r ts r t t r s t t t r t t r s 2 t t s 2s s tr ts 2 t r t r s s s t r r s r 2s r t r r rs r t P s s r s 2 st r s r t s ss t t t r t t t s r s t s s t s st r r t r r t r r s r t r t t ts s t s t r st r t r t 2 r s r t r st s s 0 r t r s t s s r t r r r t t ts s t r r t r t t t ts s s s t q t t st s t r 2 s t r t t t s t t r t t r 2 t r s r q s t 1 st ts s s r t t t t t s r t ts s s r t t t t s ts r s ts r tr r t t s r t t P 2 r s t rr t t t t r t t ts s s r s t t t r t r 2 r s s s s t r 2 r s t s r r t r t t ts s t t s r r t r s r t s r 1 t r t s t 1 r r t t 1 s t t rs t t q t t r t r t r t t r s 2 ts s t r s s r s 2 ts t t e t s t r e r s t s t s t r s st t ss s s t s rr t 2 e s s s t r2 r e t e r s 2 ts t se t r s r t s r s rs sts 2s s r r s s r s r t s t t r t r s st t t t 2 t

71 r t s r s r t r s s r s r s 2 t s r 2 t r t r t s t 2 2 r 1 r t t t r s 2 t r s t s 2 s r s r t r t r t r 1 t t t r t s s s sts r t r t 1 r t r s r 2% t t t se100 t r s s 5 t t t t se (1 0.02) =e rr r r s t P t r s 2 r t rt r t r r s 2 t t2 2 t s 1 t t 2 rs t s t s s s t 2 rs t s r 2 s 2 ss ss s rr r r s t2 s s r s r s s t 2 ss t s r ss r s t r 2 t s rr r r s r t t t t r s r 2 r r s r 2 rs s t s rr r r r 1 7% r t 2 t rst 2 r t r r s 2 t 6% t s 2 r 5% t t r 2 r s t t t 2 r t s rr r r r s t tr ts t r t t r rt s t 2 r 10% r 15% s t r 1 t t 2 s rr r r 1 r s s tr t t e r s 2 t tr t s s s rr r r s t 7% r t rst 2 r 2 1% 2 r t t r s t t r 10% s tr t 2 r r s rr r r s t rst 2 r s t t r e5000 r s tr t e ss t t s tr t s t r s r r s s st t r r t s s t r e % tr t r s rr r r s t 2 s rr r r 7% re280 t t r e 4000 t r rt t2 1 s r s r s r s q t rt r t t t t2 2 t r 1.25% r 2 r s r s t s t s r 2 r s r r s s t ss s r t t2 tr t Pr t r t rt t2 1 s r s r s s t s s t 2 t s r r s sts s t s s ss t t r ss r s t 1 s rt t2 1 s r s r t r t 1.25% t r t r t 2 r se20000 s t r 2 e 250 rt t2 1 s r s r s t t 2 r

72 r t s str t s s r r 2 t r s t r r r t r str t 1 s s s 2 r s t t t r se25 re30 r 2 r r s r t s t t2 2 t r 0.15% r 2 r 1 r s str t s t r t 0.15% t r t r t 2 r se50000 P 2e 75 str t s s r s r t r t r s t r s r 2 s s s s st t t r t t r t r r s r t rr2 t s r s t r r s s s t s s s r s r tr s rr rt t t r st t t t t r 2 s 2 s r ts s r s r tr ts t s r t t r s s tr ts r s t s t t tr t s s r t t2 2 r r 1 t 5 r s 2 ts 1 r s s tr t t t rs s r t 3 r s 2 t s r s 2 t e s r 2 ss t tr t s s e600 t t t r t s t s r ts 2 rr2 s r 1 s s t t t t s r t r r q t 2 s r rs r t r r s r ts r r t 2s r s rr r r s rr r r s 2 r r t t 2s s r t t r s r tr t t s r t r s rr r r s P r s s 2 ts 2 s t t s rr r r s r r r t t 2 r s r tr t t s r t

73 r 1 s r rt t2 1 s r s r s t r r s r rt t2 1 s r s r s 2 t r t t 2s t r s r t t t r 2 s s r t t t s tr ts 2 s s r t s 2 t 2 r t s r t r 1 s t r t r s t t s s t 1 s t t r t s s r ts r t r s 2 t t r t t r s s s s t t r t t t r ss r 3 r t r t s t t r rs r t r 25% 2 rs r 13% 2 rs r t r r 2 t t r 3 t ste2500 t P s t st t t r t 1 r2 t tr t t t r s t tr t t s 2 t t t t r s r t t t t r 2 r t t rst r 2 rs st t r 2s t2 1% t s 2 rs t t r r t s st s sts s r r r rr s r s 2 st ts t e600 s r t r s t t t t s 1 2 rs t r t t t t 3 t r st t t r st t 2% r 2 r r t r t t t s st t t 1 r t r s r t t t s t r t 1 r2 t 2 t r s t t 2 rs t t r s s r t t 1 s t s 2 t s r t t s t t t r t t s 2 r 2 r t t r 1 st t rs s t s r t 2 rs t rt r s s q s t s r P s 2t t s rr r r s r t ts t 2 r 2 r2 rs r2 t t r t t tr t t t t r t t s q t t t r ss r 2 r r t rr r t s t s s IB ratchet t = max(ib ratchet t 1,AV t ) r t t2 2 t r t t s t t r t 2s r t t r t t2 s r t r t t t s r r t r t { max ( IB ratchet t 1,AV t + s<t IB ratchet t = Payout ) s AV t > 0 IB ratchet t 1 AV t = 0.

74 r t s r t s t 2 r t t tr t rs r s t 2 rs 2 r t rr r r r t s q t 1.5% r t 2.5% r t t r t s q t t t r ss r t rs r2 IB rullup t = Initial premium (1+t rollup rate). s t s t 1 t t r t t t t r t IB t = max(ib ratchet t,ib rollup t ) t rs r2 t P s st r s s q t Payout t = IB t IBRate r t IBRate s rt 3% r t 1/(contrac period deferral period) r t st t rr r s s 2 t P t t t tr t t s r t ts t t s t s ( DB t = max AV t,ib t ) Payout s. s<t r r s r r s t t tr2 5% s t t s r r2 2 t r t t tr t rt t2 1 s t r s r t s r t t t r r t r s 1 t t tr t tr t r t t r t r rt t s ss r r s r t r q r t r t t r t s s t 2 t P s t s r 2 s ss ts r r r r rs r 1 t2 t st t rt t s r t2 t r st t r t r r ts s t t t r t s 1t r t t s t t t ss t t r t s r s t r ts r r ss t rs s t r ts r r t s 2 t s r t r ts s s t r t t s r ts s r s r t s r r ss t t t r ts t rst r t r r 2 t r t 1 t r t t t 2 s r t r t r r t r r t t s t s s t ss ts s 2 s t t t r t r 2 t s t s s t2 t r t t r r s t 2 s s t s r 1 r t t s r t t

75 tr t r Money A YEN VA++ CONTRACT Anniversaries BEN BASE DEATH BEN ANNUITIES TOTAL PAID FUND AV RATCHET ROLLUP r 1 t t tr t rr t2 t r t t r t t r t r t r t P r t r t r r t s ss t t s r r t s ss t tr t t t t t tr t rt2 t s r t r t r r s t 2 tr2 t r 1 t s sts s s r t s t P r t rr t2 rr t2 rr t2 t t r t t t s ss t st t t t st s t r t 2 q r s t 2 s r s t t t s t st t t r t s ss t t t

76 r t s r t2 r s t r r r 2 t r ts r s t t 1 st t st s r r ts s r s r r s r t r s r r t 3 t r s r s 2 t2 r s s t r r2 s r r s t t t r t r t s t t r r s rt t2 r s 1 sts t t t r t t t r t s t t r r q t2 r s t r st r t r s r t r r2 r t r s s t t r 2 q t2 1 st ts t t r t P s t r r t t r t r t r t s t s r t r s s s r s t t 1 st ts P rs st r s t t 3 t r s r t r r2 r r t 3 t r s s t t t r t r t str t r r 2 s t s r r r r r t s r s t t t r Pr r2 s s s r rs s r s s t t ts r s s s r r t s r ss t s r s r rs t r s rs s t ss t t2 t r s r str ss s r 2s s r s s s t r r t r s t r s t s s s r 2 t r2 r s s r r s r s t str t 2 t t r t r s t t2 t ss t t t s s st r s t r s s r t2 s s r r st r s r s r 2 t s s r r2 r s t str t 2 t t rr t t t2 r s r r r t ts

77 Pr Pr s s 2 rst 2 r s s t t r t2 s ss rt t2 t2 2 r r r s s r t st r t t s t 2 t s r s s t r t s 2 r rr t t st r t r t s t r t s s t r s t r ss t r r t s t r t t s s r r r t s r r s t tr t r r t t t q s t r r t t r t t r t t rt t2 t2 ss s t t r r t P r

78 r t s

79 t r Pr t st t s t t st t r st t s tr t s t r r s ts t r s ts t t r s r r s r r t t r t t2 r str t r tt t t s r s t t 2 s 2 t t s r 2 s s s t st r s 2 ss ts s 2 t t s r r t t s t 2 s t t t t t s 2 t r t 2 r t r r t t t P s t t t t r 1 r t t t s r t t st t t r s 2 ss t t s t 3 r t t t P s r rs r s t r t t r s 2 ss t t 2 2 t s tr ts r t t r s s st s t t r 2 r s t t s t r s 2 ss t st t s r s t r r t t r t t r r s s t t r 2 r s t t s r t t r st t t t t s 2 s r s t P s t t r 2 r s 2 t P 2 t r r t t tr t 2 s t t s rr r t tr t 2 t t2 t s rr r r s t t t P t r s t t r t r t st t t t tr t t r t s st s s t s t2 r r rt s rr r s t 3 r t r t s 2 rs sts r t s r t r s t 2 t r rt r t r s 2 ss t t r s r t t s r ts r tr t s s t r ts r s t 2 r r r ts t rt t2 r s s s t r rs r r t s r2 rt t r s r s t t r q 2 t s r ts r r t s r ts t r t s t t st st 2 rs s t ts st t t r st r t t t2 s s t s t r t s r ts t t s 2 r s t r r t s

80 Pr t r r s st st t t2 st st st t r st r t t r s r r t rt s r s rt r r r t rs2t t3 s r t 2 s P r t r s t r s tr ts s r r t r2 st r t s t s r r r r r r t s st st t t2 t s t r r t r r ts r r s t t r t s s r r s t r r P s r s ss t s t t t r t r s t t tr t r t r s rr rs t tr t t s t r r s r t s t r tr t st t s t st st t r st r t rst tr t t t t r str t 2 t P t r s t t tr t r t t t t t rst s r t r r t r t s ss t t t P s t t r str t 2 s s t s t s t t t r s r s t r r r r rt t2 s s s t r r r t s r s r s t r r t s 2 r tr t r t 2 r t r t t tr 2 r t t r s t s t t r t r t t st rt3 st sq r s r r ss st rt3 s t t r r tr t s s t t t s s t s r q r t t r t rt s r t t r t rt r t s t2 s r t s s t r t r s ts t s t r r t s r t t t r t t r tr t st t r t rt t st t s r t r t s r s t t ts st st t t2 st st t r st r t r t r s t s s t t2 t t r s r t rs s r t r t s t r t tr t r s t r 1 s s t r t s t s t r s r 3 s s t s r t t r s t tr t s s rt t2 t r s r t ts t r r r t st st s s t r r t r s t t r t s t t t t s t tr t r r t r r r t sts r r t s t r r st 2 t s s t t2 t r tr t tr t t2 ss t s 2 t r s t t s s

81 tr t tr t t r r t t tr t s r t r rs2t t s r t s s t r r r s ts t t r r s r s r2 t t r s t tr t rt t2 r t r ts r s tr s r t r r t ss t t rt t2 r s s rs s 2 s r2 t s ss t s t st t t r s tr t tr t st s t r r r r t3 r r t r t t r t 2 t tt r t ss t t t tr t st rts t t = 0 rst s s t t 2 r r t s t 2 τ s 2 τ = 122 t P t t t 2 a 0 s 2 a 0 = 65 t t r t2 t tr t s T = τ a 0 s 2 T = 57 t t r t r s T P s r t tr t s rt 3 r ts t rt t2 t tr t r s r s t t s M : [0,T] R s t r t2 s t2 t t s r s t r r M ss t t t t 2 r t P r t t r rs [t,t+dt] s q t M(t)dt R : [0,T] R s t r t t r rs r st t t t R(t) = 1 ˆ t 0 M(s)ds. r r t t R(0) = 1 R(T) = 0 r s s t2 ss M t st t t tr t rs r s t [k,k +1[ k N t M(t) = M(k) tr t st t r t rs t t t = 0 t 2 r 2s t s t r ss r GP t t s r 2 s 2 r 2 s t s t r P r P s st s r s t 2 t r S t st t r t rs t tr t r t A t A 0 = P s t B t B 0 = GP t t s t r s r t 2 s t q t t r ss r r t t r s s t t t q s t r s r q t GP P r t s r r s s t 2 t r tr2 sts r t tr s s t t t r s s t s r t t s t i t r t t s t t s t s t r s r t ts s s 2 r r 2 t t s r 2 r q rt r 2 rst s r t t t t r t 1 t s t t s t i

82 Pr t t tr t t t t s t t ]t i,t i+1 [ [0,T] s s r S t t s t r 2 r t t 2 s S t s r t 1t t t A t s t s 2 s S t t t 1 t t t t t s s 2 s tr t t s 2 da t = A t ds t α tot A t dt. S t s s t t t t t s r r t t P t r t s 2 r t st t t A t s s t t t s α m t r t t r t s s t r r α g s t t α tot = α m +α g. 2 rt s 2 t s r 2 t t tr t s t t r α g t t r rt t s s t s r s t 2 s P s t r s r t s 2 t r s r t2 t tr t s r 2 rs2t s 2 s t r t t 2 2 r t i t s s t t t s s s da t = A t ds t. S t t P s t t s 2 q t A t s t t t rs t P r t r t t tr t t s t t 2 t 2 r t t t t t s t 2 t tr t st s t 2 t t t t s s q t 3 r t r s t tr t s t t 1t t t s t s t t s t t s t t s s q r t s r t tr t r t 1 t s s 2 t rs r2 t s t tr t t s t s ts t r t 2 t i = t i s 2 t = 1 t s I = T/ t t i r s {0,...I} t t rs ss t t t ts t s r r t r t s 2 t s r 2 t s t t t s t P 2 t t t ts t P s st s s t t t t r rt t 2 r 2 t tr t r t t 2 r s t t s B t t t ( A t i,bt ) i,t ( ) i t st t r s st r t t t t rs t t t i t A k+ t i,bt k+ i,t i t st t r s st t r t t t t t t t r s r st

83 tr t s s 2 t r t s 2 2 t t s s s rs2t t3 t s s t t t t s t t s s r s r 2 q t t s s ( A 1+ ti,b 1+ t i,t i ) = ( A ti,b t i,t i ). t r s s 2 t r t t t r s s s t t s s t t t t s t t s s r s r 2 q t t t t t t st t r t rs ( A 1+ ti,b 1+ t i,t i ) = ( A ti e αtot t,b t i,t i ). t s rt t t t t t s Ft man t r 2 t t s t 2 r t s t t tr t t r r t 2 t s r s t 2 t s s r t r t s 2 t t s r t t t r 2 s t t t t s s s s t s t df man t F man t = = α m A t dt+r t dt. ˆ t 0 t e s rudu α m A s ds. s t r r t s r t r t t t r t t s s r t t t t s t r F tot t i = F tot t i 1 +A 0 t i ( 1 e α tot t ), F man t i = Ft man i 1 + α ( ) man Ft tot α i Ft tot i 1. tot t t t P t t t ]t i 1,t i [ s r rs t t t t t s s 2 q t t t t tr t r s t t t t t s t 2 t t t t DB t s t s q t A t t r s t s t t 1t t t t DB ti = A 1+ t tr t s t r t 2 t t s rt ss t i ( A 2+ ti,b 2+ t i,t i ) = (0,0,ti ).

84 Pr t r s s rr r t r t t tr t t P s st t t t t i t s s t t t t r rt t W ti r s r 2 s t t s q t 0 s r t t s 2 W ti = G t B 2+ t i, r G s st t 2 t tr t t t r r t P s s s t t r 1 t 2 t s r t t t r s t 3 t r r s 2 t r r t γ i t r t t r W ti = γ i G t B 2+ t i. s γ i = 0 rr s s t t r t s s t tr t 2 r s b ti s s 2 t tr t ( A 3+ ti,bt 3+ ) ( i,t i = A 2+ ti,bt 2+ ) i (1+b ti ),t i. 0 < γ i 1 t P t r s t r r t t t st r r t t st t r s r ( A 3+ ti,bt 3+ ) ( ( ) ) i,t i = max 0,A 2+ ti W ti,b 2+ ti,t i. t r s s ss t P 2 t t t r r t t 1 tt t s s s s γ i ]1,2] r t s γ i = 2 rr s s t t t s rr r A = max ( 0,A 2+ t i G t Bt 2+ ) i. t r t s W ti = G t B 2+ t i +(γ i 1)A (1 κ ti ). r κ ti [0,1] s t2 r t r t tr t t st t r s r ( A 3+ ti,bt 3+ ) ( ( i,t i = max 0,A 2+ ti G t Bt 2+ i (γ i 1)A ),(2 γ i )Bt 2+ ) i,t i t t = ( (2 γ i )A,(2 γ i )B 2+ t i,t i ). t tr t s s r t t st t r t t t t s B s r s t st t t s r s r t t B r r s ss t tr t s rt 2 r 2 s rr r ( A 4+ ti,b 4+ t i,t i ) = ( A 3+ ti,max ( B 3+ t i,a 3+ t i ),ti ). t r t r t t 2 t tr t s r r s s t2 t tr t t s s

85 st st s t S r t2 r t rt t r rt2 tr t s t t t t t s tr t r s tr s r t s V(A,B,t) t s t tr t t s ss t r t t r 2 s r η > 0 ηv(a,b,t) = V(ηA,ηB,t). st t tr t t s B = ˆB r 1 ˆB r 1 ˆB = P t s η = ˆB/B t ( ) V(A,B,t) = BˆBV ˆB A, ˆB,t, B s t t s t r r 2 r s r r s t t B s t 2 r s t r s s r t2 r t s s 1 t r t rts s s r t r t s r t2 r s t t s tr t t t s t t s s r r s t s ts r t t t r tr ts t t s r rt s st st s t S rst t r t ts st st t t2 st st t r st r t r s t r t2 tr t r t r t t s t st r s st st t t2 t s t r st st t r st r t s s r t r ss S r r s ts t r 2 r t t A t t r t st st s t st s s t s r t t t t t2 r 2 ss t t r 2 ss t ts r r t 1 t t t r rt ts 2 s { ds t = rs t dt+ v t S t dzt S S 0 = S 0, dv t = k(θ v t )dt+ω v t dzt v v 0 = v 0, r Z S Z v r r t s d Zt S,Zt v = ρdt s t t s st r 2 st rt t t r st r t s s 2s t s r r s t r s s rt t t t s t 1 st s r s t t t r s s ts s t s r r t 1 t t t r rt t 2 s t { ds t = r t S t dt+σs t dzt S S 0 = S 0, dr t = k(θ t r t )dt+ωdzt r r 0 = r 0,

86 Pr r Z S Z r r r t s d Z S t,z r t = ρdt r t s r t s t s r t r r t s 2 r t r t t r t r t 2 r P t P t r r t t r s t t r r α g t s t r t t s t t t 2 q t t t r ss r t s t r t r t 2 t t r r s t s t s t t t r t rr t r α g r r t s t t t t r α g V(A 0,B 0,0)(α g ) r r t t t t t t t 2 r t t t s r 2 t t s r tr t s t s s ss t t t 2 r s t r str t 2 s r t rst r t s r 2 2 r t r t 2 t t r t r s t s t s s r r s s t st s r t s r s t r 2 s t t r t r t t r t t t s r r t t 2 t t s r s st s t t r s 2 r t r 2 r t s 1 t r r t r t s s r t Pr t r t t s r s r t t 2 t t t s t t t t tr t s t s s t s s s t s t r t t 3 str t 2 r t t V(A,B,t) t 2 t t t t q t A s t q t B r 1 s s r t V (A,B,t) t 2 t t s r t t t t q t A s t q t B st t t r t s s t str t 2 t P s 1 t t γ i = 1 r t ss t t r t γ i s 2 t t t t 2 s t r r t s s t t t t s 3 t ( I i ) V (A 0,B 0,0) = M(t i ) e t k 0 rsds W tk +e t i 0 rsds A 1+ t i. i=0 k=0

87 r t s r 2 2 t r r s r t t t r s rst t t s ( A 4+ t i,bt 4+ ) i,t i r ti t t t rt t2 q t 2 ss t P t t t t r r r ( ) A 4+ t i = max 0,A 4+ S ti t i 1 e αtot t γ ti G tbt 4+ S i 1, ti 1 B 4+ t i = { ( ) max Bt 4+ i 1,A 4+ t i B 2+ t i 1 r t t, t r s r r s t t t tr t t t t i st r t t r t tr t t t t i r tt s t s t t t t i+1 s t s t t s s r t t r [ t 4+ i,t 4+ i+1] t t t tr t s V ( A 4+ T,B4+ T,T) = 0, s P s r ts V ( A 4+ t i,bt 4+ ) t i+1 i,t i = e t i r sds [ V ( A 4+ t i+1,b 4+ t i+1,t i+1 ) +R(t i+1 )W ti+1 ]+DB +MF, r st s r t s t t i t t t t s [ t 4+ i,t 4+ i+1] st s r s s t t s t t t r r t r s s t 1 t t s t r t t DB = M(t i )e t i+1 t i r sds A 4+ t i S ti+1 S ti e αtot t, MF = R(t i )e t i+1 t r sds i A 4+ S ti+1 ( t i 1 e α ) tot t α m. S ti α tot t t s t r t s 2 DB = M(t i )e t i+1 t r sds i A 4+ S ti+1 t i e αtot t, S ti A 4+ t MF = R(t i )α i m S ti ˆ ti+1 t i e t r sds t i S t e αtot(t ti) dt. t 2 s t r t t MF = M(t i ) α m A 4+ ti α tot S ti DB = M(t i ) A4+ t i S ti ˆ ti+1 S t t i ˆ ti+1 t i e t r sds t i S t e αtot(t ti) dt, (1 e αtot(t ti)) e t t i r udu dt+ +R(t i+1 )e t i+1 t r sds i A 4+ S ti+1 ( t i 1 e α ) tot t α m. S ti α tot

88 Pr t 2 s t r t s 2 A 4+ t MF = M(t i )α i m S ti DB = M(t i ) A4+ t i S ti ˆ ti+1 t i ˆ ti+1 t i e t r sds t i S t e αtot(t ti) dt, S t e αtot(t t i) e t r udu t i (t i+1 t)dt+ A 4+ t +R(t i+1 )α i m S ti Pr t s 2 t s ss t t V ( A 4+ s V ( A 0,B 0,0) = V ( A 4+ 0,B4+ 0,0), t rst t r t s t t t = t 1 r ˆ ti+1 V ( A 0,B 0,0) = V ( A 4+ 0,B4+ 0,0) +γ 0 G tp t i e t r sds t i S t e αtot(t ti) dt. 0,B4+ 0,0) t t 2 t rst t r t s t t t = 0 s 2 t t t r V ( A 0,B 0,0) t s t s r s t r 1 t V ( A 0,B 0,0) t t r t s s s s t t t t t t i t P t r r t γ i t r r t r t s s s s t t t P s s t γ t t s s t rst s r t s r 2 s r t V(A,B,t) t 1 t t t t r 2 s st t r t rs r A,B V(A,B,t) = E[V (A,B,t)]. s s t t t P s s γ i s t t [ γ i = r 1 Wti +V ( A 4+,B 4+,t )]. γ [0,2] s 1 t t t st rt3 r t N r s r s r t 2 t t s s r s s r s r γ i r t = T t t = 0 r 1 t t t V(A, B, t) s t st sq r s r t t s t s s 2 2 s r s r t t γ t t t st t r s r s = t t s = T ss t t t P s s t st r γ t t r t t V (A 0,B 0,0) r t s r s r 1 t t t V(A, B, t) r 2 t s r t2 r t r rt2

89 r t s r t r t r t t r t s r2 s r t t 2 r t r 2 r t t s t 2 r t r s r s r t s s t s s 2 r t r r r t st s t s s r t t s st r t t s r s r 2 t t2 t s s s s t r r r s s r s r r t s s t s t r t t s r s r 2 t r st r t t s s s s 1 t s s r str s t s r r t r r t t rr t t r 2 t r st r t r r t s s t P 2 r t 2 r P r s r t r t r s s t t s P r t t s s r t t r st t s s tr t s t t t2 r t t r st r t r 3 t s s t t tr s 1 t t s ss t t t r s t s P r tr s t 1 t s st rt s r r t s s t r s t r t s t r t r s r t str t r r st t rt r t ρ = 1 ρ 2 r t Z S t = ρz v t + ρ Z S t r Z S s r t rr t t Z v { ds t = rs t dt+ ( v t S t ρdz v t + ρd Z t S ) S 0 = S 0, dv t = k(θ v t )dt+ω v t dzt v V 0 = V 0, d ZS t,zt v = 0, t r ss de t = E t = ln(a t ) ρ ω v t, E 0 = ln(a 0 ) ρ ω v 0, ( A t = exp E t + ρ ) ω v t. ( r v t 2 ρ ω k(θ v t) α tot ) dt+ ρ v t d Z S t,

90 Pr s r t t s 2 t r s ( de t = r v t 2 ρ ) ω k(θ v t) dt+ ρ v t d Z t S. s r ss E t s rt t s t s r ss rr t t V t tr t s r t s t t P t s t tr s t t rt r t ρ = 1 ρ 2 r t Z S t = ρz r t + ρ Z S t r Z S s r t rr t t Z r t r ss ( ds t = r t S t dt+σs t ρdz r t + ρd Z S ) t S 0 = S 0, dx t = kx t dt+dzt r X 0 = 0, r t = ωx t +β(t), du t = U t = ln(a t ) ρσx t, U 0 = ln(a 0 ), A t = exp(u t +ρσx t ). ) (r t σ2 2 +σρkx t α tot dt+σ ρd Z t S, s r t t s 2 t r s ) du t = (r t σ2 2 +σρkx t dt+σ ρd Z t S. d ZS t,z r t = 0, s r ss U t s rt t s t s r ss rr t t X t tr t s r t s t t P t s t tr r t str t r str t r s r t s r t s sts tr P s r s s r r t s tr t s t t t2 r t t r st r t t t r t s r r P s r 3 t t tr t t t2 r t t r st r t s r t t t tr s t r t t q r tr t t rst t r ts t r ss t P s r s t t r r t s t P s t t t t s t t t 2 t s t t st t s t r r t ts t ts r r t t s t P s s t st t t r q r s 2 r 1 t2 s t s r s2st t tr tr 1 t t st s s s r s r t t X t V t r ss s r r rt s t t 2 t tr s r t t r r 2 s t tr s t t t s t 2 t r 1 t r r r t r r t2 p n,j t s t s rt 0

91 r t s r t 2 t t s t t r t t tr r s r s t 2 r t r t s s t s t t st r st s r t r P s 1 t t rs r t t tr s t r t s 2 r t s s p n,j > 0 s rt t q r s t t t t t r t t s r s r s r r s s Pr P t s t s ss t 2 t s s rs2t t3 st s r s s s t r s t t V(A,B,t) t tr t t t t s t s rt A s s t s rt B s q t 2 ( ( V He (E,B,t) = V exp E + ρ ) ) ω V t,b,t, V HW (U,B,t) = V(exp(U +ρσx t )B,t). r s r X V t t r 3 s r t X t V t s t tr s r P s t t t t s r t tr r t s r t ss 1t s s t t t rr s t t s s r t r t t s 2 r t s p n,j > 0 t s tt t q r t 2 r t t s t t r s t q t2 r s ts s t rs tr s r t s 2 t t t s t s t 1t r r s r t r t P s r t st r t t t s t r t t t r t s ss t P s r V(A,B,T) = R(T t)a V He t r t i = T 1 t t i = 0 t ( 1 ( 1 e αtot t) ) α g. α tot + ρ2 V 2 VHe EE + (r v 2 ρ ) ω k(θ v) VE He rv He = 0, Vt HW + ρ2 σ 2 ) 2 VHW UU + ( r σ2 +σρk X VU HW rv HW = 0. 2 t P r r t i+1 t t i t t V r t V He r V HW s r t t V ( A,B,t 3+ ) ( ) i = V A,max(A,B),t 4+ i

92 Pr t r γ ti = 0 γ ti [0,1] V ( A,B,t 2+ i ) ( = V A,B(1+bti ),t 3+ ) ; i γ ti ]1,2] V ( A,B,t 2+ i V ( A,B,t 2+ i ) ( = V max(0,a γti G tb),b,t 3+ ) +R(ti )γ ti G tb; ) ( = V max(0,a G tb)(2 γti ),B(2 γ ti ),t 3+ ) + i +R(t i )(G tb +(γ ti 1)max(0,A G tb)(1 κ ti )); t t V ( A,B,t 1+ ) ( ) i = V A,B,t 2+ i +(R(ti 1 ) R(t i ))A s V ( A,B,t ) ( i = V Ae α tot t,b,t 1+ ) i +R(ti 1 ) αm α tot A ( 1 e αtot t) t t V He r V HW r t V t t s t r t s 2 r s t t s s t s r t s t r t s V(A,B,T) = R(T t)a. ss t P s r i V He t + ρ2 V ( 2 VHe EE + r v 2 ρ ) ω k(θ v) α tot VE He rv He +α m R(t)exp (E t + ω v ρ ) = 0, Vt HW + ρ2 σ 2 ) 2 VHW UU + ( r σ2 2 +σρk X α tot VU HW rv HW +α m R(t)exp ( U t +ρσ X ) = 0. P t s st s V ( A,B,t i ) = V ( A,B,t 1+ i ). t 2 s t r t t r s t t s s t s r t s t r t s V(A,B,T) = 0. ss t P s r V He t + ρ2 v 2 VHe EE+ (r v 2 ρ ω k(θ v) ) V He E rv He +M(t i )exp ( E t + ρ ω V) ( 1 ( 1 e αtot(t ti)) α g α tot ) = 0,

93 r t s r Vt HW + ρ2 σ 2 ) 2 VHW UU + ( r σ2 +σρk X VU HW rv HW +M(t i )exp ( U t +ρσ 2 X )( ( 1 1 e αtot(t ti)) ) α g = 0. α tot P t t t st s st t t V ( A,B,t 1+ i s V ( A,B,t i ) ( ) = V A,B,t 2+ i ) = V ( Ae α tot t,b,t 1+ i ) +R(ti ) αm α tot A ( 1 e αtot t). t 2 s t r t s 2 r s t t s s t s r t s t r t s V(A,B,T) = 0. ss t P s r V He t + ρ2 v ( 2 VHe EE + r v 2 ρ ) ω k(θ v) α tot VE He rv He +exp (E t + ω v ρ ) (α m R(t)+M(t i )) = 0, Vt HW + ρ2 σ 2 ) 2 VHW UU + ( r σ2 2 +σρk X α tot VU HW rv HW +exp ( U t +ρσ X ) (α m R(t)+M(t i )) = 0. P t t t st s st V ( A,B,t i ) = V ( A,B,t 1+ i ) = V ( A,B,t 2+ i ). s s t t t t r s t t t r s s s t P t t γ i s st t r st s s t γ i [0,2] r r t 1 3 s t V ( A,B,t 2+ ) i s 1 3 t s r s r γ i s t t t st P t s r t ss t r r ss 2 t s2st st st r t q t s s r t s r t t 2 t s t t t r s s s 2 t r r s t t s t tr s r P s r t t t ss rs P s r t s st s t ss t P s r V He t + VA2 2 VHe AA + ω2 v 2 VHe vv +(r α tot )AVA He +ρωavvav He +k(θ v)vv He rv He +α m R(t)A = 0

94 Pr Vt HW + σ2 A 2 2 VHW AA + ω2 2 VHW rr +(r α tot )AVA HW +ρωaσvar HW +k(θ t r)vr HW rv HW +α m R(t)A = 0 s t t r t2 s t s P s r2 st 2 s t s t s s tt s s t r t r t t t2 t s t r 2 r s t t s s t r s s r t t r t r r r t s t P s r ss 2 r t s rst s t s s t s t s s s r t t r t rs r t s r A A left = 0.8S 0 A right = 1.2S 0 A max = 100S 0 d 1 = S 0 /20, R max = 10R 0, c = R 0 d 2 = R max /400 r t s r r t s t v max = MIN(MAX(100v 0,1),5) d 3 = v max /500. r t s r v t st s t2 s t t s tt s s t s s t r t r θ = 1/2 s t s t s st t t t rs s r r r s s t r t st t2 t t t st s t r2 t s t r s s r s t s r t r t t s t t t r t r t r2 t s r r t r2 t s t t s t s t t r t2 s 2 t r2 t s rt s t r r 2 ts t s t S 0 S max t s2st q t s s t t t s st t s r 2 r 1 s s s r r t t s t r2 s r s t s t t r t2 t r s r r 2 t 2 r2 t s t 2 t s2st r 2 r s 2 t s t t r2 ts t s r2 tr t r s r t r2 t s t st t s s t s s s 2 s t s s t s2st t s 1 t 2 t s s t t r s t t r2 t t 1t t r2 t s r t s t 2 V HW t s V HW t (A,r,t) = 0, A = 0 r A = A max, (A,r,t) = 0, r = ±R max, r t s [0,A max ] [ R max,r max ] t r2 t r t st 2 V He t (A,v,t) = 0, s Vt He (A,v,t) = 0, v A = 0 r A = A max, v = v max,

95 r r s ts t s [0,A max ] [0,v max ] t t t v = 0 s t s t r2 r r s ts t s t r t r t s tr t 2 r t r t r t r 2 r P P P P rt r r r r s t t t t s 2 s s t r t rs t t s r t r t s t r s r st s s t t t t t r t r s t s r t r s r t s r t rs r r rt t t t t t st s r 2 r s st s st s r t P t t st s r 2 r s st s r t 2 r P t t st s r 2 r r s t s r t s t r r 2 s s t r t r 1 t 2 s s s t r 1 t 2 t s r t s (A) s (B) s (C) s (D) s r t r t t s t t r t s s r s r t st s r t t s t s r t s s r t st t r t s s t t r t s r t t s r t t r t t t s s 10 7 t r s t 2 s s 10 6 t r s rr 10 s r s s r s t 1 t s r 1 t 2 6 r r 2 t t t t 2 r s t γ = 0 γ = 1 γ = 2 s r r t r α g s r 2 t s t t t s r t s t r α g = 0 α g = 200 t t t r t s s 1 s t t s 1% 2 s s t rt t2 2 r r s r t t t s t r t s t t rs t t t 1t 2 r t s s2 t t t t M r t s r t s t t s t t t s s s t P t t r 1 t 2 t t r t r t γ t = 1 t t t sts r s r 2 t r rt rs2t t3 r tr t t t r r r t s t r = 0.04 σ = 0.15 tr t r t rs r r rt t t tr t t2 rr s s t s t

96 Pr t t st t t P P P P st 2 P P P P r t r t rs r t r t st t t 2 t P 65 r r t 1t G 0.05 t s 0 t t t r r t 1 r α m 0 tr t 2 t t γ = 1 rst t r 1 st s t t 2 tr t r t rs r t t t sts 1 t st 2 tr t t s s r t t r t t t rst s t 2 t α g = t s s α g = st st tr r s t 2 st s t t r st r t st st t t2 t 23 t t t s ts t r r t r t rs r t r st r t t t2 s t s r r r s ts t st t s s r r t st t s s r t r t rs r r rt rr s t s t t P 65 r r t 1t G 4.90% 4.19% r t t t s 4% t t t r r t 1 r α m 151 tr t 2 t t γ = 1 rst t r 1 st s t t t tr t r t rs r st t t st t t t s t t s t st t t r r t r t s t s rr s r t rs s t st r t rs r s s ts r

97 r r s ts r t s t r t r s ts s st t t t r P r t t st r t s r s ts s st t t t r P r s ts t r r tt tt r t t rst t s t s t r 2 t t r st r t 1 t 2 s t s t s t t s t t t t s t rst t r ts t r r ss t s t r r 1 t 2 ts t r r t s r t t r s t r st s r 2 r r r t s t ss s r s t t 2 t t r s r r t r r r r r t r s r t P rt r 2 t rr t t r 2 t r st r t s t r ts t r t t t r t t r 1 s r t t t ρ = 0.5 r r t s r t t t ρ = s 84 st t t t st t s t st t t r r t r t t st r t rs r s t s ts r s t s st t s r r s t s P t s r s t t r s r t s r r t t s t t r t s s t r Pr 2 t s s t r s t r2 r t t s s t t t s t t t r t t r s t s s t 2 t s t r r r r 1 t t t 2 q t r t st r t s t st s 1 t +16% s t s r t r t s t 2 st r t st s s t s s r t t t t t2 tr 3% s t s r t P s t r2 st s r t t ρ = 0.5 α g t t r r t s t P t t r t st rr t s ss rt t r t s t r t s ρ, t α g s ss t 5 r t t s ss t 1.5 r t t s st t t t st t s t st t t t t r s ts s r t tr ts r r t t q s s r 150 r t s s r t t r t t r t rs r s ts r t s st t s t s r s ts t t t s r s ts s t ss t2 s t t s t r r t s t tr t s t s s r t s s t r s t tr ts t t r s r s r t t rs t s s r s r s t r t s t r t t 1 t s t t t r t s s t t r t 2 t t s 2 tr s t rr r t t ss r2 r r s t s s s 2 t r rt t r r t r r s ts s t s r t rst t s t r r s r t t t s st r t t s r r

98 Pr t r s t st t t r 2 t r t rs s r st t t s r r r r t t r s t st r s t s s r r t t t s q t2 r s ts s t s s P r t t st st t st t t r r s s s r s t t s t s t s t r t t 2 st t t r s r ts t s t st t t s t r t t s s t t t r s s t r t r s r s s s t r s r t P t s r r t t s t r s t t r t r s s t r r s s r 2 t r t s t s s q t r r s t r s t r t t ts st rt t t r 2 r t r t r ts st t t st t t s t s s t t t t t r α g 1 t r tr r 2 s t s r r r t t s r r t t s s s r s s t r t sts t s r r r r ss t rr t 2 s r s s ts r s st t t s st t r2 r t r s ts t t 2 2 P r t t st t s t r st r t r r t t s t r s t t rr t r t r ρ t t s ss t t r t r r t st s t t s st t t s t rt t2 t2 r s s r r s s s 2 t s t s t t t r s r t t t t s r s s s 2 1tr s r s r s s r r r t t t s st 23 t r t r t s r rt t2 s s t rt t2 r t s r s 2 10% 1 t t st s q t r s 2 r rt t r r D s s ts r t s st t r s ts s r t st t t st t t rt t2 s s t t t r q t2 t r t s s r t t rt t2 s s r t α g t s t s s t t r s rt t2 s t s r ss s r t s r r s q t 2 s r rs s 2 tt t t t2 r s

99 r r s ts S 0 r curve k ω ρ σ f lat r 0.15 r t rs t st t t ρ r t t r t t P P P P ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±0.24 P P 30 s 30 s 30 s 28 s 119 s 120 s 128 s 184 s 472 s 478 s 395 s 461 s 1866 s 1896 s 1903 s 1800 s st t t t rst t r r t s t t r t t r r t t t s t r t s r t r t t s ρ = 0.5) 2 t t r t rr r r t r t r t s t s ρ = 0.5 t r t t r t rs s r t s t st r

100 Pr S 0 V 0 θ k ω ρ r r 0.04 r t rs t st t t ρ r t t r t t P P P P ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±0.20 P P 30 s 30 s 32 s 30 s 122 s 119 s 131 s 114 s 477 s 476 s 410 s 491 s 1915 s 1907 s 1755 s 1933 s st t t t rst t r r t st t r t t r r t t t s t r t s r t r t t s ρ = 0.5) 2 t t r t rr r r t r t r t s t s ρ = 0.5 t r t t r t rs s r t s t st r

101 r r s ts S 0 V 0 θ k ω ρ r r t rs t st t t r t t r t t P P P P ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±0.71 st t t r r t st t r t t r r t t r t rs s r t s t st r

102 Pr ρ r t t α g = 150 r t t α g = 250 P P P P s t ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±2 ρ r t t α g = 50 r t t α g = 100 P P P P ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±1 st ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±2 st t t t t r t s t t st t r t t r r t t t s st t r t rs s r t s t st r

103 r r s ts r t t t t P P P P ±0.37 ±0.08 ±0.12 ±0.42 ±0.09 ± ±0.48 ±0.11 ±0.15 ±0.56 ±0.12 ± ±0.61 ±0.13 ±0.19 ±0.73 ±0.16 ±0.23 r t t t t P P P P st ±0.43 ±0.42 ±0.11 ±0.42 ±0.41 ± ±0.53 ±0.53 ±0.14 ±0.55 ±0.54 ± ±0.68 ±0.71 ±0.19 ±0.72 ±0.72 ±0.20 st t t t +10% rt t2 s s r r t rs s r t s t st r

104 Pr 2 s t 2 s t 2 r s s s t s t rst str t 2 r r t t γ t P t r r 1 γ t 2 r ss 0 γ t 1 t t st r r t s r r t s t s r r r r r t t r s rs2t t3 t r rt t t rs r tr t t t r r r t s t r = 0.04 σ = 0.15 tr t r t rs r r rt t 2 tr t t s s r t t r t t r2 2 rs t t rr s s t s t t rst s t 2 t α g = 63.1 t s s α g = 70.7 st tr r s t 2 st st t r st r t st st t t2 t 23 t t t s ts t r r t r t rs r t r st r t t t2 s r t s s t t t s r r s r2 t r r s ts r t s t st 2 t s t st 2 s t 2 s st t t r t rs r s s ts r t s t st P t s r t r t t s t s s st rt3 t t t t t r t s t s t s r s t r 1 t t r t st sq r s r t t 2 r s t r t r r ss s t r t 1 t r r r s r s t t t s r 10% P t s s st t s r t rs s t t s r r t r r ss r r t r s t s 1 t γ = 0 t ss s t t t P s t r r 1 t r s t r s r α g s s t t t r r ss s t r2 r t s t s t t t t r t t s 2 s t s s 2 s r r α g t t r t rt r 1 t γ = 0 s r t s r r t t s t r s t 2 t s t t r s s r t t t ρ = 0.5 t s r r r t P t s r 261 s 266 t r t t r r s t t t s tt r r t ts r s r 2 t s s t s r t t st str t 2 t t s r t q t t P 65 r r t t 2 tr t 2 2 G 0.05 t s 0 t t s 5% t r r t 1 r α m 0 t t r t r2 s κ(t) s t rst t r 1 st s t t 2 κ(t) 0 t 1 1 < t 2 2 < t 3 3 < t 4 4 < t 5 t > 5 5% 4% 3% 2% 1% 0% tr t r t rs s t 2 s

105 r r s ts t r s s r s r t r t r s st t t s s t t st t r t P P t s st r s ts t P r r tt r s st 2 t st st 2 s t 2 s st t t r t rs r s s ts r t s t st t s r s r t st 2 t t t 3 t r s t s r t st 2 t s r tt r s 2 s r t s P t s s s P t r t t tt r t P t t t s r t q t t t t t st s 2 str t 2 r s s t α g ss t s r 2 2 t r st r t ts t P t r t 2 t t2 st 2 st 2 s t 2 s st t t s ts r t s t st t r s ts t t s t t s r t r t s r t s r ss s r t r s t r r t st t t t t s r t q t st 2 s t st 2 s t 2 s st t t s ts r t s t st t s r r s ts t r r t st t t t s r tt r 20 t s r 6 t st s r r s t s 1 t t str t 2 t t t = 1 t r t s s s t s rt t s t t r s s s 2 t t r st r t s r t t t2 s t s r t t rst t r t r st t 1 t r s

106 Pr ρ r t t r t t P P P P ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±1.20 P P 30 s 31 s 32 s 30 s 119 s 122 s 127 s 120 s 482 s 487 s 463 s 466 s 1911 s 1942 s 1732 s 1815 s st 2 t rst t r r t s t t r t t r r t t t s t r t s r t r t t s ρ = 0.5) 2 t t r t rr r r t r t r t s t s ρ = 0.5 t r t t r t rs s r t s t st r

107 r r s ts ρ r t t r t t P P P P ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±0.74 P P 30 s 31 s 33 s 28 s 119 s 122 s 126 s 107 s 481 s 493 s 418 s 460 s 1903 s 1844 s 1690 s 1896 s st 2 t rst t r r t st t r t t r r t t t s t r t s r t r t t s ρ = 0.5) 2 t t r t rr r r t r t r t s t s ρ = 0.5 t r t t r t rs s r t s t st r

108 Pr ρ r t t α g = 300 r t t α g = 350 P P P P s t ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±26 ρ r t t α g = 75 r t t α g = 100 P P P P ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±14 st ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±22 st 2 t t r t s t t st t r t t r r t t r2 2 rs t s st t r t rs s r t s t st r

109 r r s ts r t t t t P P P P ±1.49 ±1.37 ±0.60 ±1.53 ±1.51 ± ±2.38 ±2.14 ±0.96 ±2.14 ±2.00 ± ±2.84 ±2.79 ±1.2 ±2.68 ±2.48 ±0.53 r t t t t P P P P st ±1.26 ±1.27 ±0.46 ±1.23 ±1.27 ± ±1.45 ±1.46 ±0.58 ±1.51 ±1.59 ± ±1.87 ±1.77 ±0.70 ±1.85 ±1.94 ±0.76 st 2 t +10% rt t2 s s r r t rs s r t s t st r 1 interest rate r withdrawal at contract rate no withdrawal total lapse accountvaluea 1 1 volatility V withdrawal at contract rate no withdrawal total lapse accountvaluea 1 r t str t 2 t t rst t t (t = 1) r t t st ss B1 2+ = 100 r t rs r s Pr t r t rs r α g = 135 r t s s

110 Pr s s t s t r r t s t r tr ts r r t t s r t st st t st st t r st r t st st t t2 ts s r r t 2 r s r t t t 2 str t 2 s r r t s r s t r t2 r ts t ts st st t r st r t st st t t2 t r rt r t t st st t r st r t s s t r r t s rs2t t3 s r s t t st st t r st r t t t2 t r r s s r r st s t r r t s t r s ts t r r t t r t st t t r t rt s t r s s q r t rs r ts P t s r t t r2 1 s t s r t r 1 s 2 r P s t t r r r t t t rs r ts r s st t2 r s ts s P r2 t t t t s r r t 2 r P t s t r t s t ts 1 t s t t r r t 2 r t t st s t t s r t r 2 q t t 2 r s s r t t s s r P t s r t r t t t s s 2 2 s r t s r s t t t t t r r t2 r t r s t s t r t t t r r P t s r r 2 2 t r r t t t s r t r r r s ts t 2 r s r s s r s t r 1 r t 2 r r rr 2 s r s s t r tt t t t t s r t r t t t tr t s t st st t r st r t st st t t2 t t r t r r s 2 t t t t r t s r q t 1 t t t 2 t r t2 2 r t r str t s s s s r r t t2 s s

111 t r Pr t st t s t t st t r st t s tr t s t r r s ts t r s ts t t r s r r s r r t t r t t2 r str t r tt t t s r s t t 2 s 2 t t s r 2 s s s t st r s 2 ss ts s 2 t t s r r t t s t 2 s t t t t t s 2 t r t 2 r t r r t t t P s t t t t r 1 s t t st t t r s 2 ss t s t 3 r t r r 2 st rt t 2 r t r t s s t t s t t 2 r s t t t 1 t t r 1 2 t P 2 t r r t t tr t 2 s t t s rr r t tr t 2 t t2 t s rr r r s t t t P t r s t t r t r t st t t t tr t t r t s st s s t s t2 r r rt s rr r s t 3 r t r t s 2 rs r tr t 1 t t t 2 t t P s t t s s s r rs r t r t t r s 2 ss t t sts r t s r t r s t 2 t r rt r t r s 2 ss t t r s r t t s r ts r tr t s s t r ts r s t 2 r r r ts t rt t2 r s s s t r rs r r t s r2 rt t r s r s t t r q 2 t s r ts r r t s r ts t r t s t t st st 2 rs s t st t t r st r t t t2 s s t s t r t s r ts t t s 2 r s t r r t s t r r s st st t t2 st st st t r st r t t

112 Pr r s r r t rt s r s rt r r r rs2t t3 rs2t t rst r t t rs s s st st tr r t r r r t s ss t P t t t r s t s 2 r 2 t rs r s t s t t rs 23 t t s r r t r t rs s t s P r s P s r t r2 st r t s t s r r r r r t r r s r r t s s t 2 s 1 tr r t tr ts t r s r s s s r t s s t 2 r t r rs2t s t t s 2 tr t t t rt r r s t t r t s s r r s t r r P s r s ss t s t t t r t r s t t tr t r t r s rr rs t tr t t s t r r t t2 s s r t s t r tr t st t s t st st t r st r t rst tr t t t t r str t 2 t P t r s t t tr t r t t t t t rst s r t r r t r t s ss t t t P s 2 t r str t 2 s s t s t s t t t r s r r s t r t s r s r s t r r t s 2 r tr t r t 2 r t r t t tr 2 r t t r s t s t t r t r t t st rt3 st sq r s r r ss st rt3 s t t r r tr t s s t t t s s t s r q r t t r t rt s r t t r t rt r t s t2 s r t s s t r t r s ts t s t r r t s r t t t r t t r tr t st t r t rt t st t s r t r t s r s t t ts st st t t2 st st t r st r t r r s t t s s t t2 t t r s r t rs s r t r t s t r t tr ts r s t r 1 s s t r t s t s t r s r 3 s s t s r t t r s t tr ts s s t t s t r s t s t r r r t st st s s t r r t r s t t r t s t t t t s t tr t r r t r r t sts r r t s t r r st 2 t s s t t2 t r tr t tr t ss t s 2 t r s t t s s

113 tr ts tr ts t r r t t tr ts s r t r rs2t t r r t tr t s r t t tr t s r r s r2 t t r s t t tr ts rt t2 r t t r rs2t s 2 s r2 t r rt t2 ts t t st 2 t ts rt t2 t r r tr t t t P r t rs t t t = 0 t 2 r 2s t s t r P t t s r 2 r P s st s r s t 2 t r S t r t t t tr ts s s t t t r s s t s r t t s {t i,i = 1,...N} t r t t s t t s t s t r s 2 r s s t i = t i+1 t i t st t t 2 t s s r t 0 = t 1 t t s st t t s t t r t T 1 st t 0 T 1 = t 0 r t T 1 < T 1 + t = t 1 < t 2 < < t N = T 2 t t [T 1,T 2 ] s 2 t s r r t t t r s t s T 1 st t r t rs t tr t r t A t A 0 = P s t B t B 0 = P t t s t r s r t 2 s t q t t r T 1 = 0 t t t tr t T 2 = t N t t t st ss t r s 2 t rst t r t s t 1 = 1 y r t 1 = 0.5y st t r t rs t tr t r t A t A 0 = P r t t r G r A t s t 2 s t q t t r G s t t t t t r r t t T 1 r t s t2 tr t t t t t s r s ts s t r st t t P s t s

114 Pr r t s r t t r 1 st t t r t rs T 1 T 2 t t 1 r ss t t t 2 t s s t rs s r T 1 T 2 t = 1y t r r t sts t r s r t rr t r t [0,T 1 ] t t r t t s s 1 t 1t s s t s r t t T 1 s t t s r s t t A T (+) 1 [ = max C(T 1 ),A T ( ) 1 ], t G s 1 s G = A T (+) 1 m(t 2 T 1 ), r m t s t r t r s r 2 r s 2 m = 1 C(T 1 ) s tr t s t t t r r t s t r t t t r t t r t s s s t r t r t t st t t r t r st r t r t t r st r t i s s C(T 1 ) = P (1+i) T 1. T 1 = 0 t r s t s tr A T (+) 1 = A 0 = P t t tr ts t rr t t s rr t t t t 0 t t 2 s T 1 0 t < T 1 s t s t s t2 ss r rr r ts t t r r ts T 1 = 0 s t r s rr t rst s r t t t t r t 1 t t s t i t t [0,T 1 [ [0,T 2 ] r t ]t i,t i+1 [ [0,T 2 ] s s r S t t s t r 2 r t t 2 s S t s r t 1t t t A t s t s 2 s S t t t 1 t t t t t s s 2 s tr t t s 2 da t = A t S t ds t α tot A t dt. s s t t t t t s r r t t P t r t s 2 r t st t t A t s s t t t s α m t r t t r t s s t r r α g s t t α tot = α m +α g. 2 rt s 2 t s r 2 t t tr t s t t r α g t t r rt t s s t s r s t 2 s P s t r s r

115 tr ts t s P 2 t G t t r r t t r r t t2 t s r t r s tr t t r t2 t s s t r t t T 1 r t r t W i t t r t P t t t i s s r t t W i s tr r s 2 t rst t t t s t t t 1 = t = 1y r t 1 = t = 0.5y r r t i = i t ( ) t t A ( ) t,b ( ) i t,t i t st t r s st r t t t t rs ( i ) t t t i t,t i t st t r s st t r t A t (+) i,b t (+) i st s t r r r s t t t t P t r r t t tr t r t G t t r r t r t r t 2 r W i G t t r s t2 s W i > G t r s r rt t2 r κ(w i G) 2 2 t W i s 2 t P t 1 t r t t r t [ ] B ( ) t t st W i 0,B ( ) i t i s s r t P 2 t r t 2 s t r s r t [ t t f i (W) : 0,B ( ) t i r 2 t P t t t r t t t i f i (W i ) = st t r s r ( A t (+) i ),B (+) t,t i = i ] R t W i t t r t s { W i W i G W i κ(w i G) W i > G. ( ( ) ) max A ( ) t W i,0,b ( ) i t W i,t i i t t t = T 2 t st t t t s t P t r s s t r s t t s t s r s t 2 s rt FP = max(a T2,(1 κ)b T2 ). s 2 s s t st t s ( t s ss t r t t t t t r t t T 2 s W N = min t s s t t tr t r t t r s ( ) ( V A ( ) T,B ( ) 2 T,T 2 = max A ( ) 2 T,(1 κ)b ( ) 2 T 2 ( +κmin G,B T ( ) 2 G,B T ( ) 2 r r t s r r s s t r s r t t t r t 2 r r )). )

116 Pr t t t A ( ) t > B ( ) i t t tr t t 2 t r t t i t P i ( ) ( t r s t t 1 r t t W i = B ( ) t A (+) i t,b (+) i t,t i = A ( ) i t B ( ) i t,0,t i ) i t s s t P t t 2 t r t t s s B = 0 t r t 2 FP = A T2 t t T 2 s r ts rr r t s t t = (T 2 T 1 )/N t t i = T 1 + t i r i = 1,...,N s 2( t = 1y ) t t A ( ) t,g ( ),t i t st t r s st r t t t t rs ( i ) t t t i t,g (+),t i t st t r s st t r t A t (+) i r t st s t r r r s t t t t P t r r t t tr t r t G t t r r 2 s rr r 2 r t rst s s r s G t t t s t r T 1 T 2 T 1 2 ts t st t s 2 ( A t (+) i,g (+),t i ) = t t t = T 2 t P r s G s t 2 ( ( max 0,A (+) t G ( )) ),G ( ),t i. i FP = A (+) T. 2 t s s t P r s G t t s rr r t t q t st s t s s s t t t P s t s rr r t t t t t t i t ( ) A (+) t,g,t i = (0,0,t i ). i 2 s t t t t i t tr t s ss ( ) FP = G+(1 κ)max 0,A ( ) t G. i r t2 t rt t r rt2 tr t s t t t t t s tr t s r s tr s r t s s s r t s V(A, G, t) t s t tr t t s ss t r t t r 2 s r η > 0 ηv(a,g,t) = V(ηA,ηG,t). st t tr t t s G = Ĝ r 1 Ĝ r 1 Ĝ = P/(T 2 T 1 ) t s η = Ĝ/G t ) (Ĝ V(A,G,t) = G Ĝ V G A,Ĝ,t,

117 st st s t S s t t s t r r 2 r s r r s t t G s t 2 r s t r s r s r rt2 t t T 1 A G r r s t s t s s t t ( V A T (+) 1,G + T 1,T 1 ) = A (+) T ( ) 1 P V P,Ĝ,T 1. s r t2 r t s s 1 t r t rts s r r t t t s t s t q r t r r t t r r t r r s t t r r s r t t t 2 1 s r t tr ts t s r t2 r t t r t 2 t r t t ηv(a,b,g,t) = V(ηA,ηB,ηG,t) t t s s t s s t r t t r t G t r r t s t s t r r s s st st s t S rst t r t ts st st t t2 st st t r st r t r s t r t2 tr t r t r t t s t st r s st st t t2 t s t r st st t r st r t s s r t r ss S r r s ts t r 2 r t t A t t r t 2 s t st t s t r t s s t s 1 t r t s r t s t s r t r r t s 2 r t r t t r t r t 2 r P t P t s t s r 2 s r t r t t s s r s 2 t r r s s q t t 2 P s r s s q t t r s s r r t t r s t t r r α g t s t r t t s t t t 2 q t t t r t s t r t r t 2 t t r r s t s t s t t t r t rr t r α g r r t s t t t t r α g V(A 0,B 0,0)(α g ) r r t t t t t t t 2 r t t t s r 2 t t s r tr t s t s s ss t t t 2 r s t r str t 2 s r t rst r t s r 2

118 Pr 2 r t r t 2 t t r t r s t s t s s r r s s t st s r t s r s t r 2 s t t r t r t t r t t t s r r t t 2 t t s r s st s t t r s 2 r t r 2 r t s 1 t r r t r t s s r t Pr t r t t s r s s t S = {s k,k = 1,...,n s } r t t 2 t t s s r s t s s t t t V s t tr t s t s s t s s t r r t s r s S t t t tr t V r 1 t s s t r t t s s r s V n s k=1 V sk n s. s t s t r t t 3 str t 2 r t st t t r t s s t str t 2 t P s 1 r r t t t s t B ti s rt B ( ) t = P G(i 1) B (+) i t = B ( ) i t G i st r t V s = V s (A,t) t t t t t q t A t t t s t s ts t r s t t s s s t s r t r s r s s rst t t s A t (+) i s t r T 1 < t i < T 2 ) V s (A (+) t,t i i A 0 = P A ( ) t = A (+) i t i 1( = max A t (+) i V s (A T (+) 2 S ti S ti 1 e αtot t 0,A t ( ) i ) G. ),T 2 = A (+) T ; 2 ( t i+1 t r = e i sds [V s r t i A (+) t,t i+1 )+G i+1 ],

119 r t s r 2 [ V s (A T1,T 1 ) = e t 1 ] T r 1 sds V s (A (+) t,t 1 )+G. r r rr r t T 1 > 0 t s t G = P m(t 2 T 1 ) s s r t2 r t t t V s (A 0,0) = e T 1 0 r sds V s (P,T 1 ) max( P,S T1 e αtott ) 1. P t t r t t r s s 2 t r t s 2 t r t t r rt s rs2t s s t P t t t t t t r s s t t t t r t s s s s t t t t t t i t P t r r t t r r t r t s s s s t t t P s s t W i t t s s t rst s r t s r 2 t s s t V(A,B,t) t 1 t t t t r 2 s st t r t rs r A,B V(A,B,t) = E[V s (A,B,t)]. s s t t t P s s W i s t t W i = r 1 (max ] V [ w i 0,B t ( ) i ( A ( ) t w i,0 i ) 1,B t ( ) i w i,t i )+f i (w i ). s 1 t t t st rt3 r t N r s r s r t s t t s s r s r i = N t i = 0 r t N = T 2 t t 0 = T 1 = 0 r 1 t t t V(A,B,t i ) s t st sq r s r t t s t s s 2 2 s r s r s t t t r W i t i > 0 t t st t r s r τ = t i t τ = T 2 ss t t t P s s t st r W τ t t r t t V s (P,P,0) r t s r s s t t r 1 t V(P,P,0) s r r t t t r r t s t2 r t s st r s r 1 t t t V(A,B,t) t 2 s s r t s s t t t t t t s t s r2 r t t A t s s t B t s r2 str t t r s t r t r t t r t 2s t r t t t t r t r t t r t t st r t r ss t r t r ss 2 s

120 Pr r ss t s s t r r ss t t t t i s s t 2 s t r t s Q up t i (A,B,u) Q dw t i (A,B,u) r u s r t v t st r t st rt t r r s r t r st t ts G = A B = {(a k,b h ),0 k K,0 h H} t s s t s t s t (A,B) s r s r s s r ts s s r t t t t t t s t t s s str t s r 2 r r ss r t sts s B s s t 2 s r 0 t P A s s t r s r 0 t 3P r r t t s t r s U = {(a,b) a b} D = {(a,b) a < b} r r r r ss s Q up t i (A ti,b tti,u ti ) r t rst s t Q dw t i (A ti,b ti,u ti ) r t s s s t s t q t r r r ss s r r ( r ) t t t r t st t t t i = T 2 s 2s q t min G,B ( ) T 2 t st r t t r t W i r t sts r t t G s 1 t 2 P t t s t s r t t s G r s r r ss 4 t s r t r r t st r r t st r t t s t t 4 r st t st q r s st t r r 2 st t 6 r st 6 t s t t s r t s r r t st r t t s r s S v r r r r t st r t s r s s s (a, b) t r G r t r s s s s t ( A s t i,b s t i ) = (a,b) r ti r st t r t s r s t t t 2 t t t t t i s t s s t t r s s V ti st q r s st t P r r 2 r r ss t Q up t i (A,B,u) s t (A ti,b ti,u ti,v ti ) s t t A ti B ti t Q dw t i (A,B,u) s t (A ti,b ti,u ti,v ti ) s t t A ti B ti

121 r t s r r r 2 st t 1 t A ti B ti s st t 2 t r r t st t t t st t r t rs t 2 t t t t s t j t r t i s t t t st t r s r r r t j t i t st t r s t 2 Q up t j (A,B,u) Q dw t j (A,B,u) t t t r s st s r ss 2 s t s s t r r ss t t t t i s s 2 s t r t s r s t B t t t i Q up t i,b (A,u) Q md t i,b(a,u) Qdw t i,b(a,u) r u sr t v t st s 2 s r s s t t s r d r t st rt t r r s r t r st t ts G = A B = {(a k,b l ),0 k K,0 l L} t s s t s t s t (A, B) s r s r s s r ts s s r t t t t t t s t t s s str t s r 2 r r ss r t sts s B s s t r s r 0 t P t L = P/G B = {0,G,2G,...,P} s t A s r t t t s ts r A min = 0 t A max = 3P s tr t r s r A max 3P t st r s ts r B B t t r [0,3P] s s ts DW B = [ 0, 1 2 B] MD B = [ 1 2 B, 3 2 B] UP B = [ 3 2 B,3P] t s s s ts d+1 2 s s s s t r r r B t 2 s Q up t i,b(a,u) Qmd t i,b(a,u) Qdw t i,b(a,u) r t 2 r r ss s t st t r t rs t 2 r t s t s tsdw B MD B UP B s r r ) r t t t r t st t t t i = T 2 s 2s q t min (G,B T2 t st r t t r t W ti r t sts r t t G s 1 t 2 P t t s t s r t t s G s s t t s r t st t r s t ss B r t s B r s r ss 2 s 4 t s r t t P 6 r r t st r t t s t t r t 4 st r r 2 st r st r s t r P 4 s t r s t t2 4 r r 2 st t s t r r st t st q r s st t s t r

122 Pr r r s s t r ss t t r ss 2 s r t T 2 = 10 t r s t rst t r t ts r s t t t r s t s t r r B t r 2 ts r r t r t s t rs t 2 r s r r t 2 s r t s st s s 4 t s t t s r t s r r t st r t t s r s S v r r r r 2 st t r t s r s s tt B ti = b l = l P/G s A ti t s t DW Bti t t st t r t rs t 2 t t t t s t j t r t i s t t t j t st t r s t s s t s r t t s t rs MD Bti UP Bti r st t r t s r s t t t 2 t t t t i s t s s t t r s s V ti st q r s st t P r r 2 r r ss t Q dw t i,b(a,u) s t (A ti,b ti,u ti,v ti ) s s t s s t s r t t s t rs MD Bti UP Bti st r r 2 st r t s r s t t st t r t rs t 2 st rt r t = 0 A 0 = B 0 = P t s rr r s s r s r ts t r rt s s s t P t t t t s rr r t t s s s s t t t t t t i {t 1,...,t N } t P t r t tr t t r 2 s rr r s r s r t2 r t t s 1 t G t V(A,t) t 1 t t t t r 2 s st t r t r s A s r t2 r t t s s 2 A s r V(A,t) = E[V s (A,t)]. s s t t t P s rr rs t t t i ( ) (1 κ)max A t G,0 V i ( max ( ) ) A t G,0,t. i

123 r t s r 1 t V t t st r st rt3 r t N r s r s r t 2 t t s s r s ss t t t P s st t r r t i = t N t t i = t 1 r 1 t t t V(A,t i ) s t st sq r s r t t s t s s 2 2 s r s r t t i s t st t s t t T 1 s r t2 r t t t s r s t t t r t t V s (P,0) r t s r s t t r 1 t V(P,0) t r t r t t r t s r2 s r t t 2 r t r 2 r t t s t 2 r t r s r s r t s s t s s 2 r t r r r t st s t s s r t t s st r t t s r s r 2 t t2 t s s s s t r r r s s r s s t r t t s r s r 2 t r st r t t s s s s 1 t s s r str s t s r r t r r t t rr t t r 2 t r st r t P 2 r t 2 r P r s r t r t r s s t t s P r t t s s r t t r st t s s tr t s t t2 r t r st r t r 3 t s s t t tr s s s P r t tr s s t t t 1 t t t s r s t r t s t r t r s r t str t r r st rt s r t t t t t s

124 Pr st t rt r t r t S t ρ = 1 ρ 2 r t Zt A = ρzt v + ρ Z t A r Z A s r t rr t t Z v { da t = (r α tot )A t dt+ ( v t A t ρdz v t + ρd Z t A ) v 0 = v 0, dv t = k(θ v t )dt+ω v t dzt V A 0 = Ā0, d ZA t,zt v = 0, r t r A t t t t t s t r ss Y E t = ln(a t ) ρ ω v t, Y E 0 = ln(a 0 ) ρ ω v 0 ( A t = exp Yt E + ρ ) ω v t ( dyt E = r α tot v t 2 ρ ) ω k(θ v t) dt+ ρ v t d Z t A. s r ss Y E s rt t s t s r ss rr t t t t t2 r ss v tr t s r t s t t P t s t tr ˆV He( t,yt E ) = V(t,At ) s t [τ,τ + τ] r 1 t t r ss Yt E 2 t r ss Ȳ t E s 2 s s 2 dȳ E t = ( r α tot v τ 2 ρ ) ω k(θ v τ) dt+ ρ v τ d Z t A. ˆV He( t,ȳ t E ) r s t P ˆV He t ( + r α tot v τ 2 ρ ) ω k(θ v τ) ˆVHe Ȳ t E + ρ2 v τ 2 2ˆVHe 2Ȳ E t rˆv He = 0. s t t rt r t r t S t ρ = 1 ρ 2 r t Z A t = ρz r t + ρ Z A t r Z A s r t rr t t Z r ( da t = A t (r α tot )dt+σa t ρdz r t + ρd Z A ) t A 0 = Ā0, dx t = kx t dt+dzt r X 0 = 0, r t = ωx t +β(t), t r ss Y U t = ln(a t ) ρσx t, Y U 0 = ln(a 0 ) A t = exp(y t +ρσx t ) d ZA t,z r t = 0.

125 r t s r ) dyt U = (r t α tot σ2 2 +σρkx t dt+σ ρd Z t A. s r ss Y U s rt t s t s r ss rr t t t r rt r ss X tr t s r t s t t P t s t tr ˆV HW ( t,y U t r ss Y U t 2 t r ss Ȳ U ) = V(t,At ) s t [τ,τ + τ] r 1 t t dȳ U t = t s 2 s s 2 (r τ α tot σ2 2 +σρkx τ ) dt+σ ρdz t, t t r st r t r ss 2 r τ t ˆV HW ( t,ȳ t U ) r s t P ˆV HW t ) + (r τ α tot σ2 2 +σρkx ˆVHW τ Ȳ t U + ρ2 σ 2 2 2ˆVHW 2Ȳ U t r τ ˆVHW = 0. r t str t r str t r s r t s r t s st tr P s r s s r r t s tr t s t t t2 r t t r st r t t t r t s r P r 3 t t tr t t t2 r t t r st r t tr s t r t t q r tr t t rst t r ts t r ss t P s s t t r r t s t P t t t s t t t 2 t s t t st t s t r r t ts t ts r r t t s t P s s t st t t r q r s 2 r 1 t2 s t s r s2st t tr tr 1 t t st s s s r s r t t X t V t r ss s r r rt s t t 2 t tr s r t t r r 2 s t tr s t t t s t 2 t r 1 t r r r t r r t2 p n,j t s t s rt 0 t 2 t t s t t r t t tr r s r s t 2 r t r t s s t s t t st r st 1 t t rs r t t tr s t r t s s r P 2 r t s s p n,j > 0 s rt t q r s t t t t t r t t s r s r s r r s s Pr st s s s t t s s s s t t r ts Pr s s s t t t t t t t s t B ti s q t P G i

126 Pr t s t s t r s r t s r t2 r t r r s s t r t tr t s P s t 1t r t t t t s t 1t r s r t tr s t r t s P t s r t s r [τ,τ + τ] t s t t t t tr s r s r X v t t r 3 s rt X t v t s t t t t s t r s r s q 2 s s r Y t r ss s r t r t t s 2 r st r t s t s tt t q r t 2 r t t s t t r s t q t2 r s ts s t rs tr s r t s 2 t t t s t s r q t 2 t t r s s s t r ts s s t r st t tr t s t r s s s s t s P s t t s t t s t t s t r r t s B t s t st t r W t t t t r t st s t t t s t s r t st t r t t s G q r s r t t s t t s t r r B t s r t s G r s r t t t r P B = 0 B = G B t = 2G...B = ng = P s n s r s r t r t s r s r s s r t r ss 2 s r t s st t r s s r s r r s r r ss t r s r t s G W = 0, W = G,...W = mg = B st t V(A,B) r t s s A t t r t t r s s s s r s s t t r r s ts t s r r t t G = 20 r rs t r t2 t t r r t P = 100 G = 20 s r 1 t 2 str t r 2 ry r ss r B t t r r s ts A = 0 s r rst 1 t t t rs t s r t tr s t r t s s P r st rt r t 1t r t t 2 t r st r s r ss t r s t t2 W = kg s t t t 1 3 P s t s s 2 s s r s r s s t r s 2 s t t rr s s t ss t r s t s rr r s s s t r ts t s r s r t t t r t t P 2 s t t r t t tr t r t 2 s rr r t r st t t t t i s sts t r V(A,t i ) 2 max[g+v(max(a G,0),t i );G+(1 κ)(a G)].

127 r t s r B t A t r s r P t t r r P t r s P r t t t r t r t t s s r 2 s ss 2 s r r r t s r s r r t s s t r ts t tr t t st t s t s t s st r t r r t s s2 t t t t t s r t2 r t t t r r t s t t s r s P t t t t t t t s P s t s r V He t + VA2 2 VHe AA + ω2 V 2 VHe VV +(r α tot )AVA He +ρωavvav He +k(θ V)VV He rv He = 0 Vt HW + σ2 A 2 2 VHW AA + ω2 2 VHW rr +(r α tot )AVA HW +ρωaσvar HW +k(θ t r)vr HW rv HW = 0 r r t r r t rs t r 2 s t s t r s r t t s t t t r t t t t t t2 t st s t s t s s s r t t r t rs A left = 0.8S 0 A right = 1.2S 0 A max = 1000 T2 S 0 d 1 = S 0 /20, r t s r A R max = 0.8, c = R 0 d 2 = R max /400 r t s r r t s t V max = MIN(MAX(100V 0,1),5) d 3 = V max /500.

128 Pr r t s r V t st r r r r s 2 r r r r t r2 t s r t 2 s2 t t st 2 ss r2 t s t s s r2 t s s r2 r r s t t t t s ts t r s ts 2 s t s s t t r s s r ss t tt r r r r t s 2 ss t s r ss t r t s t t s r s r 2 t t r s ts r r s ts t s t r t r t s s t 2 r t r t r t r 2 r P P P P rt r r r r s t t t t s 2 s r t t t r t t2 s s t r t rs t t s r t r t s t r s r st s s t t t t t r t r s t s r t r s r t s r t t t t t st s r 2 r s st s st s r t P t t st s r 2 r s st s r t 2 r P t r s t st s r 2 r r s t s r t s t r r 2 s s t r t r 1 t 2 s s s t r 1 t 2 t s r t s (A) s (B) s (C) s (D) s r t r t t s t t r t s s r s r t st s r t t s t s r t s s r t st t r t s s t t r t s r t t s r t t r t t t s s 10 8 t r s t 2 s s 10 6 t r s s r s t 1 t s r 1 t 2 4 r r 2 s r r t r α g s r 2 t s t t t s r t s t r α g = 0 α g = 200 t t t r t s s 1 s t t s 1% 2 s t t t r r t t t t r s s s t P t t r 1 t 2 t t r t r t t t sts r s r 2 t r rt rs2t r tr t r t t t r r r r t s rst r t r r t r r t t r t s t r r t s ss t t t r s s t t r r r t s t t α s t st r t r t st r P t s s 2 t t rr t s r t s s t st st t r st

129 r r s ts t t st t t P P P P st 2 P P P P r t r t rs r t r t st t t 2 r t r t t T 2 = 10 WF = 1 t t st t t P P P P st 2 P P P P r t r t rs r t r t st t t 2 r t r t t (T 1,T 2 ) = (10,25)

130 Pr r t st st t t2 r t rs r t s α g t t t t s s r st t t t s t t s t st t t r r t r t s t s rr s r t rs s t s r t rs r s s ts r t r t s t r t t 2 r s ts s st t t t r P r t t st ts r t s r s ts s st t t t r P r s ts t r r tt tt r t t rst t s t s t r 2 t t r st r t 1 t 2 s t s t s t t s t t t t s t rst t r ts t r r ss t s t r r 1 t 2 ts t r r t s r t t r s t r st s r 2 r r r t s t ss s r s t t 2 t t r s r r t r r r r r t r s r t t P t s r t r st r s ts t 2 t r t 2 t r r t t r r s ts s r t t t α g s r s t r s t r t2 st s t s s r s tt t r s t r r q 2 st t t t st t s t st t t r r t r t t st r t rs r s t s ts r s t s st t s r t s t s P t s r s t t r s s r t s r ss r t t t s t t r t s s t t r r t t r s t s s t 2 r q t r t st r t s t st s 1 t +11% s t s r t r t s t 2 st r t st s s t s s r t t t t t2 tr 8% s t s r t P s s t r2 st s T 2 = 10 WF = 2 α g t t r r t s P t t t r t r r t t r r s ts s r t t t α g s r s t r s t r t2 st s t s s r s tt t r s t r r q 2 st r t t r r s s s r s t t s t s t s t r t t 2 st t t r s r ts

131 r r s ts t s t st t t s t r t t s s t t t r s s t r t r s r s s s t r s r t P t s r r t t s t r s t t r t r s s t r r s s r 2 t r t s t s s q t r r s t r s t r t t ts st rt t t r 2 r t r t r ts st st s t s s t t t t t r α g 1 t r tr r 2 s s s r s s t r t sts t s r r 2 s r s s ts r s st t t s st t r2 r t r s ts t t 2 2 P P r t t st t 2 t st r t r s ts t s st t t P t s r q t r r t t s t r s t t t r t2 t 2 t t s ss t t r t s t 2 r r t st s t t s s t r s

132 Pr 1 r2 T rs G 100.0/(T WF) t r r q 2 W F r r r t Pr t t A S t s B r 0.05 t r t2 κ 0.10 σ 0.20 t s α m 0 P r t rs s 2 rs2t WF = 1 WF = 2 T 2 P P ± ± ± ± ± ± 0.24 r s α g s r t t t t s r t rs s

133 r r s ts S 0 r curve k ω ρ σ flat r t rs t st T 2 WF = 1 WF = 2 P P P P ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±0.07 P P 31 s 30 s 30 s 30 s 121 s 121 s 120 s 118 s 482 s 484 s 464 s 481 s 1920 s 1899 s 1893 s 1909 s st t rst t r α g r t s t t r s 1 t 2 t r t s t r t s r t s WF = 1 T 2 = 10 2 t t r t rr r r t r t r t s t s s r t s r t rs s r t s t st r

134 Pr S 0 v 0 θ k ω ρ r r t rs t st T 2 WF = 1 WF = 2 P P P P ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±0.07 P P 30 s 30 s 30 s 31 s 122 s 118 s 121 s 120 s 486 s 477 s 483 s 479 s 1951 s 1924 s 1956 s 1939 s st t rst t r α g r t st t r s 1 t 2 t r t s t r t s r t s WF = 1 T 2 = 10 2 t t r t rr r r t r t r t s t s s r t s r t rs s r t s t st r

135 r r s ts T 2 WF = 1 WF = α g s s r t t t t t s T 2 WF = 1 WF = 2 P P P P ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±1 st t t r t t t s r s ts st t r t rs s r t s t st r

136 Pr T 2 WF = 1 WF = α g s s r t t t t t st s T 2 WF = 1 WF = 2 P P P P ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±1 st t t r t t t st s r s ts st t r t rs s r t s t st r

137 r r s ts t t t r r t t t t r s s s t P t t r 1 t 2 t t r t r t t t sts r s r 2 t r rt rs2t r tr t r t t t r r r r t s rst r t r r t r r t t r t s t r r t s ss t t t r s s t t r r r t s t t α s t st r t r t st r P t s s 2 t t rr t s r t s s t st st t r st r t st st t t2 r t rs r t s α g t t t t s s r st t t t s t t s t st t t r r t r t s t s rr s r t rs s t s r t rs r s s ts r t r t s t r t t 2 r s ts s st t t t r P r t t st ts r t s r s ts s st t t t r P r s ts t r r tt tt r t t rst t s t s t r 2 t t r st r t 1 t 2 s t s t s t t s t t t t s t rst t r ts t r r ss t s t r r 1 t 2 ts t r r t s r t t r s t r st s r 2 r r r t s t ss s r s t t 2 t t r s r r t r r r r r t r s r t t P t s r t r st r s ts t 2 t r t 2 t r r t t r r s ts s r t t t α g s r s t r s t r t2 st s t s s r s tt t r s t r r q 2 st t t t st t s t st t t r r t r t t st r t rs r s t s ts r s t s st t s r t s t s P t s r s t t r s s r t s r ss r t t t s t t r t s s t t r r t t r s t s s t 2 r q t r t st r t s t st s 1 t +11% s t s r t r t s t 2 st r t st s s t s s r t t t t t2 tr 8% s t s r t P s s t r2 st s T 2 = 10 WF = 2 α g t t r r t s P t t t r

138 Pr t r r t t r r s ts s r t t t α g s r s t r s t r t2 st s t s s r s tt t r s t r r q 2 st r t t r r s s s r s t t s t s t s t r t t 2 st t t r s r ts t s t st t t s t r t t s s t t t r s s t r t r s r s s s t r s r t P t s r r t t s t r s t t r t r s s t r r s s r 2 t r t s t s s q t r r s t r s t r t t ts st rt t t r 2 r t r t r ts st st s t s s t t t t t r α g 1 t r tr r 2 s s s r s s t r t sts t s r r 2 s r s s ts r s st t t s st t r2 r t r s ts t t 2 2 P P r t t st t 2 t st r t r s ts t s st t t P t s r q t r r t t s t r s t t t r t2 t 2 t t s ss t t r t s t 2 r r t st s t t s s t r s

139 r r s ts 1 r2 T rs G 100.0/(T WF) t r r q 2 W F r r r t Pr t t A S t s B r 0.05 t r t2 κ 0.10 σ 0.20 t s α m 0 P r t rs s 2 rs2t T 2 WF = 1 WF = 2 P P ± ± ± ± ± ± 0.24 r s α g s r t t t t s r t rs s

140 Pr S 0 r curve k ω ρ σ flat r t rs t st T 2 WF = 1 WF = 2 P P P P ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±0.07 P P 31 s 30 s 30 s 30 s 121 s 121 s 120 s 118 s 482 s 484 s 464 s 481 s 1920 s 1899 s 1893 s 1909 s st t rst t r α g r t s t t r s 1 t 2 t r t s t r t s r t s WF = 1 T 2 = 10 2 t t r t rr r r t r t r t s t s s r t s r t rs s r t s t st r

141 r r s ts S 0 v 0 θ k ω ρ r r t rs t st T 2 WF = 1 WF = 2 P P P P ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±0.07 P P 30 s 30 s 30 s 31 s 122 s 118 s 121 s 120 s 486 s 477 s 483 s 479 s 1951 s 1924 s 1956 s 1939 s st t rst t r α g r t st t r s 1 t 2 t r t s t r t s r t s WF = 1 T 2 = 10 2 t t r t rr r r t r t r t s t s s r t s r t rs s r t s t st r

142 Pr T 2 WF = 1 WF = α g s s r t t t t t s T 2 WF = 1 WF = 2 P P P P ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±1 st t t r t t t s r s ts st t r t rs s r t s t st r

143 r r s ts T 2 WF = 1 WF = α g s s r t t t t t st s T 2 WF = 1 WF = 2 P P P P ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±1 st t t r t t t st s r s ts st t r t rs s r t s t st r

144 Pr T 2 WF = 1 WF = 2 P P ± 1.39 n.c ± 1.42 n.c ± ± ± 0.89 n.c ± 1.29 n.c. r s α g s r 2 t t s r t rs s s t t r t t t r t 2 2 t r r t 2 t r s s s t P t s t t t t r r r t 1 3 s r t t r t t sts r s r 2 t r rt rs2t r tr t t t r r r r t s rst r t r r t r r t t r t s t r r t s ss t t r s s t t r r r t s t t α s t r ss 2 s t r t st r P t s t t s r t s s t st st t r st r t st st t t2 r t rs r t s α g t t t r r r t t s t r ss r t r t t t r s s r t s t s q t st r t r s ts q t2 s rs 2 s t r ss 2 s r t t t t r s t s r t s r t t t r ss t ts r s ts r r r t t t r r ss r r s tt r t P s t s r tt r 2 r r t s t r r r2 t s s t t tr t s r ss 2 s r t s r s s t t t r s ts s t s rt r t 1 s r r s t s r 2 s t 10 6 s r s 2 t t t t r s t q 1 t s T 2 = 20 WF = 2 r s s r s t t t r r t s t s t s t st s r t s P r s r t s s T 2 = 5 WF = 1 t rs s T 2 = 20 WF = 2 r r t t s P t r t s t t s s s 2 t s r rs2t s r t t r ss 2 s r s r s t st sq r s r r ss s t r r2 t s r s st r t s s t r r t t t t s t s s t t sts s s

145 r r s ts st 2 t s t st s t 2 s st r t rs r s s ts r t s t st P t s r t r t t s t t s s st sq r s r r ss r t t t t r t s t s t s r s t r 1 t t r t r r ss t t 2 r s t r t s s t r t 1 t r r r s r s t t t t s P t s t t r r t r s r s r s t r t r t st s rt t t s s t s 2s t r s t r r t P t s r r s r s 2 s r s r r t t t t s r t q t t r s s r s r t r t r s st t t s s t t st t r P t st r s ts P r tr s t r s ts t r t s t P t r t t st r t t r s ts t s t st s (T 2,WF) = (20,2) r t r2 s s t t r t2 t r r t r t s t t s t r r s r P t s t s s t s r t s r s t t t r s t t s r s s r t st sq r s r r ss t r s P s st 2 t st st s t 2 s st r t rs r s s ts r t s t st t s r s r t st t t t 3 t r s t s r t st t s r tt r s 2 s r t s P t s s s t s s t 2 r t st q t t 2 t r s ts 1 t r t s (T 2,WF) = (20,2) r t t r s ts P r t t t s r t q t t t t t st s 2 str t 2 r s t α g ss t s r 2 2 t r st r t ts t P r t 2 t t2 s (T 2,WF) = (20,2) s st t st s s t t s t t t 2 r t t t t α g st r 2 st s t 2 s st s ts r t s t st t r s ts t P t s s P r r2 r r s t t s t r s ts r P r t t rs t P s 2 s s r 1 s (T 2,WF) = (20,2) t r t s s r t s r s r r s t s t t r s r2 r t s (T 2,WF) = (20,2) s t s r r s t

146 Pr t t r tr t 2 P ts r 2 r t t t t r r t r t t (T 2,WF) = (10,1) r t t st s P t s t t t s ts s t r s t tr r t t t t t = 1 s t st t r s t t t s ts r r t t t s ts r r2 s r t t s r s t t s str t r r t s t r t r r r t r

147 r r s ts T 2 WF = 1 WF = 2 P P P P ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±1.64 P P 29 s 31 s 31 s 30 s 121 s 124 s 121 s 123 s 484 s 484 s 489 s 474 s 1881 s 1927 s 1899 s 1901 s st t rst t r α g r t s t t r s 1 t 2 t r t s t r t s r t s WF = 1 T 2 = 10 2 t t r t rr r r t r t r t s t s s r t s r t rs s r t s t st r

148 Pr T 2 WF = 1 WF = 2 P P P P ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±1.05 P P 32 s 32 s 29 s 30 s 123 s 124 s 122 s 118 s 483 s 475 s 474 s 495 s 1903 s 1882 s 1923 s 1947 s st t rst t r α g r t st t r s 1 t 2 t r t s t r t s r t s WF = 1 T 2 = 10 2 t t r t rr r r t r t r t s t s s r t s r t rs s r t s t st r

149 r r s ts T 2 WF = 1 WF = α g s s r t t t 2 s T 2 WF = 1 WF = 2 P P P P ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±211 st t t r t 2 s r s ts st t r t rs s r t s t st r

150 Pr T 2 WF = 1 WF = α g s s r t t t 2 st s T 2 WF = 1 WF = 2 P P P P ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±174 st t t r t 2 st s r s ts st t r t rs s r t s t st r

151 r r s ts r P ts t t t r s t t t = 1 r t r t r t s r 1 r t t t t tt r 1 = 0.03 r 1 = 0.05 r 1 = 0.07 r t rs s t t t s ts r t s s r t t r s T 2 = 10 WDF = 1 s s

152 Pr r P ts t t t r s t t t = 1 r t st r t r t s t t t2 v 1 r t t t t tt v 1 = 0 v 1 = 0.04 v 1 = 0.16 r t rs s t t t s ts r t s s r t t r s T 2 = 10 WDF = 1 s s

rs r r â t át r st tíst Ó P ã t r r r â

rs r r â t át r st tíst Ó P ã t r r r â rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã

Διαβάστε περισσότερα

A Probabilistic Numerical Method for Fully Non-linear Parabolic Partial Differential Equations

A Probabilistic Numerical Method for Fully Non-linear Parabolic Partial Differential Equations A Probabilistic Numerical Metod for Fully Non-linear Parabolic Partial Differential Equations Aras Faim To cite tis version: Aras Faim. A Probabilistic Numerical Metod for Fully Non-linear Parabolic Partial

Διαβάστε περισσότερα

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs

Διαβάστε περισσότερα

Alterazioni del sistema cardiovascolare nel volo spaziale

Alterazioni del sistema cardiovascolare nel volo spaziale POLITECNICO DI TORINO Corso di Laurea in Ingegneria Aerospaziale Alterazioni del sistema cardiovascolare nel volo spaziale Relatore Ing. Stefania Scarsoglio Studente Marco Enea Anno accademico 2015 2016

Διαβάστε περισσότερα

Mesh Parameterization: Theory and Practice

Mesh Parameterization: Theory and Practice Mesh Parameterization: Theory and Practice Kai Hormann, Bruno Lévy, Alla Sheffer To cite this version: Kai Hormann, Bruno Lévy, Alla Sheffer. Mesh Parameterization: Theory and Practice. This document is

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

Ax = b. 7x = 21. x = 21 7 = 3.

Ax = b. 7x = 21. x = 21 7 = 3. 3 s st 3 r 3 t r 3 3 t s st t 3t s 3 3 r 3 3 st t t r 3 s t t r r r t st t rr 3t r t 3 3 rt3 3 t 3 3 r st 3 t 3 tr 3 r t3 t 3 s st t Ax = b. s t 3 t 3 3 r r t n r A tr 3 rr t 3 t n ts b 3 t t r r t x 3

Διαβάστε περισσότερα

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s

Διαβάστε περισσότερα

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

Teor imov r. ta matem. statist. Vip. 94, 2016, stor eor imov r. ta matem. statist. Vip. 94, 6, stor. 93 5 Abstract. e article is devoted to models of financial markets wit stocastic volatility, wic is defined by a functional of Ornstein-Ulenbeck process

Διαβάστε περισσότερα

LEM. Non-linear externalities in firm localization. Giulio Bottazzi Ugo Gragnolati * Fabio Vanni

LEM. Non-linear externalities in firm localization. Giulio Bottazzi Ugo Gragnolati * Fabio Vanni LEM WORKING PAPER SERIES Non-linear externalities in firm localization Giulio Bottazzi Ugo Gragnolati * Fabio Vanni Institute of Economics, Scuola Superiore Sant'Anna, Pisa, Italy * University of Paris

Διαβάστε περισσότερα

E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets

E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets Benoît Combès To cite this version: Benoît Combès. E fficient computational tools for the statistical

Διαβάστε περισσότερα

Jeux d inondation dans les graphes

Jeux d inondation dans les graphes Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488

Διαβάστε περισσότερα

Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s

Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr st t t t Ø t q s ss P r s P 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t P r røs r Łs t r t t Ø t q s r Ø r t t r t q t rs tø

Διαβάστε περισσότερα

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio

Διαβάστε περισσότερα

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s r t r r é té tr q tr t q t t q t r t t rrêté stér ût Prés té r ré ér ès r é r r st P t ré r t érô t 2r ré ré s r t r tr q t s s r t t s t r tr q tr t q t t q t r t t r t t r t t à ré ér t é r t st é é

Διαβάστε περισσότερα

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation date: GF F GF F SLE GF F D Ĉ = C { } Ĉ \ D D D = {z : z < 1} f : D D D D = D D, D = D D f f : D D

Διαβάστε περισσότερα

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα x + = 0 N = {,, 3....}, Z Q, b, b N c, d c, d N + b = c, b = d. N = =. < > P n P (n) P () n = P (n) P (n + ) n n + P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + ) P (n) n m P n P (n) P () P (), P (),...,

Διαβάστε περισσότερα

(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X

(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X X, Y f X,Y x, y X x, Y y f X Y x y X x Y y X x, Y y Y y f X,Y x, y f Y y f X Y x y x y X Y f X,Y x, y f X Y x y f X,Y x, y f Y y x y X : Ω R Y : Ω E X < y Y Y y 0 X Y y x R x f X Y x y gy X Y gy gy : Ω

Διαβάστε περισσότερα

P r s r r t. tr t. r P

P r s r r t. tr t. r P P r s r r t tr t r P r t s rés t t rs s r s r r t é ér s r q s t r r r r t str t q q s r s P rs t s r st r q r P P r s r r t t s rés t t r t s rés t t é ér s r q s t r r r r t r st r q rs s r s r r t str

Διαβάστε περισσότερα

Z = 1.2 X 1 + 1, 4 X 2 + 3, 3 X 3 + 0, 6 X 4 + 0, 999 X 5. X 1 X 2 X 2 X 3 X 4 X 4 X 5 X 4 X 4 Z = 0.717 X 1 + 0.847 X 2 + 3.107 X 3 + 0.420 X 4 + 0.998 X 5. X 5 X 4 Z = 6.56 X 1 + 3.26 X 2 + 6.72 X 3

Διαβάστε περισσότερα

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs

Διαβάστε περισσότερα

Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage

Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage José Marconi Rodrigues To cite this version: José Marconi Rodrigues. Transfert sécurisé d Images par combinaison

Διαβάστε περισσότερα

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Daniel García-Lorenzo To cite this version: Daniel García-Lorenzo. Robust Segmentation of Focal Lesions on Multi-Sequence

Διαβάστε περισσότερα

Forêts aléatoires : aspects théoriques, sélection de variables et applications

Forêts aléatoires : aspects théoriques, sélection de variables et applications Forêts aléatoires : aspects théoriques, sélection de variables et applications Robin Genuer To cite this version: Robin Genuer. Forêts aléatoires : aspects théoriques, sélection de variables et applications.

Διαβάστε περισσότερα

(1) P(Ω) = 1. i=1 A i) = i=1 P(A i)

(1) P(Ω) = 1. i=1 A i) = i=1 P(A i) Χρηματοοικονομικά Μαθηματικά Το συνεχές μοντέλο συνεχούς χρόνου Σ. Ξανθόπουλος Παν. Αιγαίου Χειμερινό Εξάμηνο 2015-2016 Χειμερινό Εξάμηνο 2015-2016 1 / Σύνοψη 1 Προκαταρκτικά 2 Διαδικασία Wiener ή Κίνηση

Διαβάστε περισσότερα

ss rt t r s t t t rs r ç s s rt t r t Pr r r q r ts P 2s s r r t t t t t st r t

ss rt t r s t t t rs r ç s s rt t r t Pr r r q r ts P 2s s r r t t t t t st r t Ô P ss rt t r s t t t rs r ç s s rt t r t Pr r r q r ts P 2s s r r t t t t t st r t FichaCatalografica :: Fichacatalografica https://www3.dti.ufv.br/bbt/ficha/cadastrarficha/visua... Ficha catalográfica

Διαβάστε περισσότερα

Assessment of otoacoustic emission probe fit at the workfloor

Assessment of otoacoustic emission probe fit at the workfloor Assessment of otoacoustic emission probe fit at the workfloor t s st tt r st s s r r t rs t2 t P t rs str t t r 1 t s ér r tr st tr r2 t r r t s t t t r t s r ss r rr t 2 s r r 1 s r r t s s s r t s t

Διαβάστε περισσότερα

Analysis of a discrete element method and coupling with a compressible fluid flow method

Analysis of a discrete element method and coupling with a compressible fluid flow method Analysis of a discrete element method and coupling with a compressible fluid flow method Laurent Monasse To cite this version: Laurent Monasse. Analysis of a discrete element method and coupling with a

Διαβάστε περισσότερα

γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000

Διαβάστε περισσότερα

Consommation marchande et contraintes non monétaires au Canada ( )

Consommation marchande et contraintes non monétaires au Canada ( ) Consommation marchande et contraintes non monétaires au Canada (1969-2008) Julien Boelaert, François Gardes To cite this version: Julien Boelaert, François Gardes. Consommation marchande et contraintes

Διαβάστε περισσότερα

Conditions aux bords dans des theories conformes non unitaires

Conditions aux bords dans des theories conformes non unitaires Conditions aux bords dans des theories conformes non unitaires Jerome Dubail To cite this version: Jerome Dubail. Conditions aux bords dans des theories conformes non unitaires. Physique mathématique [math-ph].

Διαβάστε περισσότερα

J J l 2 J T l 1 J T J T l 2 l 1 J J l 1 c 0 J J J J J l 2 l 2 J J J T J T l 1 J J T J T J T J {e n } n N {e n } n N x X {λ n } n N R x = λ n e n {e n } n N {e n : n N} e n 0 n N k 1, k 2,..., k n N λ

Διαβάστε περισσότερα

Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat

Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat Pierre Coucheney, Patrick Maillé, runo Tuffin To cite this version: Pierre Coucheney, Patrick

Διαβάστε περισσότερα

m i N 1 F i = j i F ij + F x

m i N 1 F i = j i F ij + F x N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,

Διαβάστε περισσότερα

ts s ts tr s t tr r n s s q t r t rs d n i : X n X n 1 r n 1 0 i n s t s 2 d n i dn+1 j = d n j dn+1 i+1 r 2 s s s s ts

ts s ts tr s t tr r n s s q t r t rs d n i : X n X n 1 r n 1 0 i n s t s 2 d n i dn+1 j = d n j dn+1 i+1 r 2 s s s s ts r s r t r t t tr t t 2 t2 str t s s t2 s r PP rs t P r s r t r2 s r r s ts t 2 t2 str t s s s ts t2 t r2 r s ts r t t t2 s s r ss s q st r s t t s 2 r t t s t t st t t t 2 tr t s s s t r t s t s 2 s ts

Διαβάστε περισσότερα

Vers un assistant à la preuve en langue naturelle

Vers un assistant à la preuve en langue naturelle Vers un assistant à la preuve en langue naturelle Thévenon Patrick To cite this version: Thévenon Patrick. Vers un assistant à la preuve en langue naturelle. Autre [cs.oh]. Université de Savoie, 2006.

Διαβάστε περισσότερα

Coupling strategies for compressible - low Mach number flows

Coupling strategies for compressible - low Mach number flows Coupling strategies for compressible - low Mach number flows Yohan Penel, Stéphane Dellacherie, Bruno Després To cite this version: Yohan Penel, Stéphane Dellacherie, Bruno Després. Coupling strategies

Διαβάστε περισσότερα

Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées

Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées Noureddine Rhayma To cite this version: Noureddine Rhayma. Contribution à l évolution des méthodologies

Διαβάστε περισσότερα

Couplage dans les applications interactives de grande taille

Couplage dans les applications interactives de grande taille Couplage dans les applications interactives de grande taille Jean-Denis Lesage To cite this version: Jean-Denis Lesage. Couplage dans les applications interactives de grande taille. Réseaux et télécommunications

Διαβάστε περισσότερα

t ts P ALEPlot t t P rt P ts r P ts t r P ts

t ts P ALEPlot t t P rt P ts r P ts t r P ts t ts P ALEPlot 2 2 2 t t P rt P ts r P ts t r P ts t t r 1 t2 1 s r s r s r 1 1 tr s r t r s s rt t r s 2 s t t r r r t s s r t r t 2 t t r r t t2 t s s t t t s t t st 2 t t r t r t r s s t t r t s r t

Διαβάστε περισσότερα

L A TEX 2ε. mathematica 5.2

L A TEX 2ε. mathematica 5.2 Διδασκων: Τσαπογας Γεωργιος Διαφορικη Γεωμετρια Προχειρες Σημειωσεις Πανεπιστήμιο Αιγαίου, Τμήμα Μαθηματικών Σάμος Εαρινό Εξάμηνο 2005 στοιχεοθεσια : Ξενιτιδης Κλεανθης L A TEX 2ε σχεδια : Dia mathematica

Διαβάστε περισσότερα

P P Ô. ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t

P P Ô. ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t P P Ô P ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t FELIPE ANDRADE APOLÔNIO UM MODELO PARA DEFEITOS ESTRUTURAIS EM NANOMAGNETOS Dissertação apresentada à Universidade Federal

Διαβάστε περισσότερα

a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)

Διαβάστε περισσότερα

VISCOUS FLUID FLOWS Mechanical Engineering

VISCOUS FLUID FLOWS Mechanical Engineering NEER ENGI STRUCTURE PRESERVING FORMULATION OF HIGH VISCOUS FLUID FLOWS Mechanical Engineering Technical Report ME-TR-9 grad curl div constitutive div curl grad DATA SHEET Titel: Structure preserving formulation

Διαβάστε περισσότερα

X(f) E(ft) df x[i] = 1 F. x(t) E( ft) dt X(f) = x[i] = 1 F

X(f) E(ft) df x[i] = 1 F. x(t) E( ft) dt X(f) = x[i] = 1 F Πανεπιστήμιο Θεσσαλίας ΗΥ240: Θεωρία Σημάτων και Συστημάτων 4..2006 Φυλλάδιο Τυπολόγιο μετασχηματισμών ourier, Laplace και Z Σύμβολα Για έναν πραγματικό αριθμό x, συμβολίζουμε με x, x, [x], τον αμέσως

Διαβάστε περισσότερα

ACI sécurité informatique KAA (Key Authentification Ambient)

ACI sécurité informatique KAA (Key Authentification Ambient) ACI sécurité informatique KAA (Key Authentification Ambient) Samuel Galice, Veronique Legrand, Frédéric Le Mouël, Marine Minier, Stéphane Ubéda, Michel Morvan, Sylvain Sené, Laurent Guihéry, Agnès Rabagny,

Διαβάστε περισσότερα

Multi-GPU numerical simulation of electromagnetic waves

Multi-GPU numerical simulation of electromagnetic waves Multi-GPU numerical simulation of electromagnetic waves Philippe Helluy, Thomas Strub To cite this version: Philippe Helluy, Thomas Strub. Multi-GPU numerical simulation of electromagnetic waves. ESAIM:

Διαβάστε περισσότερα

ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t

ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t FichaCatalografica :: Fichacatalografica https://www3.dti.ufv.br/bbt/ficha/cadastrarficha/visua... Ficha catalográfica preparada

Διαβάστε περισσότερα

m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx

m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx m r = F m r = F ( r) m r = F ( v) x F = F (x) m dv dt = F (x) d dt = dx dv dt dx = v dv dx vdv = F (x)dx 2 mv2 x 2 mv2 0 = F (x )dx x 0 K = 2 mv2 W x0 x = x x 0 F (x)dx K K 0 = W x0 x x, x 2 x K 2 K =

Διαβάστε περισσότερα

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο ο φ. II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai

Διαβάστε περισσότερα

Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes

Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes Jérôme Baril To cite this version: Jérôme Baril. Modèles de représentation multi-résolution pour le rendu

Διαβάστε περισσότερα

Three essays on trade and transfers: country heterogeneity, preferential treatment and habit formation

Three essays on trade and transfers: country heterogeneity, preferential treatment and habit formation Three essays on trade and transfers: country heterogeneity, preferential treatment and habit formation Jean-Marc Malambwe Kilolo To cite this version: Jean-Marc Malambwe Kilolo. Three essays on trade and

Διαβάστε περισσότερα

Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation

Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation Florent Jousse To cite this version: Florent Jousse. Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation.

Διαβάστε περισσότερα

!"#$ % &# &%#'()(! $ * +

!#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))

Διαβάστε περισσότερα

ON THE MEASUREMENT OF

ON THE MEASUREMENT OF ON THE MEASUREMENT OF INVESTMENT TYPES: HETEROGENEITY IN CORPORATE TAX ELASTICITIES HENDRIK JUNGMANN, SIMON LORETZ WORKING PAPER NO. 2016-01 t s r t st t t2 s t r t2 r r t t 1 st t s r r t3 str t s r ts

Διαβάστε περισσότερα

a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( ) 槡 槡 槡 ( ) 槡 槡 槡 槡 ( ) ( )

( ) ( ) ( ) ( ) ( ) 槡 槡 槡 ( ) 槡 槡 槡 槡 ( ) ( ) 3 3 Vol.3.3 0 3 JournalofHarbinEngineeringUniversity Mar.0 doi:0.3969/j.isn.006-7043.0.03.0 ARIMA GARCH,, 5000 :!""#$%&' *+&,$-.,/0 ' 3$,456$*+7&'89 $:;,/0 ?4@A$ ARI MA GARCHBCDE FG%&HIJKL$ B

Διαβάστε περισσότερα

UNIVERSITE DE PERPIGNAN VIA DOMITIA

UNIVERSITE DE PERPIGNAN VIA DOMITIA Délivré par UNIVERSITE DE PERPIGNAN VIA DOMITIA Préparée au sein de l école doctorale Energie et Environnement Et de l unité de recherche Procédés, Matériaux et Énergie Solaire (PROMES-CNRS, UPR 8521)

Διαβάστε περισσότερα

k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)

Διαβάστε περισσότερα

QBER DISCUSSION PAPER No. 8/2013. On Assortative and Disassortative Mixing in Scale-Free Networks: The Case of Interbank Credit Networks

QBER DISCUSSION PAPER No. 8/2013. On Assortative and Disassortative Mixing in Scale-Free Networks: The Case of Interbank Credit Networks QBER DISCUSSION PAPER No. 8/2013 On Assortative and Disassortative Mixing in Scale-Free Networks: The Case of Interbank Credit Networks Karl Finger, Daniel Fricke and Thomas Lux ss rt t s ss rt t 1 r t

Διαβάστε περισσότερα

k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)

Διαβάστε περισσότερα

Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα

Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα Δπηθακπύιηα Οινθιεξώκαηα Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα Επηθακπύιηα Οινθιεξώκαηα θαη εθαξκνγέο. Επηθακπύιην Οινθιήξωκα. Έζηω όηη ε βαζκωηή ζπλάξηεζε f(x,y,z) είλαη νξηζκέλε πάλω ζε κία

Διαβάστε περισσότερα

A hybrid PSTD/DG method to solve the linearized Euler equations

A hybrid PSTD/DG method to solve the linearized Euler equations A hybrid PSTD/ method to solve the linearized Euler equations ú P á ñ 3 rt r 1 rt t t t r t rs t2 2 t r s r2 r r Ps s tr r r P t s s t t 2 r t r r P s s r r 2s s s2 t s s t t t s t r t s t r q t r r t

Διαβάστε περισσότερα

La naissance de la cohomologie des groupes

La naissance de la cohomologie des groupes La naissance de la cohomologie des groupes Nicolas Basbois To cite this version: Nicolas Basbois. La naissance de la cohomologie des groupes. Mathématiques [math]. Université Nice Sophia Antipolis, 2009.

Διαβάστε περισσότερα

Points de torsion des courbes elliptiques et équations diophantiennes

Points de torsion des courbes elliptiques et équations diophantiennes Points de torsion des courbes elliptiques et équations diophantiennes Nicolas Billerey To cite this version: Nicolas Billerey. Points de torsion des courbes elliptiques et équations diophantiennes. Mathématiques

Διαβάστε περισσότερα

m 1, m 2 F 12, F 21 F12 = F 21

m 1, m 2 F 12, F 21 F12 = F 21 m 1, m 2 F 12, F 21 F12 = F 21 r 1, r 2 r = r 1 r 2 = r 1 r 2 ê r = rê r F 12 = f(r)ê r F 21 = f(r)ê r f(r) f(r) < 0 f(r) > 0 m 1 r1 = f(r)ê r m 2 r2 = f(r)ê r r = r 1 r 2 r 1 = 1 m 1 f(r)ê r r 2 = 1 m

Διαβάστε περισσότερα

P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r

P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r r s s s t t P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r t t s st ä r t str t st t tt2 t s s t st

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

#%" )*& ##+," $ -,!./" %#/%0! %,!

#% )*& ##+, $ -,!./ %#/%0! %,! -!"#$% -&!'"$ & #("$$, #%" )*& ##+," $ -,!./" %#/%0! %,! %!$"#" %!#0&!/" /+#0& 0.00.04. - 3 3,43 5 -, 4 $ $.. 04 ... 3. 6... 6.. #3 7 8... 6.. %9: 3 3 7....3. % 44 8... 6.4. 37; 3,, 443 8... 8.5. $; 3

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

Déformation et quantification par groupoïde des variétés toriques

Déformation et quantification par groupoïde des variétés toriques Défomation et uantification pa goupoïde de vaiété toiue Fédéic Cadet To cite thi veion: Fédéic Cadet. Défomation et uantification pa goupoïde de vaiété toiue. Mathématiue [math]. Univeité d Oléan, 200.

Διαβάστε περισσότερα

Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques

Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques Raphael Chenouard, Patrick Sébastian, Laurent Granvilliers To cite this version: Raphael

Διαβάστε περισσότερα

B G [0; 1) S S # S y 1 ; y 3 0 t 20 y 2 ; y 4 0 t 20 y 1 y 2 h n t: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 1; 3: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 2; 4: r = 10 5 ; a = 10 6 t = 20

Διαβάστε περισσότερα

ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ελευθερίου Β. Χρυσούλα. Επιβλέπων: Νικόλαος Καραμπετάκης Καθηγητής Α.Π.Θ.

ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ελευθερίου Β. Χρυσούλα. Επιβλέπων: Νικόλαος Καραμπετάκης Καθηγητής Α.Π.Θ. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΕΛΕΓΧΟΥ Αναγνώριση συστημάτων με δεδομένη συνεχή και κρουστική συμπεριφορά

Διαβάστε περισσότερα

Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle

Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle Anahita Basirat To cite this version: Anahita Basirat.

Διαβάστε περισσότερα

Stratégies Efficaces et Modèles d Implantation pour les Langages Fonctionnels.

Stratégies Efficaces et Modèles d Implantation pour les Langages Fonctionnels. Stratégies Efficaces et Modèles d Implantation pour les Langages Fonctionnels. François-Régis Sinot To cite this version: François-Régis Sinot. Stratégies Efficaces et Modèles d Implantation pour les Langages

Διαβάστε περισσότερα

Résolution de problème inverse et propagation d incertitudes : application à la dynamique des gaz compressibles

Résolution de problème inverse et propagation d incertitudes : application à la dynamique des gaz compressibles Résolution de problème inverse et propagation d incertitudes : application à la dynamique des gaz compressibles Alexandre Birolleau To cite this version: Alexandre Birolleau. Résolution de problème inverse

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

A 1 A 2 A 3 B 1 B 2 B 3

A 1 A 2 A 3 B 1 B 2 B 3 16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F

Διαβάστε περισσότερα

1951 {0, 1} N = N \ {0} n m M n, m N F x i = (x i 1,..., xi m) x j = (x 1 j,..., xn j ) i j M M i j x i j m n M M M M T f : F m F f(m) f M (f(x 1 1,..., x1 m),..., f(x n 1,..., xn m)) T R F M R M R x

Διαβάστε περισσότερα

Langages dédiés au développement de services de communications

Langages dédiés au développement de services de communications Langages dédiés au développement de services de communications Nicolas Palix To cite this version: Nicolas Palix. Langages dédiés au développement de services de communications. Réseaux et télécommunications

Διαβάστε περισσότερα

Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE)

Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE) Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE) Khadija Idlemouden To cite this version: Khadija Idlemouden. Annulations de la dette extérieure

Διαβάστε περισσότερα

Segmentation d IRM cérébrales multidimensionnelles par coupe de graphe

Segmentation d IRM cérébrales multidimensionnelles par coupe de graphe Segmentation d IRM cérébrales multidimensionnelles par coupe de graphe Jérémy Lecoeur To cite this version: Jérémy Lecoeur. Segmentation d IRM cérébrales multidimensionnelles par coupe de graphe. Informatique

Διαβάστε περισσότερα

Pierre Grandemange. To cite this version: HAL Id: tel https://tel.archives-ouvertes.fr/tel

Pierre Grandemange. To cite this version: HAL Id: tel https://tel.archives-ouvertes.fr/tel Piégeage et accumulation de positons issus d un faisceau pulsé produit par un accélérateur pour l étude de l interaction gravitationnelle de l antimatière Pierre Grandemange To cite this version: Pierre

Διαβάστε περισσότερα

Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation

Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation Bertrand Marcon To cite this version: Bertrand Marcon. Hygromécanique des

Διαβάστε περισσότερα

φ(t) TE 0 φ(z) φ(z) φ(z) φ(z) η(λ) G(z,λ) λ φ(z) η(λ) η(λ) = t CIGS 0 G(z,λ)φ(z)dz t CIGS η(λ) φ(z) 0 z

Διαβάστε περισσότερα

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1 d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =

Διαβάστε περισσότερα

Développement d un nouveau multi-détecteur de neutrons

Développement d un nouveau multi-détecteur de neutrons Développement d un nouveau multi-détecteur de neutrons M. Sénoville To cite this version: M. Sénoville. Développement d un nouveau multi-détecteur de neutrons. Physique Nucléaire Expérimentale [nucl-ex].

Διαβάστε περισσότερα

Traitement STAP en environnement hétérogène. Application à la détection radar et implémentation sur GPU

Traitement STAP en environnement hétérogène. Application à la détection radar et implémentation sur GPU Traitement STAP en environnement hétérogène. Application à la détection radar et implémentation sur GPU Jean-François Degurse To cite this version: Jean-François Degurse. Traitement STAP en environnement

Διαβάστε περισσότερα

Pathological synchronization in neuronal populations : a control theoretic perspective

Pathological synchronization in neuronal populations : a control theoretic perspective Pathological synchronization in neuronal populations : a control theoretic perspective Alessio Franci To cite this version: Alessio Franci. Pathological synchronization in neuronal populations : a control

Διαβάστε περισσότερα

!"#!"!"# $ "# '()!* '+!*, -"*!" $ "#. /01 023 43 56789:3 4 ;8< = 7 >/? 44= 7 @ 90A 98BB8: ;4B0C BD :0 E D:84F3 B8: ;4BG H ;8

Διαβάστε περισσότερα

d 2 y dt 2 xdy dt + d2 x

d 2 y dt 2 xdy dt + d2 x y t t ysin y d y + d y y t z + y ty yz yz t z y + t + y + y + t y + t + y + + 4 y 4 + t t + 5 t Ae cos + Be sin 5t + 7 5 y + t / m_nadjafikhah@iustacir http://webpagesiustacir/m_nadjafikhah/courses/ode/fa5pdf

Διαβάστε περισσότερα

Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine

Διαβάστε περισσότερα

Logique et Interaction : une Étude Sémantique de la

Logique et Interaction : une Étude Sémantique de la Logique et Interaction : une Étude Sémantique de la Totalité Pierre Clairambault To cite this version: Pierre Clairambault. Logique et Interaction : une Étude Sémantique de la Totalité. Autre [cs.oh].

Διαβάστε περισσότερα

HONDA. Έτος κατασκευής

HONDA. Έτος κατασκευής Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

Mohamed-Salem Louly. To cite this version: HAL Id: tel https://tel.archives-ouvertes.fr/tel

Mohamed-Salem Louly. To cite this version: HAL Id: tel https://tel.archives-ouvertes.fr/tel Deux modèles matématiques de l évolution d un bassin sédimentaire. Pénomènes d érosion-sédimentation-transport en géologie. Application en prospection pétrolière Moamed-Salem Louly To cite tis version:

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

Analyse de modèles pour ITER ; Traitement des conditions aux limites de systèmes modélisant le plasma de bord dans un tokamak

Analyse de modèles pour ITER ; Traitement des conditions aux limites de systèmes modélisant le plasma de bord dans un tokamak Analyse de modèles pour ITER ; Traitement des conditions aux limites de systèmes modélisant le plasma de bord dans un tokamak Thomas Auphan To cite this version: Thomas Auphan. Analyse de modèles pour

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα