Η Στήλη των Μαθηματικών Από τον Κώστα Δόρτσιο, Σχ. Σύμβουλο Μαθηματικών



Σχετικά έγγραφα
Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών. Ιστορία των Μαθηματικών ΑΠΘ

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

Εαρινό εξάμηνο Χ. Χαραλάμπους ΑΠΘ

Εαρινό εξάμηνο Χ. Χαραλάμπους ΑΠΘ

Το Πυθαγόρειο Θεώρημα

Ιστορία των Μαθηματικών

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

Ερευνητική Εργασία: Γεωμετρία και Αρχαιότητα (Από Αρχαία Κείμενα) Μαθητές: Δέσποινα Βαραμογιάννη, Μιχάλης Λεφαντζής, Πάμελα Μάχια, Κλειώ Οικονομάκη

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ. Το Θεώρημα γεννιέται πριν από 4000 χρόνια

Ιστορία των Μαθηματικών

Δυνάμεις Φυσικών Αριθμών

ΟΙ ΕΠΙΣΤΗΜΕΣ ΣΤΟΥΣ ΑΡΧΑΙΟΥΣ ΑΝΑΤΟΑΙΚΟΥΣ ΠΟΛΙΤΙΣΜΟΥΣ

Δημήτρης Ντρίζος Μαθηματικός, τ. Σχολικός Σύμβουλος Μέλος της Σ.Ε του Ευκλείδη Γ της Ε.Μ.Ε

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ. Ιστορία των Μαθηματικών. Χαρά Χαραλάμπους Τμήμα Μαθηματικών, ΑΠΘ

ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ

ΣΤΟΥΣ ΑΡΧΑΙΟΥΣ ΠΟΛΙΤΙΣΜΟΥΣ

Η Στήλη των μαθηματικών Από τον Κώστα Δόρτσιο, Σχ.Σύμβουλο Μαθηματικών

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΧ. ΧΡ Ενότητα 2: Αξιοσημείωτες Ταυτότητες 1. Να βρείτε τα αναπτύγματα: (α) 2

έτος 200 τεύχη 01-4 Κώστας Δόρτσιος Μαθηματικός

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Α Σ.

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο ΑΒΓ (A = 90 ) και πλευρές ΑΓ = 3 cm, ΒΓ = 5 cm, η παράπλευρη ακµή του είναι 7 cm.

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ

Ομάδα: Μομφές Μέλη: Δανιήλ Σταμάτης Γιαλούρη Άννα Βατίδης Ευθύμης Φαλαγγά Γεωργία

Ο Υπολογισμός του π από τον Αρχιμήδη. Οι πιο σημαντικές συνεισφορές του Αρχιμήδη στα Μαθηματικά ανήκουν στον Ολοκληρωτικό Λογισμό.

Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α.

ΚΕΦΑΛΑΙΟ 9 ο ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ

Υπολογιστικά Συστήματα της Αρχαιότητας. Μηχανισμός των Αντικυθήρων Άβακας Κλαύδιος Πτολεμαίος Ήρωνας Αλεξανδρινός Το Κόσκινο του Ερατοσθένη

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013

ΘΕΜΕΛΙΩΔΕΙΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΑΡΙΘΜΟΙ ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

2 η δεκάδα θεµάτων επανάληψης

Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος.

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ' ΓΥΜΝΑΣΙΟΥ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ ΘΕΩΡΙΑ :

Β Γυμνασίου. Θέματα Εξετάσεων

5ο Παναρσακειακό Μαθητικό Συνέδριο Αγώνας και Αγώνες Πρόκληση στο πνεύμα, στην κοινωνία, στην επιστήμη, στον πολιτισμό

1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ

ΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ. Κεφάλαιο 13: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 6 ΙΟΥΝΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΙΣΤΟΡΙΑ ΤΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

2. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ

Αθανασίου Ανδρέας, Αντωνιάδης Μ., Γιασουµής Ν., Ιωάννου Ι., Ματθαίου Κ., Μουσουλίδου M., Παπαγιάννης Κ., Φιλίππου Α. (2013). Μαθηµατικά Α Γυµνασίου,

Παράγωγοι. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Για αρχή 598 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

Παράγωγοι. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. ΕΠΑΛ Κεφάλαιο ασκήσεις σε 19 σελίδες. εκδόσεις. Καλό πήξιμο / 1 1 /

Η Στήλη των Μαθηματικών Από τον Κώστα Δόρτσιο, Σχ. Σύμβουλο Μαθηματικών

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013

Τι ονομάζουμε εμβαδόν μιας επίπεδης επιφάνειας; Αναφέρετε ονομαστικά τις μονάδες μέτρησης επιφανειών.

3.5 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΙΣΚΟΥ

Επαναληπτικές Ασκήσεις

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. Μέρος Β Κεφάλαιο 1ο Εμβαδά επίπεδων σχημάτων Πυθαγόρειο Θεώρημα 1.4 Πυθαγόρειο Θεώρημα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΤΡΕΙΣ ΚΑΙ Ο ΚΟΥΚΟΣ ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ: «ΜΕΤΡΟΝ ΑΡΙΣΤΟΝ» ΣΗΜΑΝΤΙΚΟΙ ΑΡΙΘΜΟΙ

Ιστορία Επιστημών Ι. Αρχαιότητα και Μέσοι Χρόνοι. Μιχάλης Σιάλαρος

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα

Παράγοντας τον Τύπο της Δευτεροβάθμιας Εξίσωσης

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ

Παράγωγοι. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Για αρχή 598 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

Το ιστορικό σημείωμα είναι απόσπασμα του κειμένου που περιέχεται στο έργο «Μαθαίνω Μαθηματικά με το Geometer s Sketchpad» (Πατσιομίτου, 2010)

4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ

Κύκλου μέτρησις. Δημιουργία: Τεύκρος Μιχαηλίδης. Ολοκληρωμένο διδακτικό σενάριο. Μαθηματικό Εργαστήρι Β Αθήνας

Ιστορία των Μαθηματικών

Μαθηματικά Β Γυμνασίου

Δ.Ε. ΚΟΝΤΟΚΩΣΤΑΣ. ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ. Τελευταία ενημέρωση 16 Μαρτίου w w w. c o m m o n m a t h s. w e e b l y. c o m

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΑΒΔΗΡΩΝ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Β ΤΑΞΗΣ

1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους ( ) ( ) ( ) ( ) ( ) ( ) είναι πραγματικός, γ) Το 3 είναι άρρητος,

ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ

( ) ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ 2 = ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΛΥΚΕΙΟ ΑΓΙΑΣ ΦΥΛΑΞΕΩΣ ΤΑΞΗ : Β Λυκείου κατ. 1) Να βρεθεί το Π.Ο.

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ

ΠΥΘΑΓΟΡΑΣ - ΑΣΥΜΜΕΤΡΑ ΜΕΓΕΘΗ

Επαναληπτικές ασκήσεις για τα Χριστούγεννα.

1. * Η κάθετη τοµή ορθού κανονικού τριγωνικού πρίσµατος είναι τρίγωνο Α. ισοσκελές. Β. ισόπλευρο. Γ. ορθογώνιο.. αµβλυγώνιο. Ε. τυχόν.

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ : ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ ΤΑΞΗ: Γ ΓΥΜΝΑΣΙΟΥ. ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΧΡΟΝΟΣ : 6 διδακτικές ώρες

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

Παρασκευή-Ανδριάννα Μαρούτσου Πρότυπο Γυμνάσιο Ευαγγελικής Σχολής Σμύρνης Επιβλέπων καθηγητής: Νικόλαος Μεταξάς, Δρ. Μαθηματικών Θεματική Ενότητα:

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

Παράγωγοι. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. ΘΕΩΡΗΤΙΚΗ Κατεύθυνση Κεφάλαιο 1. Kglykos.gr. 359 ασκήσεις σε 19 σελίδες. εκδόσεις.

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ

15% % % 30% ********************************************************

ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Προτεινόμενες Λύσεις

: :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012(Β ΣΕΙΡΑ) ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I.

Επαναληπτικές ασκήσεις για το Πάσχα.

Κύκλος Ερευνητικής Εργασίας: «Μαθηµατικά, Φυσικές Επιστήµες και Τεχνολογία»

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Γ ΓΥΜΝΑΣΙΟΥ 4) Να κάνετε τις πράξεις και μετά να βρείτε την αριθμητική τιμή του

1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ

2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ.

Transcript:

Η Στήλη των Μαθηματικών. Τετάρτη 15 Μαρτίου 2006 1/5 Η Στήλη των Μαθηματικών Από τον Κώστα Δόρτσιο, Σχ. Σύμβουλο Μαθηματικών Ν:6 ο Οι απαρχές των Μαθηματικών Τα μαθηματικά είναι η επιστήμη εκείνη η οποία εμφανίζεται με τα πρώτα βήματα του ανθρώπου πάνω στη γη και αποτελεί το μέσο επίλυσης των διαφόρων προβλημάτων από τα πιο απλά μέχρι και τα πλέον σύνθετα. Από την παρατήρηση οδηγούμαστε στη σύγκριση και από τη σύγκριση στην αξιολόγηση και τέλος από την αξιολόγηση φθάνουμε στην απόφαση. Η διαδρομή αυτή δηλαδή από την παρατήρηση μέχρι και την απόφαση είναι μακρά και επίπονη. Ο άνθρωπος προσπαθώντας κάθε φορά να αξιοποιήσει καλύτερα τις συνθήκες κάτω από τις οποίες ζούσε, έφθασε έως τα σήμερα να έχει αναπτύξει τον σημερινό πολιτισμό. Έναν πολιτισμό, ο οποίος κατά ένα μεγάλο μέρος στηρίζεται στα Μαθηματικά. Όλοι οι λαοί που έζησαν πριν από την εποχή του Πυθαγόρα (6ος π.χ. αιώνας) έχουν αναπτύξει μαθηματικές ιδέες αρκετά σημαντικές και πολύτιμες για την παραπέρα πορεία. Όμως οι πληροφορίες που έχουμε είναι λιγοστές και γιαυτό πολύτιμες. Οι σπουδαιότερες πηγές για τα Μαθηματικά των λαών αυτών είναι οι παρακάτω: 1. Η πινακίδα του Σενκερέχ Είναι ένα κειμήλιο που χρονολογείται στην περίοδο 2300-1600π.Χ. και περιέχει πληροφορίες σχετικά με τις γνώσεις των λαών που κατοικούσαν στις όχθες του Ευφράτη. Το κείμενο αυτό είναι γραμμένο σε σφηνοειδή γραφή και περιέχει μεταξύ άλλων το αριθμητικό σύστημα των Βαβυλωνίων, που είχε βάσεις το 10 και το 60. Στο κείμενο αυτό υπάρχουν τα τετράγωνα των αριθμών 1,2,,60 και οι κύβοι των αριθμών 1,2,,30. Μέσα από τους πίνακες αυτούς διευκολύνονταν οι ιερείς που ασχολούνταν με αστρολογικές μελέτες να πραγματοποιήσουν τις αντίστροφες πράξεις εξαγωγής της τετραγωνικής και κυβικής ρίζας.

Η Στήλη των Μαθηματικών. Τετάρτη 15 Μαρτίου 2006 2/5 Ο πάπυρος του Rhind Τις πληροφορίες σχετικά με τα Μαθηματικά των Αιγυπτίων, τις αντλούμε από τον πάπυρο του Rhind, που χρονολογείται μεταξύ 1788 και 1580π.Χ. και φυλάσσεται στο Βρετανικό Μουσείο του Λονδίνου. Είναι γραμμένος σε ιερογλυφική και ιερατική γραφή από το γραφέα Ahmes. Μαζί με τον πάπυρο του Rhind ανακαλύφθηκε και ο δερμάτινος κύλινδρος (ΒΜ 10250) το ξετύλιγμα του οποίου υπήρξε επίτευγμα της σύγχρονης χημείας. Ο κύλινδρος αυτός περιέχει απλές σχέσεις μεταξύ κλασμάτων. 2. Η πινακίδα του Plimpton Βρίσκεται στο Πανεπιστήμιο της Κολούμπια των Ηνωμένων Πολιτειών της Αμερικής και μας δίνει πληροφορίες για τα Μαθηματικά των Βαβυλωνίων.

Η Στήλη των Μαθηματικών. Τετάρτη 15 Μαρτίου 2006 3/5 Χρονολογείται στα 1900 και 1600 π.χ. Η πινακίδα αυτή είναι αντίγραφο της αρχικής που έχει χαθεί. Διαβάστηκε για πρώτη φορά από τους Neugebauer και Sachs το 1945. Παρουσιάζει ουσιαστικά σχέσεις πλευρών του ορθογωνίου τριγώνου. Πώς οι Βαβυλώνιοι κατάφεραν να υπολογίσουν πυθαγόρειες τριάδες; Το ερώτημα παραμένει μέχρι σήμερα. 4. Ο πάπυρος της Μόσχας. Στον πάπυρο αυτό υπάρχει ένα ξεχωριστό επίτευγμα των αιγυπτιακών μαθηματικών που είναι ο ακριβής υπολογισμός του όγκου της κόλουρης πυραμίδας με τετραγωνική βάση. 5. Η πινακίδα με σφηνοειδές κείμενο(ybc 7289) από τη Βαβυλωνιακή Συλλογή του Πανεπιστημίου του Yale, στην οποία υπολογίζεται η διαγώνιος τετραγώνου. 6. Το βιβλίο «Sulvasutra» ή «κανόνας της χορδής» των Αρχαίων Ινδών είναι γραμμένο μεταξύ του 8ου και 6ου αιώνα π.χ. Σ αυτό περιέχονται πολλές μαθηματικές γνώσεις των λαών που ζούσαν στις όχθες του Ινδού ποταμού. Στο βιβλίο αυτό δίνονται οδηγίες για την κατασκευή βωμών και ιερών κτισμάτων με συγκεκριμένες διαστάσεις. Εκεί εμφανίζονται πυθαγόρειες τριάδες και αξιόλογοι υπολογισμοί. 7. το Ιερό Βιβλίο της Αριθμητικής το οποίο θεωρείται ότι γράφηκε στην περίοδο 1122-225π.Χ. επί της ΙΙΙ δυναστείας της Κίνας μας πληροφορεί για τα μαθηματικά των αρχαίων Κινέζων. Τέλος πολλές αναφορές αρχαίων Ελλήνων και Αράβων συγγραφέων μας δίνουν πολύτιμες πληροφορίες για τα Μαθηματικά όλων αυτών των λαών. Τα μαθηματικά βέβαια αυτά σύμφωνα με τις απόψεις σύγχρονων μελετητών ήταν μαθηματικά με περίπλοκους υπολογισμούς όμως δεν προχώρησαν σε ανώτερες αποδεικτικές διαδικασίες όπως έγινε στη συνέχεια από τους Έλληνες Μαθηματικούς της Αρχαιότητας. Μαθηματικές προκλήσεις προσκλήσεις - ασκήσεις Λύσεις προηγουμένων προκλήσεων ασκήσεων 6. Αν διαθέτεις ένα δοχείο των 5 λίτρων και ένα ακόμα των 3 λίτρων, πως θα μπορέσεις να βάλεις από τη βρύση 4 λίτρα νερό στο μεγάλο δοχείο; Λύση: Σχηματικά λύνεται στις παρακάτω 7 φάσεις. 5 λίτρα 1η φάση 2η φάση

Η Στήλη των Μαθηματικών. Τετάρτη 15 Μαρτίου 2006 4/5 3η φάση 2 λίτρα 4η φάση 5η φάση 6η φάση 7η φάση Σημείωση Αν υπήρχε ένα τρίτο μεγάλο δοχείο τότε:θα ρίξουμε δύο φορές με το δοχείο των 5 λίτρων στο μεγάλο δοχείο και θα αδειάσεις δύο φορές με το δοχείο των 3 λίτρων. Έτσι μέσα στο μεγάλο δοχείο θα μείνουν 2Χ5-2Χ3=10-6=4 λίτρα. Για την άλλη φορά 9. Μία συνάντηση άρχισε ανάμεσα στις 3 και 4μ.μ. και τέλειωσε μεταξύ τις 6 και 7μ.μ. Στη συνάντηση αυτή οι δείκτες του ρολογιού τις στιγμές της έναρξης και της λήξης αντάλλαξαν θέση. Τι ώρα άρχισε η συνάντηση; 10. Θεωρούμε κύκλο με κέντρο Ο και ακτίνα R καθώς και εγγεγραμμένο τρίγωνο ΑΒΓ σ αυτόν. Φέρουμε τη διάμετρο ΒΒ. Να αποδείξετε ότι:

Η Στήλη των Μαθηματικών. Τετάρτη 15 Μαρτίου 2006 5/5 α) Αν Η το ορθόκεντρο του τριγώνου τότε: ΑΗ = Β Γ β) Το τμήμα ΗΒ διέρχεται από το μέσο της πλευράς ΑΓ. γ) ΑΗ = 2RσυνΑ Παράρτημα της Ε.Μ.Ε. 2ο Εν.Λύκειο Κοζάνης Κάλβου 50100 Κοζάνη ή ηλεκτρονικά: emekozanis@yahoo.gr