[2], [3], [8], [20] [4] [6], [18] [1], [11], [19] [13] [10] N SVD PCA N SVD Vasilescu Vasilescu N SVD [14] [17] Y Li [7] Y Li N SVD [12] 2,,,,, 596

Σχετικά έγγραφα
Gaze Estimation from Low Resolution Images Insensitive to Segmentation Error

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

Detection and Recognition of Traffic Signal Using Machine Learning

ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ

Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker

Buried Markov Model Pairwise

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

Mapping Textures on 3D Geometric Model Using Reflectance Image

ER-Tree (Extended R*-Tree)

Identifying Scenes with the Same Person in Video Content on the Basis of Scene Continuity and Face Similarity Measurement

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

Current Status and Future Prospects of Camera-Based Character Recognition and Document Image Analysis

Kernel Methods and their Application for Image Understanding

High order interpolation function for surface contact problem

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

Anomaly Detection with Neighborhood Preservation Principle

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Development of a Seismic Data Analysis System for a Short-term Training for Researchers from Developing Countries

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Speeding up the Detection of Scale-Space Extrema in SIFT Based on the Complex First Order System

A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3

[1] DNA ATM [2] c 2013 Information Processing Society of Japan. Gait motion descriptors. Osaka University 2. Drexel University a)

Free-viewpoint Video Rendering in Large Outdoor Space such as Soccer Stadium based on Object Extraction and Tracking Technology

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

SVM. Research on ERPs feature extraction and classification

ΤΕΙ ΘΕΣΣΑΛΙΑΣ. Αναγνώριση προσώπου με επιλογή των κατάλληλων κυρίων συνιστωσών. ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε ΚΑΒΒΑΔΙΑ ΑΛΕΞΑΝΔΡΟΥ.

Control Theory & Applications PID (, )

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)


Supporting Information

Development of a Tiltmeter with a XY Magnetic Detector (Part +)

A Method for Detection of Occlusal Position Using a Robust Estimator

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Comparison of Discriminant Analysis in Ear Recognition

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

Technical Research Report, Earthquake Research Institute, the University of Tokyo, No. +-, pp. 0 +3,,**1. No ,**1

A research on the influence of dummy activity on float in an AOA network and its amendments

Robust Feature Extraction Method Based on Run-Length Compensation for Degraded Character Recognition

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Development of a basic motion analysis system using a sensor KINECT

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

Area Location and Recognition of Video Text Based on Depth Learning Method

Bayesian Discriminant Feature Selection

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Conjoint. The Problems of Price Attribute by Conjoint Analysis. Akihiko SHIMAZAKI * Nobuyuki OTAKE

Quick algorithm f or computing core attribute

Spherical Coordinates

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,

ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ

Numerical Analysis FMN011

Approximation of distance between locations on earth given by latitude and longitude

Η ΠΡΟΣΩΠΙΚΗ ΟΡΙΟΘΕΤΗΣΗ ΤΟΥ ΧΩΡΟΥ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ CHAT ROOMS

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Αναγνώριση Προτύπων. Μη παραμετρικές τεχνικές Αριθμητικά. (Non Parametric Techniques)

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)

Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»

Adaptive grouping difference variation wolf pack algorithm

Gait Identification Using a View Transformation Model in the Frequency Domain

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

MachineDancing: MikuMikuDance (MMD) *1 MMD MMD. Kinect. MachineDancing. 3 MachineDancing. 1 MachineDancing :

An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System

Stabilization of stock price prediction by cross entropy optimization

A Study on Segmentation of Artificial Grayscale Image for Vector Conversion

Motion analysis and simulation of a stratospheric airship

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Gemini, FastMap, Applications. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών

Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks

Research on model of early2warning of enterprise crisis based on entropy

Νευρωνικά ίκτυα και Εξελικτικός


ΤΕΧΝΙΚΕΣ ΔΙΑΓΝΩΣΗΣ ΤΗΣ ΝΟΣΟΥ ΑΛΤΣΧΑΙΜΕΡ ΜΕ FMRI

Adaptive compensation control for a piezoelectric actuator exhibiting rate-dependent hysteresis Y. Ueda, F. Fujii (Yamaguchi Univ.

Bayesian modeling of inseparable space-time variation in disease risk

Διπλωματική Εργασία. Του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

Presentation Structure


Error ana lysis of P2wave non2hyperbolic m oveout veloc ity in layered media

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Applying Markov Decision Processes to Role-playing Game

Improvement of wave height forecast in deep and intermediate waters with the use of stochastic methods

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Psychological Evaluation on Interactions between People and Robot

Δυσκολίες που συναντούν οι μαθητές της Στ Δημοτικού στην κατανόηση της λειτουργίας του Συγκεντρωτικού Φακού

ECE 468: Digital Image Processing. Lecture 8

Reminders: linear functions

*,* + -+ on Bedrock Bath. Hideyuki O, Shoichi O, Takao O, Kumiko Y, Yoshinao K and Tsuneaki G

Αρχιτεκτονική Σχεδίαση Ασαφούς Ελεγκτή σε VHDL και Υλοποίηση σε FPGA ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697

Transcript:

画像の認識 理解シンポジウム (MIRU2006) 2006 年 7 月 y y y y 153-8505 4-6-1 E-mail: yfonoy,takahiro,ysatog@iisu-tokyoacjp N SVD Gaze Estimation from Low Resolution Images Consideration of Appearance Variations due to Identity by Using Kernel-based Multilinear Models Yasuhiro ONO y, Takahiro OKABE y, and Yoichi SATO y y Institute ofindustrial Science, The University oftokyo 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 JAPAN E-mail: yfonoy,takahiro,ysatog@iisu-tokyoacjp Abstract We propose an appearance-based method for estimating gaze directions from low resolution images Positioning errors of eye regions and appearance variations due to changes in identity may seriously degrade the accuracy of gaze estimation To improve the accuracy, we consider a nonlinear relationship between eye images and the feature vectors for each mode, for example, gaze direction and identity Thus, we introduce the use of kernel-based multilinear models We prepare a set of training images with various gaze directions and positioning errors from a few people The training images are mapped into a high dimensional space via a nonlinear mapping In the space, feature vectors for gaze direction are extracted We describe our method and report experimental results demonstrating the merit of our method Key words gaze estimation,low resolution,appearance-based method,identity,nonlinear N-mode SVD 1 595

[2], [3], [8], [20] [4] [6], [18] [1], [11], [19] [13] [10] N SVD PCA N SVD Vasilescu Vasilescu N SVD [14] [17] Y Li [7] Y Li N SVD [12] 2,,,,, 596

2 1 N SVD N SVD [14] N SVD N,, 4 SVD i(1< = i< = I) j(1< = j< = J) k(1< = k< = K) l(1< = l< = L) 4 Z2< I J K L (Z) ijkl N SVD Z Z = ^D 1 ^UG 2 ^UPOS 3 ^UP ^D ^UG, ^UPOS, ^UP 2 2 N SVD N SVD Y Li N SVD [7] N SVD Z F Φ Φ(Z):= W2< I J K M (M > L) W W = D 1 UG 2 UPOS 3 UP F UG, UPOS, UP D2< I J K M D = W 1 U T G 2 U T POS 3 U T P (1) 4 W 2 6 4 W (G) = Φ(z 111 ) T ::: Φ(z 11K ) T ::: Φ(z 1J1 ) T ::: Φ(z 1JK ) T Φ(z 211 ) T ::: Φ(z 21K ) T ::: Φ(z 2J1 ) T ::: Φ(z 2JK ) T Φ(z I11 ) T ::: Φ(z I1K ) T ::: Φ(z IJ1 ) T ::: Φ(z IJK ) T z ijk 2< L i j k 3 7 5 Φ(z ijk )2< M Φ z ijk F BG2< I I BG : = (W (G) )(W (G) ) T T T = (UG± GVG )(UG± GVG ) T = UG± 2 G U G T 2< I I (2) Φ BG JX (B G)m;n = KX Φ(z mjk ) Φ(z njk )= JX KX k(z mjk ; z njk ) j=1 k=1 j=1 k=1 (2) (3) UG N SVD UG i(1< = i< = I) u i G UG T =[u 1 G; u 2 G; :::; u I G] UPOS UP 2 3 (1) (2) (1) PC (2) (2) (3) UG k(z mjk ; z npq )=exp kz mjk z npq k =c 2 2< 2 4 (1), (2), (3), (1), (2) [12] Z test 2< 1 1 1 L F Φ(Z test )2< 1 1 1 M N SVD Φ(Z test ) P (G) m = I P J P K i=1 j=1 k=1 D ijkm(u G)i(uPOS)j(uP )k Φ(Z test ) (G) 2< 1 M 4 Φ(Z test )2< 1 1 1 M A (n) 2< In (I 1I 2 :::I n1i n+1 :::I N ) N (3) 597

A2< I 1 I 2 ::: I N n ug2< I, upos2< J, up 2< K F f(ug; upos; up ) f(ug; upos; up ):= ψ Φ(Z test ) (G) m MX m=1 IX (ug; upos; up )= JX KX i=1 j=1 k=1 arg minu G 2< I ;u POS 2< J ;u P 2< K f(ug; upos; up ) (ug; upos; up ) (4) ug, upos, up (4) f 1 @f=@(u G)i =0 (1 < = i< = I) ; (5) @f=@(u POS)j =0 (1 < = j< = J) ; (6) @f=@(u P )k =0 (1< = k< = K) : (7) UG, UPOS, UP g, o, p (TG) (G) Φ(z test )2< I Φ (T G)(G) (T G)(G) = P T i;j J P K P J P K onpmo n=1 m=1 l=1 k=1 lp k k(z inm ; z jlk ), (TG)(G) Φ(z test ) i = P J j=1 P K k=1 ojp kk(z ijk ; z test )! 2 Dijkm(u G)i(uPOS)j(uP )k (4) (3), i (1)= arg min i2f1;2;:::;ig kug u i Gk 2 u i(1) G i(1) 2 3 u i(2) G, ui(3) G, P 3 ffl = kug p=1 wpui(p) P G k2 3 p=1 wp =1 0 < = w p < = 1(p =1; 2; 3) P 3 g = wpg(p) p=1 g g(p)(1< = p< = 3) u i(p) G 3 2 g := UGuG; o := UPOSuPOS; p := UP up (8) 4 T G2< I 1 1 M T G := W 2 o T 3 p T (9) z test 2< L Φ(Z test ) (G) Φ(Z test ) (G) = Φ z test T 2< 1 M (10) (1), (4), (8), (9), (10) (5) ug ug = U T G T + test (TG) (G) Φ(z ) = UG T T 1 (TG) (G) (TG) (G) (TG)(G) Φ(z test ) (11) (TG) (G) 4 T G M + + T I I (11) (TG) (G) (TG) (G) 2< 3 1,, [9], 3 2 3 IEEE1394 (Point Grey Research Flea) 3 1, 10 5 10, 1280 1024 18 50cm, 598

1 LCD Fig 1 Alayout of targets displayed on the surface on an LCD monitor: circles for training and crosses for test 2 (a), (b),(c),(d) Fig 2 (a)candidates of eye corners (b),(c),(d)a schematic diagram of segmented eye images 3 2 (1) (2) (3) (1), (2) (1) 1 1, 20, 1 32 144 144 (2), (144 144 ), (144 144 ) 36 36, [9] ( 2 ) 1 ( 2 ), 2 (b),(c),(d) 12 4=48, 25,,,, 3 :(a), (b) Fig 3 Examples of training images for (a)different gaze points and (b)different segmentations, 20 20 25 20 25 = 500 32 32 25 = 800, 3 3(a),,, 3(b) 3 3 N SVD N SVD (1) 0 9 4( ) 4( ) 0 4 5 9 10 4( ) 4 (2) 5 10 5 5 4 599

4 ( ) ( ) 5 Fig 4 Gaze estimation error for each individual(left), gaze estimation error averaged by all individuals(right) Fig 5 Gaze estimation error for each segmentation, [1] Baluja, S and Pomerleau, D: Non-intrusive gaze tracking using artificial neural networks, CMU CS Technical Report, CMUCS94102 (1994) [2] Beymer, D and Flickner, M: Eye GazeTracking Using an Active Stereo Head, In Proc IEEE CVPR 2003, pp II 451458 (2003) [3] Hutchinson, T, White, K, JR, Martin, W, Reichert, K and Frey, L: Human-Computer Interaction Using Eye-Gaze Input, IEEE Trans SMAC, Vol 19, No 6, pp 15271534 (1989) [4] Ishikawa, T, Baker, S, Matthews, I and Kanade, T: Passive Driver Gaze Tracking with Active Appearance Models, In Proc WCITS 2004 (2004) [5] ConDensation,, CVIM 20051503, pp 1724 (2005) [6] Matsumoto, Y and Zelinsky, A: An algorithm for real-time stereo vision implementation of head pose and gaze direction measurement, In Proc IEEE FG 2000, pp 499504 (2000) [7] Li, Y, Du, Y and Lin, X: Kernel-Based Multifactor Analysis for Image Synthesis and Recognition, In Proc ICCV2005, pp 114119 (2005) [8] Ohno, T and Mukawa, N: A Free-head, Simple Calibration, Gaze Tracking System That Enables Gaze-Based Interaction, In Proc ACM ETRA 2004, pp 115122 (2004) [9] Oka, K, Sato, Y, Nakanishi, Y and Koike, H: Head pose estimation system based on particle filtering with adaptive diffusion control, In Proc IAPR MVA 2005, pp 586589 (2005) [10],,, (MIRU 2005), pp 96103, (2005) [11] Stiefelhagen, R, Yang, J and Waibel, A: Tracking Eyes and Monitoring Eye Gaze, In Proc WPUI, pp 98100 (1997) [12] Shum, H, Ikeuchi, K, and Reddy, R: Principal Component Analysis with Missing Data and Its Application to Polyhedral Object Modeling, IEEE Trans PAMI, Vol 17, No 9, pp 854867 (1995) [13] Tan, K, Kriegman, D and Ahuja, N: Appearance-based Eye Gaze Estimation, In Proc IEEE WACV, pp 191195 (2002) [14] Vasilescu,MAOand Terzopoulos, D: Multilinear Analysis of Image Ensembles: TensorFaces, In Proc ECCV 2002, pp 447460 (2002) [15] Vasilescu, M A O and Terzopoulos, D: Multilinear Image Analysis for Facial Recognition, In Proc IAPR ICPR 2002, pp II2051120514 (2002) [16] Vasilescu, M A O: Human Motion Signatures: Analysis, Synthesis, Recognition, In Proc IAPR ICPR 2002, pp III3045630460 (2002) [17] Vasilescu, M A O and Terzopoulos, D: TensorTextures: Multilinear Image-Based Rendering, In Proc ACM SIG- GRAGH 2004, Vol 23, No 3, pp 336342 (2004) [18] Wang, J, Sung, E and Venkteswarlu, R: Eye gaze Estimation from a Single Image of One Eye, In Proc IEEE ICCV 2003, pp I136143 (2003) [19] Xu, L, Machin, D and Sheppard, P: A Novel Approach to Real-time Non-intrusive Gaze Finding, In British Machine Vision Conference, pp 428437 (1998) [20] Yoo, D and Chung, M: Non-intrusive Eye Gaze Estimation without Knowledge of Eye Pose, In Proc IEEE FG 2004, pp 785790 (2004) 600