ISSN 1007-7626 CN 11-3870 / Q http / / cjbmb bjmu edu cn Chinese Journal of Biochemistry and Molecular Biology 2012 1 28 1 9 ~ 17 Sirtuins PARP-1 * 210095 Sirtuins 7 SIRT1 ~ SIRT7 NAD + 7 p53 FOXO Sirtuins Sirtuins ADP poly ADP-ribose polymerase PARP ADP 1 PARP-1 DNA NAD + Sirtuins PARP-1 Sirtuins PARP-1 Sirtuins PARP-1 Sirtuins ADP 1 PARP-1 Q255 Interplay of Sirtuins and PARP-1 in Cell Apoptosis WEI Quan-Wei SHI Fang-Xiong * College of Animal Science and Technology Nanjing Agricultural University Nanjing 210095 China Abstract The silent information regulator SIR genes Sirtuins are highly conserved NAD + - dependent enzymes from bacteria to mammals which include seven family members as SIRT1 to SIRT7 with defined subcellular localizations Sirtuins are actively involved in the regulation of gene expression and cellular development with their histone deacetylase activity to modulate transcription factors like p53 and FOXO etc Sirtuins have also been implicated for key roles in certain physiological processes especially linked to lifespan expansion as being attentioned PARP-1 is a member of poly ADP-ribose polymerase PARP family which is also comprised of NAD + -dependent enzymes and play vital roles in multiple cellular processes such as DNA repair and maintenance of the genomic integrity As the interplay of sirtuins and PARP-1 in cellular development has been extensively reported this article reviews the biological characteristics of the sirtuins family members and their functions with PARP-1 in the pathways and the process of cell apoptosis Key words Sirtuins PARP-1 cell apoptosis interplay 2 silent information regulator 2 SIR2 NAD + 2011-09-29 2011-10-26 HDAC 1 SIR2 Sirtuins Sirtuins Sirtuins No 31172206 NAD + / Ⅲ E-mail fxshi@ njau edu cn No 31172206 * Tel / Fax 025-84399112 E-mail fxshi@ niau edu cn Received September 29 2011 Accepted October 26 2011 Supported by National Natural Science Foundation of China * Corresponding author Tel / Fax 025-84399112
10 28 2 Sirtuins Table 1 Main characteristic of mammalian sirtuins NAD + Sirtuins Enzyme categorization Subcellular Molecular 1 location mass / kd Sirtuins SIRT1 Deacetylase Cytoplasm and 62 0 nucleus Sirtuins SIRT2 Deacetylase Cytoplasm and 41 5 nucleus ADP poly ADP-ribose polymerase 1 Sirtuins SIRT3 Deacetylase and ADPribosyltransferase Mitochondria 43 6 SIRT4 ADP-ribosyltransferase Mitochondria PARP 35 2 SIRT5 Deacetylase Mitochondria 33 9 SIRT6 Deacetylase and ADPribosyltransferase Nucleus 39 1 PARP-1 ADP 90% DNA SIRT7 Deacetylase Nucleus 44 8 DNA ADP DNA 1 2 Sirtuins Sirtuins apoptosis PARP-1 Sirtuins SIRT3 4 5 N NAD + Sirtuins PARP-1 SIRT3 PARP-1 Sirtuins 12 7 Sirtuins Sirtuins PARP-1 SIRT6 Sirtuins PARP-1 SIRT7 SIRT1 2 2 13 Sirtuins 2 Sirtuins NAD + 1 1 Sirtuins nicotinamide NAM Sirtuins 7 NAD + ADP SIRT1 ~ SIRT7 5 7 14 Sirtuins NAM SIRT1 2 6 Sirtuins 15 NAM NAD + 7 SIRT1 SIRT2 SIRT3 4 5 7 nicotinamide phosphoribosyltransferase NAMPT 6 nicotinamide mononucleotide NMN nicotinamide sirtinol 1 2- -3H- nicotinamide mononucleotide adenylyl transferase 2 1-b -3- splitomicin Nmnat NMN NAD + 16 NAM NAD Sirtuins Ⅲ 7 Sirtuins + SIRT4 nicotinamide phosphoribosyltransferase Nampt NAD nicotinamide 8 SIRT1 SIRT6 mononucleotide adenylyltransferase Nmnat ADP 9 Sirtuins NAM NAD + SIRT1 Table 1 10 11 NAD + Sirtuins
1 Sirtuins PARP-1 11 NAD + NAM NAM Sirtuins 17 NAM NAD + Sirtuins NAD + Sirtuins 2 DNA 1 NAMPT NAD + 2 DNA SIRT1 PARP-1 DBD NAD + SIRT3 4 5 3 DNA PARP-1 18 Sirtuins Fig 1 10 19 Fig 1 Enzymatic activity of Sirtuins during the process of protein deacetylation The deacetylation reaction of sirtuins consists of two steps The first Sirtuins deacetylate the target proteins via cleavage of nicotinamide-adenine-dinucleotide NAD + to release nicotinamide NAM The second acetyl group is transferred to the ADP-ribose ADPR moiety of NAD + to generate O-acetyl-ADPR the deacetylated substrate Deacetylation process can be inhibited by NAM which can also reverse the reaction to reproduce NAD + NAM is usually converted to nicotinamide mononucleotide NMN by nicotinamide phosphoribosyl-transferase Nampt which is a NAD salvage enzyme Then nicotinamide mononucleotide adenyltransferase Nmnat can regenerate NAD + from NMN 2 PARP-1 2 1 PARP-1 PARP-1 ADP poly ADP-ribose polymerase PARP PARP-1 24 DNA 3 1 014 1 Fig 3 DNA 113 kd 8 0 ~ 9 8 3 PARP-1 DNA N DNA DNAbinding domain DBD 46 kd N 1 ~ ADP DNA PARP 372 2 1 DNA DNA nuclear localization sequence NLS 2 Zn fingure NLS caspase 20 DNA PARP auto-modification domain 22 kd 374 ~ 524 PARP-1 ADP PARP 1 BRCT breast cancer associated protein C-terminal PARP-1 C- 525 ~ 1 014 catalytic domain 54 kd NAD + ADP 859 ~ 908 100% PARP Fig 2 21 C NAD + PARP-1 Fig 2 4 20 21 2 2 PARP-1 DNA 30 PARP-1 PARP-1 DNA PARP-1 PAR PARP-1 NAD + 22 PARP-1 N DNA DBD capase-3 caspase-3 PARP-1 BRCT C PAR 23 PARP-1 DNA DNA
12 28 Fig 2 Structural and functional organization of human PARP-1 human PARP-1 contains three main domains the NH 2 -terminal DNA-binding domain DBD with two zinc fingers Zn I and Zn Ⅱ Automodification domain AMD with a breast cancer susceptibility protein C terminus BRCT motif Catalytic domain with the NAD + -binding site The DBD also contains a NLS in which the caspase-cleavage site DVED is located BRCT motif is very common in repair and cell cycle proteins PARP-1 can bind to some proteins through the BRCT motif The active site of PARP-1 in the C-terminus contains a highly conserved sequence residues 859-908 which is named PARP signature 25 DNA PARP-1 PARP caspase PARP-1 PARP-1 NAD + / PARP-1 ATP 26 DNA Fig 3 22 25 ~ 27 Fig 3 Determination of cell fates by PARP-1 Levels of stress determine the cell fates cell survival cell apoptosis or cell necrosis Depending on the stress intensity stress signal can trigger three different pathways If the DNA damage is mild PARP-1 is activated to facilitates DNA repair then cell is survival More severe stress may lead to unrepairable DNA damage activated PARP-1 is cleaved by p53 and then the cell fate is determined by the p53-dependent apoptotic pathway Serious DNA damage may cause PARP overactivation which may deplete cellular NAD + / ATP storage NAD + / ATP exhaustion may block cell apoptosis and lead to necrosis The inhibition of PARP-1 in cells of serious DNA damage may preserve cellular energy storeage and lead to apoptosis p53 FOXO DNA 3 Sirtuins Sirtuins
1 Sirtuins PARP-1 13 p53 C / EBPα SIRT1 SIRT1 40 p53 SIRT1 SIRT7 SIRT1 TATA 28 p53 Sirtuins TAFI68 RNA DNA SIRT1 SIRT7 I 41 SIRT7 RNA I p53 42 SIRT3 SIRT5 29 SIRT1 p53 p53 DNA DNA 44 29 30 SIRT1 SIRT2 SIRT6 p53 31 SIRT6 FOXO SIRT6 45 Sirtuins FOXO NAD + DNA NAD + SIRT1 Foxo1 Sirtuins SIRT1 Foxo3a Foxo4 32 NAD + SIRT1 Foxo3a 46 DNA Sirtuins 33 Fig 4 37 47 ~ 49 Sirtuins 4 PARP-1 SIRT1 PARP-1 FOXO p53 DNA sirt1 caspase 34 Sirtuins p53 p53 p53 caspase caspase-3 35 FOXO Foxo1 Foxo4 PARP-1 caspase3 p89 Sirtuins p21 PARP-1 DNA SIRT1 Foxo1 Foxo4 BAX BCL 39 43 SIRT6 DNA ATP p27 PARP-1 DNA 45α Fig 3 PARP-1 caspase 32 DNA SIRT1 p300 p300 PARP-1 apoptosis-inducing factor FOXO p53 36 AIF DNA SIRT2 Foxo3a ROS 50 AIF 37 SIRT1 SIRT7 p53 51 p53 38 RNA SIRT1 PARP-1 p53 DNA
14 28 Fig 4 Relationship between Sirtuins and apoptosis factors during the process of apoptosis C / EBPα promotes expression level of Sirtuins SIRT1 by directly binding to the promoter of Sirtuins Sirtuins may takes part in FOXO-mediated or p53-dependent apoptosis Because of deacetylation effect of Sirtuins activities of FOXO family members p300 and p53 are increased in response to various stresses such as oxidative stress heat shock and UV radiation p53 and FOXO members acetylation by p300 and deacetylation by Sir2 affects the downstream factors which regulate whether cells progress towards growth or apoptosis PARP-1 p53 mrna PARP-1 DNA ADP p53 Sirtuins DNA p53 52 Sirtuins DNA PARP-1 p53 ADP DNA p53 p53 PARP-1 caspase-3 p53 55 p53 ADP PARP-1 Sirtuins NF-κB p53 53 PARP-1 p53 56 PARP-1 p53 DNA PARP-1 p53 54 DNA SIRT1 PARP-1 5 Sirtuins PARP PARP-1 DNA 57 Science 1 Sirtuins 1 SIRT6 PARP-1 PARP-1 Sirtuins DNA 58 PARP-1 SIRT1 PARP-1 Sirtuins NAD +
1 Sirtuins PARP-1 15 ADP NAD + Sirtuins PARP-1 Sirtuins NAD + 59 PARP-1 NAD + Sirtuins 60 PARP-1 PARP-1 caspase Fig 4 61 NAD + Fig 5 Interactions between PARP-1 and sirtuindependent processes in cells during apoptosis NAD + PARP-1 NAD Deacetylase activities of Sirtuins are NAD + -dependent so + AIF poly ADP-ribose metabolism may downregulate Sirtuins 62 PARP-1 Sirtuins through NAD + depletion The formed nicotinamide NAD + NAM has the inhibition effect on Sirtuins p53 20 deacetylation by Sirtuins may affect DNA-binding activity of p53 which is the key regulator of p53-mediated apoptosis DNA PARP-1 pathway Stress may activate PARP-1 through DNA damage DNA Sirtuins as well as the acetylation of PARP-1 Poly ADP-ribosyl 63 PARP-1 Sirtuins ation by PARP-1 may reduce cellular level of NAD + and NAD + NAM increase NAM The increased level of NAM have the PARP-1 Sirtuins 7 PARP- inhibition effect on Sirtuins and PARP-1 activities These 1 NAD + Sirtuins changes may lead to cell apoptosis or cell survival To PARP-1 SIRT1 counteract the effect of PARP-1 Sirtuins may also Fig 5 55 59 60 64 65 deacetylate PARP-1 thereby inhibit activity of PARP-1 Hence this function of Sirtuins helps to maintain cellular 6 NAD + levels and Sirtuins activities and promotes cell survival in response to verious stress DNA PARP-1 Sirtuin PARP-1 PARP-1 66 Sirtuins PARP-1 PARP-1 DNA Sirtuins PARP-1 Sirtuins References DNA PARP-1 Sirtuins PARP-1 J Altern Med Rev 2010 15 3 245-263 PARP-1 Sirtuins Sirtuins PARP-1 1 Imai S Armstrong CM Kaeberlein M et al Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase J Nature 2000 403 6771 795-800 2 Kelly G A review of the sirtuin system its clinical implications and the potential role of dietary activators like resveratrol part 1 3 Kraft KS Ruenitz PC Bartlett MG Carboxylic acid analogues of tamoxifen Z -2- p- 1 2-diphenyl-1-butenyl phenoxy -N N- dimethylethylamine Estrogen receptor affinity and estrogen antagonist effects in MCF-7 cells J J Med Chem 1999 42
16 28 16 3126-3133 4 Beneke S Burkle A Poly ADP-ribosyl ation PARP and aging J Sci Aging Knowledge Environ 2004 2004 49 re9 5 Lappalainen Z Sirtuins a family of proteins with implications for human performance and exercise physiology J Res Sports Med 2011 19 1 53-65 6 Michan S Sinclair D Sirtuins in mammals insights into their biological function J Biochem J 2007 404 1 1-13 7 Jackson MD Schmidt MT Oppenheimer NJ et al Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone / protein deacetylases J J Biol Chem 2003 278 51 50985-50998 8 Ahuja N Schwer B Carobbio S et al Regulation of insulin secretion by SIRT4 a mitochondrial ADP-ribosyltransferase J J Biol Chem 2007 282 46 33583-33592 9 Michishita E McCord RA Berber E et al SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin J Nature 2008 452 7186 492-496 10 PARP 26 Ungvari Z Gupte SA Recchia FA et al Role of oxidativenitrosative J Yu Meng-Bin Yang Yu- Tao Zhou Xiao-Wei et al Biological and pathological functions stress and downstream pathways in various forms of cardiomyopathy and heart failure J Curr Vasc Pharmacol of PARPs J Chin J Biochem Mol Biol 2008 24 12 1097-1102 11 Yamamoto H Schoonjans K Auwerx J Sirtuin functions in health and disease J Mol Endocrinol 2007 21 8 1745-1755 12 Nakamura Y Ogura M Tanaka D et al Localization of mouse mitochondrial SIRT proteins shift of SIRT3 to nucleus by coexpression with SIRT5 J Biochem Biophys Res Commun 2008 366 1 174-179 13 Tanno M Sakamoto J Miura T et al Nucleocytoplasmic shuttling of the NAD + -dependent histone deacetylase SIRT1 J J Biol Chem 2007 282 9 6823-6832 14 Tanner KG Landry J Sternglanz R et al Silent information regulator 2 family of NAD-dependent histone / protein deacetylases generates a unique product 1-O-acetyl-ADP-ribose J Proc Natl Acad Sci U S A 2000 97 26 14178-14182 15 Canto C Auwerx J Interference between PARPs and SIRT1 a 32 van der Horst A Tertoolen LG de Vries-Smits LM et al novel approach to healthy ageing J Aging Albany NY FOXO4 is acetylated upon peroxide stress and deacetylated by the 2011 3 5 543-547 longevity protein hsir2 SIRT1 J J Biol Chem 2004 279 16 Houtkooper RH Canto C Wanders RJ et al The secret life of NAD + an old metabolite controlling new metabolic signaling pathways J Endocr Rev 2010 31 2 194-223 17 Bitterman KJ Anderson RM Cohen HY et al Inhibition of silencing and accelerated aging by nicotinamide a putative negative regulator of yeast sir2 and human SIRT1 J J Biol Chem 2002 277 47 45099-45107 18 Nakahata Y Sahar S Astarita G et al Circadian control of the NAD + salvage pathway by CLOCK-SIRT1 J Science 2009 324 5927 654-657 19 Sauve AA Sirtuin chemical mechanisms J Biochim Biophys Acta 2010 1804 8 1591-1603 20 Kraus WL Lis JT PARP goes transcription J Cell 2003 113 6 677-683 21 Schreiber V Dantzer F Ame JC et al Poly ADP-ribose novel functions for an old molecule J Nat Rev Mol Cell Biol 2006 7 7 517-528 22 Maruta H Tanuma S Role of poly ADP-ribosyl ation in cell death J Seikagaku 2005 77 6 484-490 23 Soldani C Scovassi AI Poly ADP-ribose polymerase-1 cleavage during apoptosis an update J Apoptosis 2002 7 4 321-328 24 Nagele A Poly ADP-ribosyl ation as a fail-safe transcriptionindependent suicide mechanism in acutely DNA-damaged cells a hypothesis J Radiat Environ Biophys 1995 34 4 251-254 25 de Murcia JM Niedergang C Trucco C et al Requirement of poly ADP-ribose polymerase in recovery from DNA damage in mice and in cells J Proc Natl Acad Sci U S A 1997 94 14 7303-7307 2005 3 3 221-229 27 Nguewa PA Fuertes MA Valladares B et al Poly ADPribose polymerases homology structural domains and functions Novel therapeutical applications J Prog Biophys Mol Biol 2005 88 1 143-172 28 Yi J Luo J SIRT1 and p53 effect on cancer senescence and beyond J Biochim Biophys Acta 2010 1804 8 1684-1689 29 Luo J Nikolaev AY Imai S et al Negative control of p53 by Sir2alpha promotes cell survival under stress J Cell 2001 107 2 137-148 30 Vaziri H Dessain SK Ng Eaton E et al functions as an NAD-dependent p53 2001 107 2 149-159 hsir2 SIRT1 deacetylase J Cell 31 Peck B Chen CY Ho KK et al SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2 J Mol Cancer Ther 2010 9 4 844-855 28 28873-28879 33 Brunet A Sweeney LB Sturgill JF et al Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase J Science 2004 303 5666 2011-2015 34 Tang BL Sirt1 and cell migration J Cell Adh Migr 2010 4 2 163-165 35 Han MK Song EK Guo Y et al SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization J Cell Stem Cell 2008 2 3 241-251 36 Kouzarides T Acetylation a regulatory modification to rival phosphorylation J EMBO J 2000 19 6 1176-1179
1 Sirtuins PARP-1 17 37 Wang F Nguyen M Qin FX et al SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction J Aging Cell 2007 6 4 505-514 38 Vakhrusheva O Smolka C Gajawada P et al Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice J Circ Res 2008 102 6 703-710 39 Takayama K Ishida K Matsushita T et al SIRT1 regulation of apoptosis of human chondrocytes J Arthritis Rheum 2009 60 9 2731-2740 40 Jin Q Zhang F Yan T et al C / EBP alpha regulates SIRT1 expression during adipogenesis J Cell Res 2010 20 4 470-479 41 Muth V Nadaud S Grummt I et al Acetylation of TAF I 68 a subunit of TIF-IB / SL1 activates RNA polymerase I transcription J EMBO J 2001 20 6 1353-1362 42 Ford E Voit R Liszt G et al Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription J Genes Dev 2006 20 9 1075-1080 43 Schlicker C Gertz M Papatheodorou P et al Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5 J J Mol Biol 2008 382 3 790-801 44 McCord RA Michishita E Hong T et al SIRT6 stabilizes DNAdependent protein kinase at chromatin for DNA double-strand break repair J Aging Albany NY 2009 1 1 109-121 45 Mostoslavsky R Chua KF Lombard DB et al Genomic instability and aging-like phenotype in the absence of mammalian SIRT6 J Cell 2006 124 2 315-329 46 Pittelli M Felici R Pitozzi V et al Pharmacological effects of exogenous NAD on mitochondrial bioenergetics DNA repair and apoptosis J Mol Pharmacol 2011 Sep 14 Epub ahead of print 47 Nemoto S Fergusson MM Finkel T Nutrient availability regulates SIRT1 through a forkhead-dependent pathway J Science 2004 306 5704 2105-2108 48 Kobayashi Y Furukawa-Hibi Y Chen C et al SIRT1 is critical regulator of FOXO-mediated transcription in response to oxidative stress J Int J Mol Med 2005 16 2 237-243 49 Freiman RN Tjian R Regulating the regulators Lysine modifications make their mark J Cell 2003 112 1 11-17 50 Yu SW Wang H Poitras MF et al Mediation of poly ADPribose polymerase-1-dependent cell death by apoptosis-inducing factor J Science 2002 297 5579 259-263 51 Yu SW Andrabi SA Wang H et al Apoptosis-inducing factor mediates poly ADP-ribose PAR polymer-induced cell death J Proc Natl Acad Sci U S A 2006 103 48 18314-18319 52 Simbulan-Rosenthal CM Rosenthal DS Luo R et al Poly ADP-ribosyl ation of p53 during apoptosis in human osteosarcoma cells J Cancer Res 1999 59 9 2190-2194 53 Won J Chung SY Kim SB et al Dose-dependent UV stabilization of p53 in cultured human cells undergoing apoptosis is mediated by poly ADP-ribosyl ation J Mol Cells 2006 21 2 218-223 54 Malanga M Pleschke JM Kleczkowska HE et al Poly ADPribose binds to specific domains of p53 and alters its DNA binding functions J J Biol Chem 1998 273 19 11839-11843 55 Kruszewski M Szumiel I Sirtuins histone deacetylases III in the cellular response to DNA damage--facts and hypotheses J DNA Repair Amst 2005 4 11 1306-1313 56 Oliver FJ Menissier-de Murcia J Nacci C et al Resistance to endotoxic shock as a consequence of defective NF-kappaB activation in poly ADP-ribose polymerase-1 deficient mice J EMBO J 1999 18 16 4446-4454 57 Rajamohan SB Pillai VB Gupta M et al SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly ADP-ribose polymerase 1 J Mol Cell Biol 2009 29 15 4116-4129 58 Mao Z Hine C Tian X et al SIRT6 promotes DNA repair under stress by activating PARP1 J Science 2011 332 6036 1443-1446 59 Caito S Hwang JW Chung S et al PARP-1 inhibition does not restore oxidant-mediated reduction in SIRT1 activity J Biochem Biophys Res Commun 2010 392 3 264-270 60 Pillai JB Isbatan A Imai S et al Poly ADP-ribose polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD + depletion and reduced Sir2 alpha deacetylase activity J J Biol Chem 2005 280 52 43121-43130 61 Pillai JB Russell HM Raman J et al Increased expression of poly ADP-ribose polymerase-1 contributes to caspaseindependent myocyte cell death during heart failure J Am J Physiol Heart Circ Physiol 2005 288 2 H486-496 62 Bai N Lee HC Laher I Emerging role of cyclic ADP-ribose cadpr in smooth muscle J Pharmacol Ther 2005 105 2 189-207 63 Kolthur-Seetharam U Dantzer F McBurney MW et al Control of AIF-mediated cell death by the functional interplay of SIRT1 and PARP-1 in response to DNA damage J Cell Cycle 2006 5 8 873-877 64 Oliver FJ Menissier-de Murcia J Nacci C et al Resistance to endotoxic shock as a consequence of defective NF-kappaB activation in poly ADP-ribose polymerase-1 deficient mice J EMBO J 1999 18 16 4446-4454 65 Rajamohan SB Pillai VB Gupta M et al SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly ADP-ribose polymerase 1 J Mol Cell Biol 2009 29 15 4116-4129 66 Qian H Xu J Lalioti MD et al Oocyte numbers in the mouse increase after treatment with 5-aminoisoquinolinone a potent inhibitor of poly ADP-ribosyl ation J Biol Reprod 2010 82 5 1000-1007