Stationary Stochastic Processes Table of Formulas, 2017

Σχετικά έγγραφα
Stationary Stochastic Processes Table of Formulas, 2016

Probability and Random Processes (Part II)

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 2

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 4

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Introduction to the ML Estimation of ARMA processes

Chapter 5, 6 Multiple Random Variables ENCS Probability and Stochastic Processes

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 3

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Solution Series 9. i=1 x i and i=1 x i.

HMY 799 1: Αναγνώριση Συστημάτων

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 5

Linear System Response to Random Inputs. M. Sami Fadali Professor of Electrical Engineering University of Nevada

List MF20. List of Formulae and Statistical Tables. Cambridge Pre-U Mathematics (9794) and Further Mathematics (9795)

CT Correlation (2B) Young Won Lim 8/15/14

Solutions to Exercise Sheet 5

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 1

Fundamentals of Signals, Systems and Filtering

6.3 Forecasting ARMA processes

Biostatistics for Health Sciences Review Sheet

Introduction to Time Series Analysis. Lecture 16.

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

Homework 8 Model Solution Section

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Nachrichtentechnik I WS 2005/2006

5.4 The Poisson Distribution.

HMY 799 1: Αναγνώριση Συστημάτων

Durbin-Levinson recursive method

Asymptotic distribution of MLE

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Second Order Partial Differential Equations

Ψηφιακές Επικοινωνίες

FORMULAS FOR STATISTICS 1

Limit theorems under sublinear expectations and probabilities

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

SPECIAL FUNCTIONS and POLYNOMIALS

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Ανάλυση Επικοινωνιακών Σημάτων κατά Fourier

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

D Alembert s Solution to the Wave Equation

Fundamentals of Probability: A First Course. Anirban DasGupta

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Ανάλυση Επικοινωνιακών Σημάτων κατά Fourier

MOTORCAR INSURANCE I

Ηλεκτρονικοί Υπολογιστές IV


Lecture 7: Overdispersion in Poisson regression

Fourier Analysis of Waves

Math221: HW# 1 solutions

6. MAXIMUM LIKELIHOOD ESTIMATION

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Χρόνου (Ι)

Διάλεξη 6. Fourier Ανάλυση Σημάτων. (Επανάληψη Κεφ Κεφ. 10.3, ) Ανάλυση σημάτων. Τι πρέπει να προσέξουμε


Probability theory STATISTICAL METHODS FOR SAFETY ANALYSIS FMS065 TABLE OF FORMULÆ (2016) Basic probability theory. One-dimensional random variables

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Module 5. February 14, h 0min


Section 8.3 Trigonometric Equations

Anti-Final CS/SE 3341 SOLUTIONS

The circle theorem and related theorems for Gauss-type quadrature rules

ECE 468: Digital Image Processing. Lecture 8

HMY 799 1: Αναγνώριση Συστημάτων

4 4 2 = 3 2 = = 1 2

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

w o = R 1 p. (1) R = p =. = 1

4.6 Autoregressive Moving Average Model ARMA(1,1)

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics


Gaussian related distributions

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Using Long-Run Consumption-Return Correlations to Test Asset Pricing Models : Internet Appendix

Ανάλυση Θορύβου Σε Γραμμικά Κυκλώματα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Additional Results for the Pareto/NBD Model

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

T b. x 1 (t) x 2 (t) x 3 (t) ... x 100 (t) x(t, φ) = A cos (2πf 0 t + φ) (6.3)

Uniform Convergence of Fourier Series Michael Taylor

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Spectrum Representation (5A) Young Won Lim 11/3/16

ST5224: Advanced Statistical Theory II

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

MAJ. MONTELOPOIHSH II

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

Oscillatory Gap Damping

Ψηφιακή Επεξεργασία Φωνής

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

Stationary ARMA Processes

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Exercises to Statistics of Material Fatigue No. 5

A 1 A 2 A 3 B 1 B 2 B 3

Transcript:

Stationary Stochastic Processes, 07 Stationary Stochastic Processes Table of Formulas, 07 Basics of probability theory The following is valid for probabilities: P(Ω), where Ω is all possible outcomes 0 P(A), where A is some event P(A c ) P(A), where A c is the complement of A P(A B) P(A) + P(B), if the events A and B are mutually exclusive The addition law of probability: P(A B) P(A) + P(B) P(A B) The conditional probability: P(B A) P(A B) P(A) A and B are independent P(A B) P(A) P(B) Stochastic variables p X (k) k x Distribution functions: F X (x 0 ) P(X x 0 ) 0 x0 f X (x) dx k p X (k) k Expected value: E[X] m X x f X (x) dx (X discrete) (X continuous) (X discrete) (X continuous) (k m X ) p X (k) (X discrete) Variance: V[X] E[X ] m X k (x m X ) f X (x) dx (X continuous) Rules for expected value and variance (a and b constants): E[aX + b] ae[x] + b V[aX] a V[X] V[X + b] V[X] E[X + Y] E[X] + E[Y] V[X + Y] V[X] + V[Y] + C[X, Y]

Stationary Stochastic Processes, 07 Covariance: C[X, Y] E[(X m X )(Y m Y )] E[XY] m X m Y Correlation coefficient: ρ[x, Y] C[X, Y] V[X] V[Y] Taylor series expansions ("Gauss approximations"): E[g(X,..., X n )] g(e[x ],..., E[X n ]) V[g(X,..., X n )] c i V[X i ] + c i c j C[X i, X j ] i i<j where c i g (x,..., x n ) x i xk E[X k ], k The two-dimensional probability density function of a jointly Gaussian random variable, (X, Y), with E[X] E[Y] 0, V[X] V[Y] and C[X, Y] ρ is { } f X,Y (x, y) π ρ exp ( ρ ) (x ρxy + y ) Trigonometric relations cos(α + β) cos α cos β sin α sin β cos(α β) cos α cos β + sin α sin β sin(α + β) sin α cos β + cos α sin β sin(α β) sin α cos β cos α sin β Stationary stochastic processes Estimation of expected value: ˆm n n t X t V [ ˆm n ] n n V [ ˆm n ] n τ n+ τ (n τ )r X (τ) r X (τ) for large n

Stationary Stochastic Processes, 07 3 If ˆm n N(m, V[ ˆm n ]), the confidence interval for m is I m : { ˆm n λ α/ V[ ˆmn ], ˆm n + λ α/ V[ ˆmn ]} with confidence level α. For confidence level 0.95, α 0.05 and λ α/ λ 0.05.96. Estimation of covariance function: ˆr n (τ) n τ (X t m X )(X t+τ m X ) for τ 0 n t where m X is replaced by ˆm n if m X is unknown. The Poisson process and the Wiener process A simply increasing process {X(t), t 0} is a homogeneous Poisson process, if X(0) 0 and X(t) has stationary, independent increments. If the intensity is λ, E[X(t)] λt V[X(t)] λt r X (s, t) λ min(s, t) The interarrival times are independent and exponentially distributed with mean value /λ. A Gaussian process {X(t), t 0} is a Wiener process, if X(0) 0, and X(t) has independent increments, where X(t) X(t + h) N(0, σ h), E[X(t)] 0 V[X(t)] σ t r X (s, t) σ min(s, t) Spectral representations Relations between covariance function r X (τ) and spectral density R X (f): Continuous time Discrete time r X (τ) R X(f)e iπfτ df r X (τ) / / R X(f)e iπfτ df R X (f) r X(τ)e iπfτ dτ R X (f) τ r X(τ)e iπfτ

4 Stationary Stochastic Processes, 07 Folding (aliasing): Let {Z t, t 0, ±d, ±d,... } be the continuous time process Y(t) sampled with time interval d and sampling frequency f s /d: R Z (f) R Y (f + kf s ) for f s / < f f s / k Sum of harmonic components with random phase and amplitude: X(t) A 0 + A k cos(πf k t + φ k ) where φ k Rect(0, π), A k, k 0,..., n, are independent and E[A 0 ] 0. Covariance function: r X (τ) σ 0 + σ k cos πf k τ k where σ 0 E [A 0] and σ k E [A k ] /. Spectral density: R X (f) b k δ fk (f), k k n where b 0 σ 0 E [A 0], and b k σ k / E [A k ] /4. Linear filters - general theory Impulse response h(u): Y(t) h(u)x(t u) du u h(u)x(t u) (continuous time) (discrete time) Relation between covariance functions: h(u)h(v) r X(τ + u v) du dv r Y (τ) v h(u)h(v) r X(τ + u v) u (continuous time) (discrete time) Relation between spectral densities: R Y (f) H(f) R X (f) where H(f) is the frequency function corresponding to the impulse response h(n).

Stationary Stochastic Processes, 07 5 Differentiation: X (t) exists (in quadratic mean) if r X (t) exists. This is equivalent to (πf) R(f)df <. If X (t) exists, the following relations hold: r X (τ) r X(τ) R X (f) (πf) R X (f) V [X (t)] (πf) R X (f) df r X,X (τ) r X(τ) r X (j),x (k)(τ) ( )j r (j+k) X (τ) Integration: [ E ] g(s)x(s) ds g(s)e[x(s)] ds [ C g(s)x(s) ds, ] h(t)y(t) dt g(s)h(t) C[X(s), Y(t)] ds dt Cross-covariance and cross-spectrum: r X,Y (τ) C[X(t), Y(t + τ)] e iπfτ R X,Y (f) df R X,Y (f) H(f)R X (f) A X,Y (f)e iφ X,Y(f) where A X,Y (f) is the amplitude spectrum and Φ X,Y (f) the phase spectrum. The squared coherence spectrum is κ X,Y(f) A X,Y (f) R X (f)r Y (f) AR- MA- and ARMA-models White noise in discrete time: {e t, t 0, ±,...}, E[e t ] 0 and V[e t ] σ : R e (f) σ for / f / AR(p)-process: (a 0 ) X t + a X t + a X t +... + a p X t p e t

6 Stationary Stochastic Processes, 07 Yule-Walker equations for covariance function: r X (k) + a r X (k ) +... + a p r X (k p) { σ for k 0 0 for k,,... Spectral density: MA(q)-process: (b 0 ) R X (f) p k0 a ke iπfk σ Covariance function: X t e t + b e t + b e t +... + b q e t q r X (τ) { σ j kτ b jb k for τ q 0 for τ > q Spectral density: q R X (f) b k e iπfk σ k0 Matched filter and Wiener filter Matched filter: with white noise: with colored noise: s(t u) c h(u) c s(t u) SNR N 0 s(t u) du SNR c h(v)r N (u v) dv h(u)h(v)r N (u v) du dv Wiener filter: H(f) SNR R S (f) R S (f) + R N (f) RS (f) df RS (f)r N (f) R S (f)+r N (f) df

Stationary Stochastic Processes, 07 7 Spectral estimation Periodogram of the sequence {x(t), t 0,,,... n }, where X (f) n t0 x(t)e iπft. ] E [ˆRx (f) ˆR x (f) X (f) n τ / / k n (τ)r X (τ)e iπfτ K n (f u)r X (u)du where k n (τ) τ for n + τ n and K n n(f) n τ n+ k n(τ)e iπfτ. ] { R V [ˆRx (f) X (f) for 0 < f < / R X (f) for f 0, ±/ The distribution of the periodogram estimate is ˆR x (f) R X (f) χ () for 0 < f < / Modified periodogram ˆR w (f) n x(t)w(t)e iπft n t0 / X (ν)w(f ν)dν n Lag-windowing Averaging of spectrum ˆR lw (f) / τ / / ˆR av (f) K k Ln (τ)ˆr x (τ)e iπfτ K Ln (f ν)ˆr x (ν)dν K ˆR x,j (f) where K different spectrum estimates, ˆR x,j (f), j... K, are used. The distribution is ˆR av (f) R X (f) χ (K) for 0 < f < / K j

8 Stationary Stochastic Processes, 07 Fourier transforms g(τ) (α > 0) G(f) e iπfτ g(τ) dτ e α τ α α +(πf) α +τ π α e πα f τ e α τ (α (πf) ) (α +(πf) ) τ k e α τ k! {(α + iπf) k+ + (α iπf) k+ } (α +(πf) ) k+ e ατ π/α exp( (πf) 4α ) e α τ cos(πf 0 τ) e α τ sin(πf 0 τ) { α if τ 0 sin(πατ) πτ if τ 0 { α τ if τ α 0 if τ > α g(τ)h(τ) g(τ) h(τ) g(t)h(τ t)dt g (τ) α α α +(πf 0 + πf) α +(πf 0 +πf) πf 0 πf α +(πf 0 + πf 0+πf πf) α +(πf 0 +πf) { / if f α 0 if f > α { α ( ( if f 0 α (πf) cos πf )) α if f 0 G(f) H(f) G(ν)H(f ν)dν G(f)H(f) iπf G(f) g(ατ) α G( f α ) α g( τ α ) G(αf) g(τ τ 0 ) G(f)e iπfτ 0 g(τ)e iπf 0τ G(f f 0 ) Parseval s theorem: n x(t) t0 / / X(f) df, where X(f) n t0 x(t)e iπft.

Stationary Stochastic Processes, 07 9 Gaussian distribution table F(x) Φ(x) x 0.00 0.0 0.0 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.0 0.50000 0.50399 0.50798 0.597 0.5595 0.5994 0.539 0.5790 0.5388 0.53586 0. 0.53983 0.54380 0.54776 0.557 0.55567 0.5596 0.56356 0.56749 0.574 0.57535 0. 0.5796 0.5837 0.58706 0.59095 0.59483 0.5987 0.6057 0.6064 0.606 0.6409 0.3 0.679 0.67 0.655 0.6930 0.63307 0.63683 0.64058 0.6443 0.64803 0.6573 0.4 0.6554 0.6590 0.6676 0.66640 0.67003 0.67364 0.6774 0.6808 0.68439 0.68793 0.5 0.6946 0.69497 0.69847 0.7094 0.70540 0.70884 0.76 0.7566 0.7904 0.740 0.6 0.7575 0.7907 0.7337 0.73565 0.7389 0.745 0.74537 0.74857 0.7575 0.75490 0.7 0.75804 0.765 0.7644 0.76730 0.77035 0.77337 0.77637 0.77935 0.7830 0.7854 0.8 0.7884 0.7903 0.79389 0.79673 0.79955 0.8034 0.805 0.80785 0.8057 0.837 0.9 0.8594 0.8859 0.8 0.838 0.8639 0.8894 0.8347 0.83398 0.83646 0.8389.0 0.8434 0.84375 0.8464 0.84849 0.85083 0.8534 0.85543 0.85769 0.85993 0.864. 0.86433 0.86650 0.86864 0.87076 0.8786 0.87493 0.87698 0.87900 0.8800 0.8898. 0.88493 0.88686 0.88877 0.89065 0.895 0.89435 0.8967 0.89796 0.89973 0.9047.3 0.9030 0.90490 0.90658 0.9084 0.90988 0.949 0.9309 0.9466 0.96 0.9774.4 0.994 0.9073 0.90 0.9364 0.9507 0.9647 0.9785 0.99 0.93056 0.9389.5 0.9339 0.93448 0.93574 0.93699 0.938 0.93943 0.9406 0.9479 0.9495 0.94408.6 0.9450 0.94630 0.94738 0.94845 0.94950 0.95053 0.9554 0.9554 0.9535 0.95449.7 0.95543 0.95637 0.9578 0.9588 0.95907 0.95994 0.96080 0.9664 0.9646 0.9637.8 0.96407 0.96485 0.9656 0.96638 0.967 0.96784 0.96856 0.9696 0.96995 0.9706.9 0.978 0.9793 0.9757 0.9730 0.9738 0.9744 0.97500 0.97558 0.9765 0.97670.0 0.9775 0.97778 0.9783 0.9788 0.9793 0.9798 0.98030 0.98077 0.984 0.9869. 0.984 0.9857 0.98300 0.9834 0.9838 0.984 0.9846 0.98500 0.98537 0.98574. 0.9860 0.98645 0.98679 0.9873 0.98745 0.98778 0.98809 0.98840 0.98870 0.98899.3 0.9898 0.98956 0.98983 0.9900 0.99036 0.9906 0.99086 0.99 0.9934 0.9958.4 0.9980 0.990 0.994 0.9945 0.9966 0.9986 0.99305 0.9934 0.99343 0.9936.5 0.99379 0.99396 0.9943 0.99430 0.99446 0.9946 0.99477 0.9949 0.99506 0.9950.6 0.99534 0.99547 0.99560 0.99573 0.99585 0.99598 0.99609 0.996 0.9963 0.99643.7 0.99653 0.99664 0.99674 0.99683 0.99693 0.9970 0.997 0.9970 0.9978 0.99736.8 0.99744 0.9975 0.99760 0.99767 0.99774 0.9978 0.99788 0.99795 0.9980 0.99807.9 0.9983 0.9989 0.9985 0.9983 0.99836 0.9984 0.99846 0.9985 0.99856 0.9986 3.0 0.99865 0.99869 0.99874 0.99878 0.9988 0.99886 0.99889 0.99893 0.99896 0.99900 3. 0.99903 0.99906 0.9990 0.9993 0.9996 0.9998 0.999 0.9994 0.9996 0.9999 3. 0.9993 0.99934 0.99936 0.99938 0.99940 0.9994 0.99944 0.99946 0.99948 0.99950 3.3 0.9995 0.99953 0.99955 0.99957 0.99958 0.99960 0.9996 0.9996 0.99964 0.99965 3.4 0.99966 0.99968 0.99969 0.99970 0.9997 0.9997 0.99973 0.99974 0.99975 0.99976 3.5 0.99977 0.99978 0.99978 0.99979 0.99980 0.9998 0.9998 0.9998 0.99983 0.99983 3.6 0.99984 0.99985 0.99985 0.99986 0.99986 0.99987 0.99987 0.99988 0.99988 0.99989 3.7 0.99989 0.99990 0.99990 0.99990 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 3.8 0.99993 0.99993 0.99993 0.99994 0.99994 0.99994 0.99994 0.99995 0.99995 0.99995 3.9 0.99995 0.99995 0.99996 0.99996 0.99996 0.99996 0.99996 0.99996 0.99997 0.99997 4.0 0.99997 0.99997 0.99997 0.99997 0.99997 0.99997 0.99998 0.99998 0.99998 0.99998