Reference Table: Projection NMR Nomenclature (August 2006)

Σχετικά έγγραφα
Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Electronic Supplementary Information

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Supplementary Material for Synthesis of Compact Multidentate Ligands to Prepare Stable Hydrophilic Quantum Dot Fluorophores

Supporting Information. Partial thioamide scan on the lipopeptaibiotic trichogin GA IV. Effects on

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

SUPPORTING INFORMATION

SUPPORTING INFORMATION

Available online at shd.org.rs/jscs/

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Synthesis, structural studies and stability of the model, cysteine containing DNA-protein cross-links

Supporting Information

Supporting Information for. A New Diketopiperazine, Cyclo-(4-S-Hydroxy-R-Proline-R-Isoleucine), from an Australian Specimen of the Sponge

Reminders: linear functions

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

Supporting Information

N 2. Temperature Programmed Surface Reaction of N 2Nitrosonornicotine on Zeolites and Molecular Sieves

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Supporting Information

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

ρ. Κ. Γιαννακοπούλου

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

CORDIC Background (4A)

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

Supporting Information

Sampling Basics (1B) Young Won Lim 9/21/13

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Aluminium triflate as a Lewis acid catalyst for the ring opening of epoxides in alcohols

IV. ANHANG 179. Anhang 178

Supporting information for

) ; GSP ) ;PXD g, 100 ml

Supplementary Data. Department of Biochemistry and Molecular Biology, Department of Chemistry, and Michael Smith

Supporting information

Supporting Information

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Electronic Supporting Information

CORDIC Background (2A)

Supporting Information for. Update of spectroscopic data for 4-hydroxyldictyolactone and dictyol E isolated from a Halimeda stuposa - Dictyota

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Solid-State NMR Studies of Structures and Molecular Motions for the Spidroin-Like Polymers

Discovery of multi-target receptor tyrosine kinase inhibitors as novel anti-angiogenesis agents

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Eremophila spp. by Combined use of Dual High-Resolution PTP1B and α- Glucosidase Inhibition Profiling and HPLC-HRMS-SPE-NMR

! " #! $ %&! '( #)!' * +#, " -! %&! "!! ! " #$ % # " &' &'... ()* ( +, # ' -. + &', - + &' / # ' -. + &' (, % # , 2**.

[ Co( aipamp apamp) ( amp) Cl] [ ZnCl 4 ]

Studies on Synthesis and Biological Activities of 2( 1 H21,2,42 Triazol212yl)2 2Arylthioethyl Substituted Phenyl Ketones

Supporting Information

Table of Contents 1 Supplementary Data MCD

HONDA. Έτος κατασκευής

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Supplementary Materials: Development of Amyloseand β-cyclodextrin-based Chiral Fluorescent Sensors Bearing Terthienyl Pendants

Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid

Supporting Information

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Supporting Information. Enhanced energy storage density and high efficiency of lead-free

Supporting Information

Supplementary Material

Bishwajit Saikia*, Preeti Rekha Boruah, Abdul Aziz Ali and Diganta Sarma. Contents

SUPPORTING INFORMATION. Polystyrene-immobilized DABCO as a highly efficient and recyclable organocatalyst for Knoevenagel condensation

MathCity.org Merging man and maths

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Electronic Supporting Information. 3-Aminothiophenecarboxylic acid (3-Atc)-induced folding in peptides

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Consideration on the Development Strategy of Bioinorganic Chemistry in China

Butadiene as a Ligand in Open Sandwich Compounds

Electronic Supplementary Information

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Tunable Ligand Emission of Napthylsalophen Triple-Decker Dinuclear Lanthanide (III) Sandwich Complexes

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Supplementary materials. Mode Analysis. Matthias M. N. Wolf, Christian Schumann, Ruth Groß, Tatiana Domratcheva 1 and Rolf. Diller

Changes and Issues of Consolidation Techniques of Peaty Arable Land in Hokkaido

Πρωτοπαθής και δευτεροπαθής αντοχή του μυκοβακτηριδίου

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Supporting Information To. Microhydration of caesium compounds: Journal of Molecular Modeling

New Cytotoxic Constituents from the Red Sea Soft Coral Nephthea sp.

Electronic Supplementary Information

Supporting Information

phase: synthesis of biaryls, terphenyls and polyaryls

Fast healing of polyurethane thermosets using. reversible triazolinedione chemistry and shapememory

Supporting Information

Available online at

FENXI HUAXUE Chinese Journal of Analytical Chemistry. Savitzky-Golay. n = SG SG. Savitzky-Golay mmol /L 5700.

Syntheses and Properties of New Photocurable Silicones

C C AIBN. Scheme Pd /Ag. α- C H CHINESE JOURNAL OF APPLIED CHEMISTRY Aug b. CuI /DTBP N- O664

STUDY ON 3D FRACTAL DISTRIBUTION LAW OF THE SURFACE NUMBER IN ROCK MASS

Synthesis Characterization and Application of Phosphorus-Containing Derivatives of Chitosan

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

Supporting Information

th International Conference on Machine Learning and Applications. E d. h. U h h b w k. b b f d h b f. h w k by v y

Transcript:

Reference Table: Projection NMR Nomenclature (August 2006) Research Group Marion and Kozminski and Brutscher and Kupce and Freeman Projection NMR experiments (with Tilt angles) Equivalent GFT NMR experiment(s) (with corresponding scaling factors) 1. 3D 13 C/ 15 N filtered NOESY 1 (4,3)D [HC ali ]-NOESY-[NH] 2 1. 2D RD-HNCA 3 2. 2D RD-HN(CO)CA 3 3. 2D RD-HACANH 3 4. 2D DQ-HN{CACB} 4 5. 2D DQ-HN(CO){CACB} 4 6. 2D HNCO 5 7. 2D HNCA 5 8. 2D HN(CO)CA 5 9. 2D H(N)COCA 5 1. 2D DQ/ZQ HNCA 7 2. 2D DQ/ZQ HN(CO)CA 7 3. 2D DQ/ZQ HNCACB 7 4. 2D DQ/ZQ HN(COCA)CB 7 5. 2D DQ/ZQ HN(CA)HA 7 6. 2D DQ/ZQ HN(COCA)HA 7 1. 3D PR-HNCO 9 α=30 0 (3,2)D HNNCA 6 (4,2)D HACANH (4,2)D HNNC αβ C α (4,2)D HNN(CO)C αβ C α (3,2)D HNNCO 6 (3,2)D HNNCA 6 (3,2)D HN(N)COCA (3,2)D HNNCA 6 (3,2)D HNNC αβ C α 8 (3,2)D HNN(COCA)CB 6 (3,2)D HNN(CA)HA (3,2)D HNN(COCA)HA 1. (3,2)D HNNCO 6 Scaling factors (κ): N=0.5; CO=0.87 α=0 0, 90 0 2. 3D PR-HNCA 10 α=±30 0 α=0 0, 90 0 3. 3D PR-HN(CO)CA 10 α=±60 0 α=0 0, 90 0 4. 4D PR-HNCOCA 11 α=±45 0 ; β= ±45 0 α=0 0 ; β=0 0 α=90 0 ; β=0 0 α=0 0 ; β=90 0 5. The TILT experiment: 3D 15 N- 2D [ 13 C, 1 H] Projection of 3D HNNCO, 2D [ 15 N, 1 H] HSQC 2. (3,2)D HNNCA 6 Scaling factors (κ): N=0.5; CA=0.87 2D [ 13 C, 1 H] Projection of 3D HNNCA, 2D [ 15 N, 1 H] HSQC 3. Scaling factors (κ): N=0.87; CA=0.5 2D [ 13 C, 1 H] Projection of 3D HNN(CO)CA, 4. (4,2)D HNNCOCA N=0.71; CO=0.5; CA=0.5 2D [ 13 C, 1 H] Projection of 4D HNNCOCA 2D [ 13 C α, 1 H] Projection of 4D HNNCOCA 5. (3,2)D [H]-NOESY-[NH] /(3,2)D [H]-

Zhou and coworkers NOESY-HSQC and 15 N-TOCSY-HSQC 12 Tilt angle: α=0 0, α=±30 0 6. Hyper-dimensional NMR using PR-NMR experiments described in 1-4 above 13 1. 5-D HACACONH 14 N=±60, CO=±60, CA=±60, HA=±60 N=0 0, CO=90 0 CA=90 0, HA=90 0 N=90 0, CO=0 0 CA=90 0, HA=90 0 N=90 0, CO=90 0 CA=0 0, HA=90 0 N=90 0, CO=90 0 CA=90 0, HA=0 0 2. (4,2)D PR-HNCACB 16 N=86.0 0, CA=15.5 0, CB=75.0 0 N=73.9 0, CA=33.7 0, CB=61.3 0 N=54.7 0, CA=54.7 0, CB=54.7 0 N=33.7 0, CA=73.9 0, CB=61.3 0 N=15.5 0, CA=86.0 0, CB=75.0 0 N=0 0, CA=90 0, CB=90 0 N=90 0, CA=0 0, CB=90 0 N=90 0, CA=90 0, CB=0 0 3. (4,2)D PR-HN(CO)CACB 16 Tilt angles same as in (2) 4. (4,2)D PR-Intra-HNCACB 16 Tilt angles same as in (2) 5. (4,2)D PR-HNCACO 16 CB shift evolution replaced by CO 6. (4,2)D PR-HNCOCA 16 CA shift evolution replaced by CO and 7. (4,2)D PR-HNCO i-1 CA i 16 CA shift evolution replaced by CO and TOCSY-[NH] 2 H=1.0, N=0.0 H=0.87, N=0.5 6. A set of (3,2)D and (4,2)D GFT NMR experiments described in 1-4 above 1. (5,2)D HACACONHN 15 Scaling factor (κ): N=0.5, CO=0.5, CA=0.5, HA=0.5 2D [ 13 C, 1 H] Projection of 4D/5D HACACONHN 2D [ 13 C α, 1 H] Projection of 4D/5D HACACONHN 2D [ 1 H α, 1 H] Projection of 4D/5D HACACONHN 2. (4,2)D HNNC αβ C α N=0.07, C α =0.96, C β =0.26 N=0.28, C α =0.83, C β =0.48 N=0.58,C α =0.58, C β =0.58 N=0.83, C α =0.28, C β =0.48 N=0.96, C α =0.07, C β =0.26 2D [ 13 C α, 1 H] Projection of 3D/4D HNNCACB 2D [ 13 C β, 1 H] Projection of 4D HNNCACB 3. (4,2)D HNN(CO)C αβ C α Scaling Factors same as in (2) 4. (4,2)D Intra-HNNC αβ C α Scaling Factors same as in (2) 5. (4,2)D Intra-HNNCACO C β shift evolution replaced by CO 6. (4,2)D HNNCOCA C α replaced by CO and C β replaced by CA 7. (4,2)D HNN<CO,CA> C α shift evolution replaced by CO and C β shift evolution replaced by CA

8. (4,2)D PR-HACANH 16 CA shift evolution replaced by HA and 9. (4,2)D PR-HACA(CO)NH 16 CA shift evolution replaced by HA and 10. (4,2)D PR CH 3 -N NOESY 17 100 Projection angles distributed evenly in angle space: N=α i ; H= β i ; C=γ i ; i=1..100 11. (4,3)D HC(CO)NH-TOCSY and (4,3)D HC(C)NH-TOCSY 18 α=0 0, ±18 0, ±36 0, ±54 0, ±72 0, 90 0 Wüthrich and 1. 4D APSY-HNCOCA 19 α=±30 0 ; β=0 0 α=±60 0 ; β=0 0 α=0 0 ; β=±30 0 α=0 0 ; β=±60 0 α=90 0 ; β=±30 0 α=90 0 ; β=±60 0 α=±30 0 ; β=±30 0 α=±60 0 ; β=±30 0 α=±45 0 ; β=±60 0 α=0 0 ; β=0 0 α=90 0 ; β=0 0 α=0 0 ; β=90 0 2. 5D APSY-HACACONH 19 α=±30 0 ; β=0 0 ; γ=0 0 α=±60 0 ; β=0 0 ; γ=0 0 8. (4,2)D HACANHN C α shift evolution replaced by HA and C β shift evolution replaced by CA 9. (4,2)D HACA(CO)NH 15 CA shift evolution replaced by HA and 10. (4,2)D [HC ali ]-NOESY-[NH] 12 N = cos(α i ), H = cos(β i ), C ali = cos(γ i ); i=1..100 11. (4,3)D HC(CO)NH-TOCSY and (4,3)D HC(C)NH-TOCSY 1 H=1.0, 0.95, 0.81, 0.58, 0.31, 0.0 13 C=0.0, 0.31, 0.58, 0.81, 0.95, 1.0 1. Set of (3,2)D and (4,2)D GFT NMR experiments: (3,2)D HN(N)COCA CO=0.5; CA=0.87; CO=0.87; CA=0.5 N=0.5; CA=0.87 N=0.87; CA=0.5 (3,2)D HNNCO 6 N=0.5; CO=0.87 N=0.87; CO=0.5 (4,2)D HNNCOCA N=0.5; CO=0.44; CA=0.75 N=0.5; CO=0.75; CA=0.44 N=0.87; CO=0.35; CA=0.35 2D [ 13 C α, 1 H] Projection of 4D HNNCOCA 2D [ 13 C, 1 H] Projection of 4D HNNCOCA 2. A set of (3,2)D GFT NMR experiments (3,2)D (HACA)CONHN N= 0.87; CO=0.5 N= 0.5; CO=0.87

α=0 0 ; β=±30 0 ; γ=0 0 α=0 0 ; β=±60 0 ; γ=0 0 α= 0 0 ; β=0 0 ; γ=±30 0 α= 0 0 ; β=0 0 ; γ= ±60 0 α=90 0 ; β=±30 0 ; γ=0 0 α=90 0 ; β=±60 0 ; γ=0 0 α=90 0 ; β=0 0 ; γ=±30 0 α=90 0 ; β=0 0 ; γ=±60 0 α=0 0 ; β=90 0 ; γ=±30 0 α=0 0 ; β=90 0 ; γ=±60 0 α=0 0 ; β=0 0 ; γ=0 0 α=90 0 ; β=0 0 ; γ=0 0 α=0 0 ; β=90 0 ; γ=0 0 α=0 0 ; β=0 0 ; γ=90 0 3. 6D APSY-HACACONH 20 α=0 0 ; β=0 0 ; γ=90 0 ; δ=±30 0 α=0 0 ; β=90 0 ; γ=0 0 ; δ=±60 0 α=90 0 ; β=0 0 ; γ=0 0 ; δ=±30 0 α=90 0 ; β=0 0 ; γ=0 0 ; δ=±30 0 α=0 0 ; β=90 0 ; γ=±30 0 ; δ=0 0 α=90 0 ; β=0 0 ; γ=±60 0 ; δ=0 0 α=0 0 ; β=0 0 ; γ=±30 0 ; δ=0 0 α=90 0 ; β=±60 0 ; γ=0 0 ; δ=0 0 α=0 0 ; β=±30 0 ; γ=0 0 ; δ=0 0 (3,2)D (HA)CA(CO)NHN N= 0.87; CA=0.5 N= 0.5; CA=0.87 (3,2)D HA(CACO)NHN N= 0.87; HA=0.5 N= 0.5; HA=0.87 (3,2)D (HA)CACO(N)HN CA= 0.5; CO=0.87 CA= 0.87; CO=0.5 (3,2)D HA(CA)CO(N)HN CO= 0.87; HA=0.5 CO= 0.5; HA=0.87 (3,2)D HACA(CON)HN CA= 0.87; HA=0.5 CA= 0.5; HA=0.87 2D [ 13 C, 1 H] Projection of 4D HNNCOCA 2D [ 13 C α, 1 H] Projection of 4D HNNCOCA 2D [ 1 H α, 1 H] Projection of 4D HNNCOCA 3. Set of (3,2)D GFT NMR experiments: (3,2)D HNN(COCAN)HN N= 0.87; HN=0.5 (3,2)D HN(N)CO(CAN)HN CO= 0.5; HN=0.87 (3,2)D HN(NCO)CA(N)HN CA= 0.87; HN=0.5 (3,2)D HN(NCOCA)NHN N= 0.5; HN=0.87 (3,2)D (HN)NCO(CAN)HN CO= 0.87; N=0.5 (3,2)D (HN)N(CO)CA(N)HN CA= 0.5; N=0.87 (3,2)D (HN)N(COCA)NHN CA= 0.87; N=0.5 (3,2)D (HNN)COCA(N)HN CA= 0.5; CO=0.87 (3,2)D (HNN)CO(CA)NHN CA= 0.87; CO=0.5 α=±30 0 ; β=0 0 ; γ=0 0 ; δ=0 0 (3,2)D (HNNCO)CANHN

N= 0.87; CA=0.5 Wagner and α=0 0 ; β=0 0 ; γ=0 0 ; δ=0 0 α=90 0 ; β=0 0 ; γ=0 0 ; δ=0 0 α=0 0 ; β=90 0 ; γ=0 0 ; δ=0 0 α=0 0 ; β=0 0 ; γ=90 0 ; δ=0 0 α=0 0 ; β=0 0 ; γ=0 0 ; δ=90 0 3D RD-HCcoNH-TOCSY 21 2D [ 13 C α, 1 H] Projection of 3D HNNCA 2D [ 13 C, 1 H] Projection of 3D HNN(CA)CO 2D [ 15 N, 1 H] Projection of 3D HNNCO 2D [ 1 H, 1 H] Projection of 4D HNNCOCA (4,3)D HC(CO)NHN-TOCSY Markley and 1. 3D HNCO 22 α=50 0, 35 0, 10 0, 70 0, 20 0, 25 0, 45 0 2. 3D HNCACB 22 α=20 0, 10 0, 30 0, 40 0, 50 0, 60 0, 70 0 3. 3D CBCA(CO)NHN 22 α=50 0, 55 0, 40 0, 70 0, 30 0, 65 0, 20 0 1. (3,2)D HNNCO 6 N=0.76, 0.57, 0.17, 0.94, 0.34, 0.42, 0.71 CO =0.64, 0.82, 0.98, 0.34, 0.94, 0.90, 0.71 2. (3,2)D HNNCACB 6 N=0.34, 0.17, 0.50, 0.64, 0.76, 0.87, 0.94 CA/CB=0.94, 0.98, 0.87, 0.76, 0.64, 0.50, 0.34 3. (3,2)D CBCA(CO)NHN 6 N=0.76, 0.82, 0.65, 0.94, 0.87, 0.90, 0.34 CA/CB=0.64, 0.57, 0.76, 0.34, 0.50, 0.42, 0.94

References 1. Brutscher B, Cordier F, Simorre JP, Caffrey M, Marion D. J. Biomol. NMR 1995; 5: 202-206. 2. Shen Y, Atreya HS, Liu G, Szyperski T. J. Am. Chem. Soc. 2005; 127: 9085-9099. 3. Kozminski W, Zhukov I. J. Biomol. NMR 2003; 26: 157-166. 4. Kozminski W, Zhukov I. J. Magn. Reson. 2004; 171: 186-191. 5. Kozminski W, Zhukov I. J. Magn. Reson. 2004; 171: 338-344. 6. Xia YL, Zhu G, Veeraraghavan S, Gao XL. J. Biomol. NMR 2004; 29: 467-476. 7. Bersch B, Rossy E, Coves J, Brutscher B. J. Biomol. NMR 2003; 27: 57-67. 8. Atreya HS, Szyperski T. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 9642-9647. 9. Kupce E, Freeman R. J. Biomol. NMR 2003; 27: 383-387. 10. Kupce E, Freeman R. J. Am. Chem. Soc. 2003; 125: 13958-13959. 11. Kupce E, Freeman R. J. Am. Chem. Soc. 2004; 126: 6429-6440. 12. Kupce E, Freeman R. J. Magn. Reson. 2005; 172: 329-332. 13. Kupce E, Freeman R. J. Am. Chem. Soc. 2006; 128: 6420-6021. 14. Coggins BE, Venters RA, Zhou P. J. Am. Chem. Soc. 2004; 126: 1000-1001. 15. Kim S, Szyperski T. J. Am. Chem. Soc. 2003; 125: 1385-1393. 16. Venters RA, Coggins BE, Kojetin D, Cavanagh J, Zhou P. J. Am. Chem. Soc. 2005; 127: 8785-8795. 17. Coggins BE, Venters RA, Zhou P. J. Am. Chem. Soc. 2005; 127: 11562-11563. 18. Jiang L, Coggins BE, Zhou P. J. Magn. Reson. 2005; 175: 170-176. 19. Hiller S, Fiorito F, Wüthrich K, Wider G. Proc. Natl. Acad. Sci. U.S.A. 2005; 102: 10876-10881. 20. Fiorito, F, Hiller, S, Wider, W, Wüthrich, K. J. Biomol. NMR 2006; 35: 27-37. 21. Sun ZYJ, Hyberts SG, Rovnyak D, Park S, Stern AS, Hoch JC, Wagner G. J. Biomol. NMR 2005; 32: 55-60. 22. Eghbalnia HR, Bahrami A, Tonelli M, Hallenga K, Markley JL. J. Am. Chem. Soc. 2005; 127: 12528-12536. 23. Ding, K, Ithychanda S, Qin, J. J. Magn. Reson.2006; 180: 203-209.

24. Liu GH, Shen Y, Atreya HS, Parish D, Shao Y, Sukumaran DK, Xiao R, Yee A, Lemak A, Bhattacharya A, Acton TA, Arrowsmith CH, Montelione GT, Szyperski T. Proc. Natl. Acad. Sci. U.S.A. 2005; 102: 10487-10492.