JOURNAL OF APPLIED SCIENCES Electronics and Information Engineering TP (2011)

Σχετικά έγγραφα
ER-Tree (Extended R*-Tree)

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Quick algorithm f or computing core attribute

ΜΑΡΙΝΑ Ε. ΜΠΙΣΑΚΗ. Τκήκα Δθαξκνζκέλωλ Μαζεκαηηθώλ Παλεπηζηήκην Κξήηεο Τ.Θ , Ηξάθιεην, Κξήηε

Analysis of energy consumption of telecommunications network and application of energy-saving techniques

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

High order interpolation function for surface contact problem

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

ΗΜΟΣΙΕΥΣΕΣ ΣΕ ΙΕΘΝΗ ΠΕΡΙΟ ΙΚΑ [1] C. Bouras, A. Gkamas, G. Kioumourtzis, Adaptive smooth multicast protocol for multimedia transmission:

Buried Markov Model Pairwise

Adaptive grouping difference variation wolf pack algorithm

CorV CVAC. CorV TU317. 1

Secure Cyberspace: New Defense Capabilities

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

A multipath QoS routing algorithm based on Ant Net

Wiki. Wiki. Analysis of user activity of closed Wiki used by small groups

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Toward a SPARQL Query Execution Mechanism using Dynamic Mapping Adaptation -A Preliminary Report- Takuya Adachi 1 Naoki Fukuta 2.

Motion analysis and simulation of a stratospheric airship

JOURNAL OF APPLIED SCIENCES Electronics and Information Engineering. Cyclic MUSIC DOA TN (2012)

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

Research on Economics and Management

GridFTP-APT: Automatic Parallelism Tuning Mechanism for Data Transfer Protocol GridFTP

Simplex Crossover for Real-coded Genetic Algolithms

Πρόσκληση. DOSSIER-Cloud DevOpS-based Software engineering for the cloud

ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

DISTRIBUTED CACHE TABLE: EFFICIENT QUERY-DRIVEN PROCESSING OF MULTI-TERM QUERIES IN P2P NETWORKS

Εφαρμογή Υπολογιστικών Τεχνικών στην Γεωργία

User Behavior Analysis for a Large2scale Search Engine

Towards a more Secure Cyberspace

Online Social Networks: Posts that can save lives. Dimitris Gritzalis, Sotiria Giannitsari, Dimitris Tsagkarakis, Despina Mentzelioti April 2016

Online Social Networks: Posts that can save lives. Sotiria Giannitsari April 2016

Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

Research on real-time inverse kinematics algorithms for 6R robots

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

Congruence Classes of Invertible Matrices of Order 3 over F 2

From Secure e-computing to Trusted u-computing. Dimitris Gritzalis

1 h, , CaCl 2. pelamis) 58.1%, (Headspace solid -phase microextraction and gas chromatography -mass spectrometry,hs -SPME - Vol. 15 No.

Δθαξκνζκέλα καζεκαηηθά δίθηπα: ε πεξίπησζε ηνπ ζπζηεκηθνύ θηλδύλνπ ζε κηθξνεπίπεδν.

Fragility analysis for control systems

ΑΠΟΔΟΤΙΚΗ ΑΠΟΤΙΜΗΣΗ ΕΡΩΤΗΣΕΩΝ OLAP Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ. Υποβάλλεται στην

Research on vehicle routing problem with stochastic demand and PSO2DP algorithm with Inver2over operator

Journal of the Graduate School of the Chinese Academy of Sciences. Application Dependent Software. Standard Application Components.

Stabilization of stock price prediction by cross entropy optimization

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

Reading Order Detection for Text Layout Excluded by Image

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Τοποθέτηση τοπωνυµίων και άλλων στοιχείων ονοµατολογίας στους χάρτες

ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

Approximation Expressions for the Temperature Integral

Πανεπιστήμιο Μακεδονίας Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήματος Εφαρμοσμένης Πληροφορικής. Ανδρέας Π. Πλαγεράς

Application of a novel immune network learn ing algorithm to fault diagnosis

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Web 論 文. Performance Evaluation and Renewal of Department s Official Web Site. Akira TAKAHASHI and Kenji KAMIMURA

Εποχές( 1. Εποχή(του(mainframe((πολλοί( χρήστες,(ένας(υπολογιστής)(( 2. Εποχή(του(PC((ένας(χρήστης,(

Zigbee. Zigbee. Zigbee Zigbee ZigBee. ZigBee. ZigBee

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

ΚΒΑΝΤΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ

DECO DECoration Ontology

The optimization of EV powertrain s efficiency control strategy under dynamic operation condition

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ ΣΠΟΥΔΕΣ

2002 Journal of Software

A research on the influence of dummy activity on float in an AOA network and its amendments

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΣΤΥΛΙΑΝΗΣ Κ. ΣΟΦΙΑΝΟΠΟΥΛΟΥ Αναπληρώτρια Καθηγήτρια. Τµήµα Τεχνολογίας & Συστηµάτων Παραγωγής.

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΠΑΤΗΣΙΩΝ ΑΘΗΝΑ Ε - ΜΑΙL : mkap@aueb.gr ΤΗΛ: , ΚΑΠΕΤΗΣ ΧΡΥΣΟΣΤΟΜΟΣ. Βιογραφικό Σημείωμα

A System Dynamics Model on Multiple2Echelon Control

ST5224: Advanced Statistical Theory II

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

The Simulation Experiment on Verifying the Convergence of Combination Evaluation

Supporting Information

Area Location and Recognition of Video Text Based on Depth Learning Method

ΛΙΜΕΝΙΚΕΣ ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΙΑΧΕΙΡΙΣΗΣ ΑΠΟΒΛΗΤΩΝ ΠΕΡΙΛΗΨΗ

PACS: Ox, Cw, a, TP

1. Εισαγωγή. Περιγραφή Μαθήματος. Ιστορική Αναδρομή. Ορισμοί Ηλεκτρονικού Εμπορίου

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Λέκτορας στο Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων, Πανεπιστήμιο Πειραιώς, Ιανουάριος 2012-Μάρτιος 2014.

,,, (, ) , ;,,, ; -

ΜΟΝΤΕΛΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ

Applying Markov Decision Processes to Role-playing Game

Research on model of early2warning of enterprise crisis based on entropy

Transcript:

29 1 2011 1 JOURNAL OF APPLIED SCIENCES Electronics and Information Engineering Vol. 29 No. 1 Jan. 2011 DOI: 10.3969/j.issn.0255-8297.2011.01.012 ademlia 1 1 2 3 1. 230037 2. 230037 3. 100195 DHTademlia k. 10%. TP393 0255-8297(2011)01-0066-07 Routing Table Adaptation Mechanism for ademlia Protocol XU Qiang 1, SUN Le-chang 1, ZHANG Min 2, LIU Hai-tao 3 1. Department of Network Engineering, Electronic Engineering Institute of PLA, Hefei 230037, China 2. Department of Information Engineering, Electronic Engineering Institute of PLA, Hefei 230037, China Abstract: 3. Air Force Electronic Technology Research Institute of PLA, Beijing 100195, China To improve performance of distribute Hash table (DHT) networks under churn, we study an adaptive mechanism of the routing table for ademlia protocol. Based on a quantitative analysis, we propose an algorithm for the value to adjust the routing table size to adapt to the churn rate. The churn rate is estimated from the available data in the routing table. Simulations show that the proposed algorithm can significantly reduce lookup latency under churn and raise the network s crash point by nearly 10%. Even when the churn rate fluctuates severely, the network still has a satisfactory performance. eywords: peer-to-peer network, distributed Hash table(dht), churn, routing table, adaptive adjustment P2P. [1] P2P (churn).. (distributed Hash table, DHT) P2P DHT DHT. DHT [2]. [3].. 2010-09-10 2010-12-20 (No. 60972161) E-mail: yfnm126@126.com E-mail: sunlechangeei@yahoo.com

1 ademlia 67. [4] [4]. [5-6]. [5]. [6] Accordion.. DHT ademlia [7]. emule BitTorrent. 1 ademlia DHT ademliasha-1 160 bit (NodeID). (XOR). ademlia k (k-buckets) i [0, 160) 1 0 k (k-bucket) [2 i, 2 i+1 ) <IP address, UDP port, NodeID>. ademlia [8]. [3] 4 ademlia 1) ademlia k ademlia k. 2) ademlia k 1 h k NodeID k. 3) ademlia k LRU(least recently used). 4) ademlia. ademlia. k. k. 2 2.1 k 2 m < 2 m+1 (0 m < 160). 1 ademlia V V = 2 m+1 + (160 m) 1. i k 2 i+1 2 i = 2 i. 2 i 2 i 2 i >. V = m i=0 2i + (160 m) V = 2 m+1 + (160 m) 1.. k k.. [9]ademlia DHT [10]. DHT log N log log N O( log V ) [6] N V.. 2 P min W ademlia

68 29 log N log log N 1 H = O( log V 1 (1 P min) ). W 1 (1 P min ) W 1 1 (1 P min). ademlia W log N log log N 1 H = O( log V 1 (1 P min) ).. W. P2P [3] (log-quadratic) (Pareto) (power-law) (Weibull) (log-normal). (heavytailed) [3] α β (1) P (t online < T ) = 1 ( β T )α (α 1, β > 0) (1) t online T α β. (1) T. [6]. T last T online. (1) p (2) [6] p = P (t online > (T last + T online ) t online > T online ) = ( β T last +T online ) α T online = ( ) α (2) β ( T online ) α T last + T online (2) [6] T last = T online (p 1 a 1) (3) T online T online t online T online 2 1 α β50% T online 2 1 α β. (3) T online T last p. T last = 2 1 α β(p 1 α min 1) 50% [6] T online 2 1 a β P min P min. P min P min. T last 50% C = 0.5V T last = V 2T last. T last = 2 1 α β(p 1 α min 1) [6] V = 2 1 α +1 βc(p 1 α min 1) (4) α = 1. 1 P min = 4βC (2 m+1 +(160 m) 1)+4βC. 1 1 (4). Pmin 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 βc=10 βc=50 βc=100 βc=500 βc=1 000 βc=5 000 βc=10 000 10 20 30 40 50 60 70 80 90 100 1 P min Figure 1 Variation of P min with respect to α β. C. 1 1 βc P min. βc. βc. βc = 10 k 50%. ademlia W [11] 3. W = 3. 2 ademlia H = log N log log N O( 1 log(2 +(160 m) 1) m+1 4βC ). 1 (1 (2 m+1 )3 +(160 m) 1)+4βC 2 2 1. log N log log N = log N log log N. C

1 ademlia 69 βc. 2 3. H/hop H/hop H/hop 10 9 8 7 6 5 4 3 2 1 0 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 βc=10 βc=20 βc=30 βc=40 βc=50 10 20 30 40 50 60 70 80 90 100 βc=100 βc=200 βc=300 βc=400 βc=500 0.1 0 10 20 30 40 50 60 70 80 90 100 (b) (b) Case of moderate churn rate 0.16 0.15 0.14 0.13 0.12 0.11 0.10 0.09 0.08 (a) (a) Case of high churn rate βc=1 000 βc=2 000 βc=3 000 βc=4 000 βc=5 000 0 10 20 30 40 50 60 70 80 90 100 (c) (c) Case of low churn rate 2 Figure 2 Variation of routing hops with respect to under different churn rate βc < 50 2 1 α β = 1. 1 = 1 50%. 100 < βc < 500 2 1 α β = 10. ademlia 10. 1 = 10 50% 80%. 1 000 < βc < 5 000 > 10 80%. βc > 30... 2.2 2.1 (additive increase and multiple decrease).. Function u.adapt_k-buckets (A, M, T ) = 10; // P cur = 0.7; // while(u.online = true) // if(p cur >= 0.8) // if( <= 30) = + A; i=random( 1, 1); if(i >= 0) = + A; = A; u.adjust_k-buckets(); if(p cur < 0.8&&P cur >= 0.5)// if ( >= 10) P threash = 1 1 (P cur 0.5)/0.3; i=random(0, 1);

70 29 if (i >= P threash ) = + A; = M; u.adjust_ k-buckets(); = + A; if (P cur < 0.5) // if ( > 1) = M; u.adjust_ k-buckets(); u.node_lookup(u.nodeid); sleep(t); endwhile end function u T 1. A(A > 0) M(0 < M < 1) A = 1, M = 0.5. P cur P min. 1 P cur. T T. P cur > 0.8. 1 2(c). > 30 A. 0.5 P cur < 0.8. 1 2(b) < 10. 10 P threash = 1 1 (P cur 0.5)/0.3. P threash P cur P cur 0.8. P cur < 0.5.. = 1. node_lookup. k. adjust_k-buckets.. k <IP address, UDP port, NodeID, T last, T online >. [6] T last T online. (2) k T online T last+tonline. P2P. static static ademlia. k. 3 3.1. MIT P2PSimP2P P2P. P2PSim ademlia A-ademlia ing [12] P2PSim E2EGraph RedHat 9.0. 3.2 N = 1 024 R = 1 000 ms. A-ademlia static ademlia 10. (1). (1) α = 1, β 50, 500 5 000 1 C 1. NodeID. 30 s

1 ademlia 71 20(2lbNR) s. 10 β 10. /s /s /s 18 16 14 12 A-ademlia 10 0 1 2 3 4 5 6 7 8 9 10 11 (a) β=50 6.0 5.5 5.0 ademlia 4.5 A-ademlia 4.0 0 1 2 3 4 5 6 7 8 9 10 11 (b) β=500 5.0 4.8 4.6 4.4 4.2 4.0 ademlia A-ademlia ademlia 3.8 0 1 2 3 4 5 6 7 8 9 10 11 (c) β=5 000 3 Figure 3 Lookup latency under different churn rates 3 ademlia A- ademlia. A- ademlia ademlia β = 50 β = 5 000A-ademlia 2.1. A-ademlia ademlia 30%.. A-ademlia (crash point) [8] ademlia. P2P x 50% x P2P. α = 1, β = 500. λ%. 50. λ 3 3 λ 4. /% 100 90 80 70 60 50 40 30 20 0 10 20 ademlia A-ademlia 30 40 50 60 70 λ/% 4 Figure 4 Crash point of network ademlia 50% 60% A- ademlia60% 70%. 10%. ademlia A-ademlia ademlialrua- ademlia. 4. ademlia.. 10%... emule. : [1] Rhea S, Geels D, Roscoe T, ubiatowicz J. Handling churn in a DHT [C]//USENIX Annual Technical Conference, Boston, USA, 2004: 127-140. [2] ersch P, Szabo R, Cheng L, Jean, Galis A. Stochastic maintenance of overlays in structured P2P systems [J]. Computer Communications, 2008, 31(3): 603-619. [3]. P2PChurn [J]. 2009, 20(5): 1362-1379.

72 29 Zhang Yuxiang X, Yang Dong, Zhang Hongke. Research on churn problem in P2P networks [J]. Journal of Software, 2009, 20(5): 1362-1379. (in Chinese) [4]. DHT [J]. 2008, 45(l): 409-414. Hang Qingfeng, Li Zhitang, Lu Chuiwei, Wang Weidong. Analyzing the cost of DHT handling churn [J]. Journal of Computer Research and Development, 2008, 45(Suppl.): 409-414. (in Chinese) [5] Li J, Stribling J, Morris R, aashoek M F, Gill T M. A performance vs. cost frame for evaluating DHT design tradeoffs under churn [C]//IEEE Conference on Computer Communications, Miami, USA, 2005: 225-236. [6] Li J, Stribling J, Morris R, aashoek M F. Bandwidth-efficient management of DHT routing tables [C]//the 2nd Symposium on Networked System Design and Implementation, Boston, USA, 2005: 99-114. [7] Maymounkov P, Mazieres D. ademlia: a peerto-peer information system based on the XOR metric [C]//the International Workshop on Peer-to-Peer Systems, Berlin, Germany, 2002: 53-65. [8] Liu Zhiyu, Yuan Ruifeng, Li Zhenhua, Li Hongxing, Chen Guihai. Survive under high churn in structured P2P systems: evaluation and strategy [J]. Lecture Notes in Computer Science, 2006, 3394(1): 404-411. [9] ersch P, Szabo R. Mathematical modeling of routing in DHTs [M]. Heidelberg: Springer-Verlag, 2010, 3: 367-401. [10] leingerg J. The small-world phenomenon: an algorithmic perspective [C]//the 32th Annual ACM Symposium on Theory of Computing, Portland, USA, 2000: 163-170. [11] Stutzbach D, Rejaie R. Improving lookup performance over a widely-deployed DHT [C]//IEEE Conference on Computer Communications, Washington, USA, 2006: 1-12. [12] Gumadi P, Saroiu S, Steven D G. ing: estimating latency between arbitrary internet end hosts [C]//Internet Measurement Conference, Marseille, Fance, 2002: 5-18. (: )