28 1 2011 3 Vol.28No.1 World Nuclear Geoscience Mar.2011 DOI: 10.3969/j.issn.1672-0636.2011.01.007 ( 100029) [ ] 3 ASTER [ ] ; ; ; ; [ ] TP79 [ ] A [ ] 1672-0636(2011)01-0032-10 Discussion on the application potential of thermal infrared remote sensing technology in uranium deposits exploration WANG Jun hu ZHANG Jie lin LIU De chang (National Key Laboratory of Remote Sensing Information and Image Analysis Technology Beijing Research Institute of Uranium Geology Beijing 100029 China) Abstract: With the continual development of new thermal infrared sensors and thermal radiation theory the technology of thermal infrared remote sensing has shown great potential for applications in resources exploration especially in the field of uranium exploration. The paper makes a systemic summary of the theoretical basis and research status of the thermal infrared remote sensing applications in resources exploration from the surface temperature thermal inertia and thermal infrared spectrum. What s more the research objective and the research content of thermal infrared remote sensing in the uranium deposits exploration applications are discussed in detail. Besides based on the thermal infrared ASTER data the paper applies this technology to the granite type uranium deposits in South China and achieves good result. Above all the practice proves that the thermal infrared remote sensing technology has a good application prospects and particular value in the field of uranium prospecting and will play an important role in the prospecting target of the uranium deposits. Key words: thermal infrared remote sensing; land surface temperature; thermal inertia; thermal infrared spectrum; uranium deposits exploration [ ] ( :2005040107). [ ] 2010-08-18; [ ] 2010-12-02 [ ] (1982 ) GIS E-mail: tcwjh2001@163.com
1 : 33 2010 2008 4 1 1.1 [1] (Lee 1970) TM6 [3] [2] ( ) 4/5 [4] 20 80 ( ) (TIMS) 90 NASA Terra ASTER 8~12 μm 5 TASI 8~12 ( ) μm 32-20 80 AVHRR MODIS TM6 MASTER SEBASS ASTER TASI [5] TASI
34 28 [6] (NASA) 60% Modtran 4 ( ) 1.2 20 80 : [14] TM/ETM 1982 [7] Sobrino [8] 18 M.F. Coolbaugh ASTER [9] Melanie J. Hellman ASTER [10] (TERRA) MODIS ASTER [11] [15] ETM NOAA-11 [12] ; 1.3 (2004) (1) TASI [13] ; (2)
1 : 35 ; (P) (3) ( ) [16] ( ) ( ) 1.4 : (1) 1 2 P=(κρc) (1) : P J m -2-1 2 s K -1 ; κ J (m s K) -1 ; ρ kg m -3 ; c J (kg K) -1 (2) Modtran 4 (1) (3) (1) (4) ( ) (5) ( ) ( ) ( ) ( ) ; ( ) 20 70 2 2.1
36 28 ; (2008) [25] 3 ( ) 2.2 Watson(1973) [17] ; Kahle (1975) [18] 1 Kahle 1977 [19] Gillespie Kahle (1977) [20] - Pisgah Crater 1978 NASA TASI (HCMM) 500 m HCMM 2.3 [21] AVHRR ASTER MODIS SEBASS ; Nasipuri (2005) [22] NOAA Terra ASTER TASI AVHRR ; ; ; Nasipuri (2006) [23] ASTER 2.4 2.4.1 (1986) [24] ; 2.4.2 (1994) [16] 23
1 : 37 2.4.3 1 DEM 2.4.4 ; ; ; 1 3 8~11 μm 3.1 ; (8.0~14.0 μm) Si O C O 2-2- 3- Si n O k SO 4 CO 3 PO 4 ( ) [26] ( ) ASU ( ) ASTER SiO 2
38 28 SiO 2 SiO 2 [27] SiO 2 SiO 2 Lawrence (2003) [29] ASTER ASTER AVIRIS 3.4 ; 3.4.1 Lawrence (2005) [30] ASTER SiO 2 SiO 2 3.2 SiO 2 1983 1 3.3 AVHRR ASTER TASI [28] 400~2 500 nm SiO 2 ; ; ASU JHL ASTER Mordor 2 SAM - 4 3-3.4.2 ( 2.4) [31] ; TIMS 3.4.3 / / ; [32] ASTER ASU SiO 2 MgO Al 2 O 3 CaO 3.4.4
1 : 39 ( ) ; 3.5 ASTER 3.4.5 SiO 2 / ASTER SiO 2 %= SiO 2 28.76 log(6.56 B13 B14/ (B10 B12)) [32] SiO 2 SiO 2 ( 2A) SiO 2 SiO 2 SiO 2 ( 2B) ( 3.4.6 ) SiO 2 : (1) 2B 1~9 SiO 2 2A
40 28 3 ( 2B 1 2 3) SiO 2 2A SiO 2 [32] 2B 3 [ ] 120 km [1]. : (2) 2B [J]. 2009 25 SiO 2 65% (2):. [2] ~70%. [J]. 1996 11(1): 7-8. SiO 2 [3]. [M]. : 1998: 1-2. (3) (2006) [4]. [M]. : 2005: 78-80. [5]. [J]. 1999 9(4): 23-25. 2B [6]. [M]. : 2007: 408-409. [7] Zhang Minghua Arnon Karnieli. NOAA-AVHRR SiO 2 [J]. 2001(2): 33-42. [8] Jiménez Mu 觡 oz Juan C Sobrino José A. A SiO 2 generalized single channel method for retrieving land surface temperature from remote sensing data SiO 2 [J]. J. Geophys. Res. 2003 108: ACL 2-1. [9] Coolbaugh M F Kratt C Fallacaro A et al. Detection of geothermal anomalies using advanced spaceborne thermal emission and reflection 4 radiometer (ASTER) thermal infrared images at 3 Bradys Hot Springs Nevada USA[J]. Remote Sensing of Environment 2007 106(3): 350-359. [10]. [J]. 1999 44(15): 1 612-1 617. [11]. [M]. : 2007: 79-81. [12]. [J]. 1996 11(2): ; 17-25. [13] SiO 2. - [J]. 2005(1): 40-43. [14]. [R]. : 1983. [15]. - (
1 : 41 ) [R]. : [25]. 2004: 15-18. [16]. [J]. [J]. 200827(3): 166-172. 1994 9(3): 177-183. [17] Watson K. Periodic heating of a layer over semi [26] Christensen P R Bandfield J L Hamilton V E. A thermal emission spectral library of rock forming infinite solid[j]. J. Geophys. Res. 1973 78: minerals [J]. Journal of Geophysical Research 5 904-5 910. [18] Kahle A B Gillespie A R Goetz A F H et al. [27] 2000 105(E4): 9 735-9 739.. Thermal inertia mapping [C]//Proceedings of the SiO 2 [J]. 2006 25 tenth International Symposiums on Remote Sensing of Environment. London: IEEE 1975: 985-994. [19] Kahle A B. A simple thermal model of the earth's surface for geologic mapping by remote sensing [J]. [28] (5): 639-643.. [J]. 2005 20 (10): 1 116-1 125. J. Geophys. Res. 1977 82: 1 673-1 680. [29] Rowan L C Mars J C. Lithologic mapping in the [20] Gillespie A R Kahle A B. Construction and Mountain Pass California area using advanced interpretation of digital thermal inertia image [J]. spaceborne thermal emission and reflection Photogramm. Eng. Rem. Sens. 1977 43: 983-1 000. radiometer (ASTER) data [J]. Remote Sensing of [21] Short N M Stuart Jr L M. The heat capacity Environment 2003 84(3): 350-366. mapping mission(hcmm)anthology(nasa SP-565) [30] Rowan L C Mars J C Simpson C J. Lithologic [R]. Washington Office 1982. DC: US Government Printing mapping of the Mordor NT australia ultramafic complex by using the advanced spaceborne thermal [22] Nasipuria P Mitra D S Majumdar T J. Generation emission and reflection radiometer (ASTER) [J]. of thermal inertia image over a part of Gujarat: A new tool for geological mapping [J]. International Remote Sensing of Environment 2005 99 (1-2): 105-126. Journal of Applied Earth Observation and [31]. Geoinformation 2005 7(2): 129-139. [23] Nasipuria P Majumdar T J Mitra D S. Study of high resolution thermal inertia over western India oil fields using ASTER data[j]. Acta Astronautica [32] [J]. 1994 39(18): 1 693-1 695.. ASTER [J]. ( 31 Continued from page 31) Claudio Persello. Advanced techniques for the 70% SVM classification of very high resolution and hyperspectral remote sensing images[d]. Trento: C++ Open CV DISI University of Trento 2010. [4] Marconcini M Camps Valls G Bruzzone L. A composite semisupervised SVM for classification of hyperspectral images[j]. IEEE Geoscience and SVM Remote Sensing Letters 2009 6(2): 234-238. [5] [ ] Gualtieri J A Chettri S. Support vector machines for classification of hyperspectral data [C]//Proc. of IEEE-IGARSS 2000. Hawaii: IEEE-IGARSS [2] 2006 58(5): 270-278. 2000: 813-815. Skaloud J Lichti D. Rigorous approach to bore sight. self calibration in airborne laser scanning [J]. [J]. D : 2007 37 ISPRS Journal of Photogrammetry and Remote (8): 1 081-1 087. Sensing 2006 61(1): 47-59. [3] [1]. : [M]. : 2006. [6] 2007 11(4): 601. [24]. [J]. [33]. [M]. : 1986(2): 19-24. 1984: 286-357.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!