Review on the achievements in simultaneous localization and mapping for mobile robot based on vision sensor

Σχετικά έγγραφα
Real time mobile robot control with a multiresolution map representation

ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ

ER-Tree (Extended R*-Tree)

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

L-SLAM: Μείωση διαστάσεων στην οικογένεια αλγορίθµων FastSLAM

Research on real-time inverse kinematics algorithms for 6R robots

Speeding up the Detection of Scale-Space Extrema in SIFT Based on the Complex First Order System

Quick algorithm f or computing core attribute

Toward a SPARQL Query Execution Mechanism using Dynamic Mapping Adaptation -A Preliminary Report- Takuya Adachi 1 Naoki Fukuta 2.

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

[1] DNA ATM [2] c 2013 Information Processing Society of Japan. Gait motion descriptors. Osaka University 2. Drexel University a)

Adaptive grouping difference variation wolf pack algorithm

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

UAV. UAV Unmanned Aerial Vehicle LED Light Emitting Diodes LQR Linear Quadratic Regulator

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Autonomous navigation control for mobile robots based on emotion and environment cognition

Area Location and Recognition of Video Text Based on Depth Learning Method

D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, 60(2):91-110, 2004.

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

ROBOT. Mater-slave Control Technology for Abdominal Minimally Invasive Surgery Robot and Its Experiments

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΑΛΓΟΡΙΘΜΩΝ ΕΞΑΓΩΓΗΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

CorV CVAC. CorV TU317. 1

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες

Automatic extraction of bibliography with machine learning

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

ROBOT. Smooth Obstacle-avoidance by 4-wheel Navigational Vehicle Using Non-360 Range Sensors

Research on vehicle routing problem with stochastic demand and PSO2DP algorithm with Inver2over operator

N8-0 (1 *.0 ' :7 ' _H $ (G0 )-: + $ B1+ N (+:- A+1 5.

Fragility analysis for control systems

Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+

GIS. . Harris SIFT : SIFT. SIFT Harris. GIS

Yahoo 2. SNS Social Networking Service [3,5,12] Copyright c by ORSJ. Unauthorized reproduction of this article is prohibited.

2013 Aymeric Bethencourt et al., licensee Versita Sp. z o. o.

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕς» OSWINDS RESEARCH GROUP

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

ΦΩΤΟΓΡΑΜΜΕΤΡΙΚΕΣ ΚΑΙ ΤΗΛΕΠΙΣΚΟΠΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΜΕΛΕΤΗ ΘΕΜΑΤΩΝ ΔΑΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, 60(2):91-110, 2004.

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕΣ» OSWINDS RESEARCH GROUP

Abstract. Detection of Feature Points for Computer Vision. Harris. (feature point) (interest point) (corner) Moravec. Harris.

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική. ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

Indexing Methods for Encrypted Vector Databases

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

ROBOT. Design and Realization of a Control System for Laparoscopic Robot

Map Generation of Mobile Robot by Probabilistic Observation Model Considering Occlusion

High order interpolation function for surface contact problem

38 8 Vol. 38, No ACTA AUTOMATICA SINICA August, , (Graphic processing unit, GPU). : 1) GPU Based Fast 3D-Object Modeling with Kinect

Approximation Expressions for the Temperature Integral

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Traversing Assist System for Tracked Vehicles on Rough Terrain Based on Continuous Three-Dimensional Terrain-Scanning

Anomaly Detection with Neighborhood Preservation Principle


1530 ( ) 2014,54(12),, E (, 1, X ) [4],,, α, T α, β,, T β, c, P(T β 1 T α,α, β,c) 1 1,,X X F, X E F X E X F X F E X E 1 [1-2] , 2 : X X 1 X 2 ;

Τοποθέτηση τοπωνυµίων και άλλων στοιχείων ονοµατολογίας στους χάρτες

,,, (, ) , ;,,, ; -

ΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

Development of a Seismic Data Analysis System for a Short-term Training for Researchers from Developing Countries

ΜΑΡΙΝΑ Ε. ΜΠΙΣΑΚΗ. Τκήκα Δθαξκνζκέλωλ Μαζεκαηηθώλ Παλεπηζηήκην Κξήηεο Τ.Θ , Ηξάθιεην, Κξήηε

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

Reading Order Detection for Text Layout Excluded by Image

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

Fusing Multiple Features for Object Tracking Based on Uncertainty Measurement

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. «Προστασία ηλεκτροδίων γείωσης από τη διάβρωση»

Research on Economics and Management

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Motion analysis and simulation of a stratospheric airship

A System Dynamics Model on Multiple2Echelon Control

Indoor Augmented Reality Guide for Mediterranean College. Φώτης Παπαχρήστος

A summation formula ramified with hypergeometric function and involving recurrence relation

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΛΕΩΝΙΔΑΣ Α. ΣΠΥΡΟΥ Διδακτορικό σε Υπολογιστική Εμβιομηχανική, Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Θεσσαλίας.

Στοιχεία εισηγητή Ημερομηνία: 10/10/2017

Mapping Textures on 3D Geometric Model Using Reflectance Image

Research on model of early2warning of enterprise crisis based on entropy

(Synesthesia) (B) 22-25

Based Modeling: Applications of Genetic Programming and Self-Organizing Maps.

Δρ. Ηλίας Ξυδιάς Τηλ.: ,

Security in the Cloud Era

Probabilistic Approach to Robust Optimization

Wiki. Wiki. Analysis of user activity of closed Wiki used by small groups

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)

Buried Markov Model Pairwise

MUL TIL EVEL2USER2ORIENTED AGRICUL TURAL INFORMATION CLASSIFICATION

Detection and Recognition of Traffic Signal Using Machine Learning

{takasu, Conditional Random Field

SocialDict. A reading support tool with prediction capability and its extension to readability measurement

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Control Theory & Applications PID (, )

PACS: Ox, Cw, a, TP

Transcript:

27 4 2010 4 : 1000 8152(2010)04 0488 07 Control Theory & Applications Vol. 27 No. 4 Apr. 2010 1, 1, 2 (1., 300071; 2., 300071) : (SLAM) SLAM, SLAM SLAM, SLAM, : ; ; ; : TP242 : A Review on the achievements in simultaneous localization and mapping for mobile robot based on vision sensor SUN Feng-chi 1, HUANG Ya-lou 1, KANG Ye-wei 2 (1. College of Software, Nankai University, Tianjin 300071, China; 2. College of Information Technical Science, Nankai University, Tianjin 300071, China) Abstract: Simultaneous localization and mapping (SLAM) are necessary prerequisites to make mobile robot truly autonomous. The vision sensor attracts more and more attention in the SLAM research for its rich information of the environment. This paper summarizes the state of the art in the vision- based SLAM from the aspects such as the deployment of vision sensors, the extraction of visual features, the implementation mechanism of visual SLAM, the representation of the map and the effect of environ-ment on visual SLAM. Some classical visual SLAM methods are compared and analyzed. The research prospects are described. Key words: mobile robot; simultaneous localization and mapping; vision sensor; feature extraction 1 (Introduction),,,,,, 1987 Smith [1], (simultaneous localization and mapping, SLAM), SLAM SLAM,,,,,,,,, SLAM, [2],,,, SLAM, [3] SIFT [4], [5,6] SLAM, : 2008 07 26; : 2009 08 05. : (60605021, 60805031); (2006AA04Z223); (200800551015).

4 : 489, SLAM SLAM SLAM SLAM, SLAM, SLAM 2 (Deployment of vision sensors) SLAM, :,, 2.1 (Monocular vision), [7 9],,, SLAM SLAM,, (bearingonly), Bearing-only SLAM.,, N, N, [10 12]. [13, 14], 3D,, (bayesian reweighting),,, GSF GSF GSF GSF, GSF,,,,, SLAM, [15],,,, 2.2 (Binocular stereo vision) SLAM,,,, ( ),,, [16] SLAM, SLAM., SLAM( ),,,. [10],, 2.3 (Stereo vision with multicamera), SLAM [3, 17],,,, [18] 8, SLAM,,, SLAM, 2.4 (Panoramic vision), SLAM, (loop closing),, SLAM, [19] SLAM,

490 27 [20],, 2.5 (The application of vision sensor in combination with other sensors), SLAM [21, 22]. [21] 3D, [23], SLAM. [24] SLAM 3 (Methods of extraction of visual feature),,, SLAM,, SLAM,,,,, [19]. Harris [25], SIFT [4],KLT [26] SLAM Harris (detector) [25] SLAM, Moravec [27], ( ) Harris Stephens Moravec [27], Gaussian,, Harris Harris [28],,,, Harris SLAM, Harris Harris NSSD(normalized sum of squares difference) [16] SSD(sum of squares difference) [18], SIFT(scale invariant feature transformation) [4] SIFT DoG(difference of Gaussians),,,,, SIFT SIFT,, SLAM SIFT DoG DoG (Blob),, [11] Harris-Laplace,,, Harris-Laplace DoG 1/4, [12] Harris-Laplace,, SIFT ( SIFT ), [29] SIFT, SIFT, SIFT 128,, SLAM Kd SIFT, [17],, 16 SIFT KLT [26] KLT t + τ t, KLT [14, 15, 30] SLAM KLT,

4 : 491 [21] Harris affine SIFT, SLAM,, SLAM [13],,,,,, SLAM [23] SLAM, [3] Canny 4 SLAM (Implementing mechanism of SLAM) SLAM,, (structure from motion, SFM) SLAM, SFM,,, SFM SLAM 4.1 (Extended Kalman filter), SLAM :, ;, ;,, (EKF) SLAM SLAM, EKF [10, 11, 14 17],, EKF SLAM, SLAM 4.2 (Particle filter), ( ) SLAM,, ( ), RBPF(Raoblackwellised particle filter) [31], RBPF, SLAM FastSLAM [32] RBPF, SLAM,,, FastSLAM, [33] FastSLAM, SIFT, Kd SIFT,. 4.3 SFM (The application of SFM) (SFM) ( ),,,, ;,,, SFM, SFM : ; 3D,,, SFM SLAM,, SFM,, SLAM,, SFM SLAM [30] EKF SFM SFM SLAM, [34] SFM SLAM, 5 (The types of map) SLAM,,, (metric map) (topologic map),.

492 27,,,,, [19]., ( ),,,,,,,, SLAM [3, 19, 34],. [35] 3D, [36] SLAM GVG(generalized voronoi graph) 6 SLAM (The effect of environment on visual SLAM) SLAM,, SLAM 6.1 SLAM(Visual SLAM in large scale environment) SLAM,. [37], SIFT, ; SLAM, SIFT, SLAM,,,,,, [38], SLAM,, SLAM,,, [39] SLAM,,, [39] SLAM, SLAM,,, SLAM, 6.2 SLAM(Visual SLAM in unstructured environment), [40] SLAM,,,,, SLAM [41],, SLAM. 6.3 SLAM(Visual SLAM in dynamic environment) SLAM,,, SLAM,, SLAM,, [42], SLAM RBPF

4 : 493,,, [22], SIFT, 7 (Conclusions and prospects) SLAM,, SLAM 15 m 16 m [10, 14, 16], 3D SLAM [18], SLAM 250 m 250 m [35]. SLAM [3, 13, 21], SLAM, SLAM,,, SLAM, SLAM,,, SLAM,,, SLAM ( SLAM), SLAM,, SLAM, SLAM, SLAM [14, 15, 28, 30], SLAM,, [34, 35] [21] SLAM, SLAM, SLAM, SLAM,,, SLAM, (References): [1] SMITH R, SELF M, CHEESEMAN P. A stochastic map for uncertain spatial relationships[c] //Proceedings of the 4th International Symposium on Robotics Research. Cambridge, MA: MIT Press, 1987: 467 474. [2] TARDOS J D, NEIRA J, NEWMAN P, et al. Robust mapping and localization in indoor environments using sonar data[j]. International Journal of Robotics Research, 2002, 21(4): 311 330. [3] DAILEY M N, PARNICHKUN M. Landmark-based simultaneous localization and mapping with stereo vision[c] //Proceedings of the 2005 Asian Conference on Industrial Automation and Robotics. Bangkok, Thailand: Springer LNCS, 2005: 108 113. [4] LOWE D G. Object recognition from local scale-invariant features[c] //Proceedings of the IEEE International Conferece on Computer Vision. Corfu, Greece: IEEE, 1999: 1150 1157. [5], [J]., 2004, 26(2): 182 186. (LUO Ronghua, HONG Bingrong. The progress of simultaneous localization and mapping for mobile robot[j]. Robot, 2004, 26(2): 182 186.) [6], [J]., 2005, 22(3): 455 460. (CHEN Weidong, ZHANG Fei. Review on the achievements in simultaneous localization and map building for mobile robot[j]. Control Theory & Applications, 2005, 22(3): 455 460.) [7] LUPTON T, SUKKARIEH S. Removing scale biases and ambiguity from 6 DOF monocular salm using inertial[c] //Proceedings of the IEEE International Conference on Robotics and Automation. Pasadena, USA: IEEE, 2008: 3698 3703. [8] ANGELI A, DONCIEUX S, MEYER J A, et al. Incremental visionbased topological SLAM[C] //Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice, France: IEEE, 2008: 1031-1036. [9] CIVERA J, DAVISON A J, MONTIEL J M M. Interacting mutiple model monocular SLAM[C] //Proceedings of the IEEE International Conference on Robotics and Automation. Pasadena, USA: IEEE, 2008: 3704 3709. [10] MIRO J V, DISSANAYAKE G, ZHOU W Z. Vision-based SLAM using natural features in indoor environments[c] //Proceedings of the IEEE International Conference on Intelligent Networks, Sensor Networks and Information Processing. Melbourne, Australia: IEEE, 2005: 151 156. [11] JENSFELT P, KRAGIC D, FOLKESSON J, et al. A framework for vision based bearing only 3D SLAM[C] //Proceedings of the IEEE International Conference on Robotics and Automation. Orlando, USA: IEEE, 2006: 1944 1950. [12] JENSFELT P, FOLKESSON J, KRAGIC D, et al. Exploiting distinguishable image features in robotic mapping and localization[c] //Proceedings of European Robot Symposium. Heidelberg, Germany: Springer-Verlag, 2006: 143 158. [13] FITZGIBBONS T, NEBOT E. Bearing-only SLAM using colourbased feature tracking[c] //Proceedings of Australian Conference on Robotics and Automation. Auckland. New Zealand: Springer-Verlag, 2002: 234 239. [14] DAVISON A J. Real-time simultaneous localization and mapping with a single camera[c] //Proceedings of IEEE International Conference on Computer Vision. Nice, France: IEEE, 2003: 1403 1410.

494 27 [15] JEONG W, LEE K M. CV-SLAM: a new ceiling vision-based SLAM technique[c] //Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton, Canada: IEEE, 2005: 3070 3075. [16] DAVISON A J, MURRAY D. Simultaneous localization and mapbuilding using active vision[j]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 865 880. [17] SE S, LOWE D G, LITTLE J J. Vision-based global localization and mapping for mobile robots[j]. IEEE Transactions on Robotics, 2005, 21(3): 364 375. [18] KAESS M, DELLAERT F. Visual SLAM with a multi-camera rig[r]. Technical report, Georgia Institute of Technology. 2006, GIT-GVU- 06-06. [19] LEMAIRE T, LACROIX S. SLAM with panoramic vision[j]. Journal of Field Robotics, 2007, 24(1/2): 91 111. [20],, [J]., 2008, 30(4): 289 297. (XU Junyong, WANG Jingchuan, CHEN Weidong. Omni-visionbased simultaneous localization and mapping of mobile robots[j]. Robot, 2008, 30(4): 289 297.) [21] NEWMAN P, COLE D, HO K. Outdoor SLAM using visual appearance and laser ranging[c] //Proceedings of the IEEE International Conference on Robotics and Automation. Orlando, USA: IEEE, 2006: 1180 1187. [22] LOPEZ D G, SJO K, PAUL C, et al. Hybrid laser and vision based object search and localization[c] //Proceedings of the IEEE International Conference on Robotics and Automation. Pasadena, USA: IEEE, 2008: 2636 2643. [23],,,. [J]., 2005, 31(6): 925 933. (ZHUANG Yan, WANG Wei, WANG Ke, et al. Mobile robot indoor simultaneous localization and mapping using laser range finder and monocular vision[j]. Acta Automatica Sinica, 2005, 31(6): 925 933.) [24] WILLIAMS S, MAHON I. Simultaneous localisation and mapping on the great barrier reef[c] //Proceedings of the IEEE International Conference on Robotics and Automation. New Orleans, USA: IEEE, 2004: 1771 1776. [25] HARRIS C, STEPHENS M. A combined corner and edge detector[c] //Proceedings of the 4th Alvey Vision Conference. Manchester, UK: Springer-Verlag, 1988: 147 151. [26] SHI J, TOMASI C. Good feature to track[c] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Berlin, Germany: IEEE, 1993: 593 600. [27] MORAVEC H P. Towards automatic visual obstacle avoidance[c] //Proceedings of International Joint Conference on Artificial Intelligence. Cambridge, MA: AAAI Press, 1977: 584 590. [28] DUFOURNAUD Y, SCHMID C, HORAUD R P. Matching images with different resolutions[c] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. South Carolina, USA: IEEE, 2000: 612 618. [29] WANG X, ZHANG H. Good image features for bearing-only SLAM[C] //Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China: IEEE, 2006: 2576 2581. [30] MELTZER J, GUPTA R, YANG M H, et al. Simultaneous localization and mapping using multiple view feature descriptors[c] //Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Sendai, Japan: IEEE, 2004: 1550 1555. [31] DOUCET A, FREITAS J D, MURPHY K, et al. Rao-blackwellized particle filtering for dynamic bayesian networks[c] //Proceedings of the 8th Conf on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufman, 2000: 499 516. [32] MONTEMERLO M. FastSLAM: A factored solution to the simultaneous localization and mapping problem with unknown data association[d]. Pittsburgh, USA: Carnegie Mellon University, 2003. [33] SIM R, GRIFFIN M, SHYR A, et al. Scalable real-time vision-based SLAM for planetary rovers[c] //Proceedings of the IEEE IROS Workshop on Robot Vision for Space Applications. Edmonton, Canada: IEEE, 2005: 16 21. [34] TOMONO M. 3D localization and mapping using a single camera based on structure-from-motion with automatic baseline selection[c] //Proceedings of the IEEE International Conference on Robotics and Automation. Barcelona, Spain: IEEE, 2005: 3342 3347. [35] ELINAS P, SIM R, LITTLE J J. σslam: stereo vision SLAM using the Rao-Blackwellised particle filter and a novel mixture proposal distribution[c] //Proceedings of the IEEE International Conference on Robotics and Automation. Orlando, USA: IEEE, 2006: 1564 1570. [36] CHOSET H, NAGATANI K. Topological simultaneous localization and mapping (SLAM): toward exact localization without explicit localization[j]. IEEE Transactions on Robotics and Automation, 2001, 17(2): 125 137. [37] SCHLEICHER D, BERGASA L M, BAREA R, et al. Real-Time wide-angle stereo visual SLAM on large environment using SIFT feature correction[c] //Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, USA: IEEE, 2007: 3878 3883. [38] HAJJDIAB H, LAGANIERE R. Vision-based multi-robot simultaneous localization and mapping[c] //Proceedings of the First Canadian Conference on Computer and Robot Vision. Ontario, Canada: IEEE, 2004: 155 162. [39] DELLAERT F, ALEGRE F, MARTINSON E B. Intrinsic localization and mapping with 2 applications: diffusion mapping and marco polo localization[c] //Proceedings of the IEEE International Conference on Robotics and Automation. Taipei: IEEE, 2003: 2344 2349. [40] [D]. :, 2007. (YUAN Jing. Study on active simultaneous localization and mapping of mobile robot in unknown environment[d]. Tianjin: Nankai University, 2007.) [41] ZHOU W, VALLS J. Information-efficient 3-D visual SLAM for unstructured domains[j]. IEEE Transaction on Robotics, 2008, 24(5): 1078 1087. [42] DONG J F, WIJESOMA S. Extended Rao-Blacwellised particle genetic algorithm filter SLAM in dynamic environment with raw sensor measurement[c] //Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, USA: IEEE, 2007: 1473 1478. [43] HOE K G, SUNG K J, SANG H K. Vision-based simultaneous localization and mapping with two cameras[c] //Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton, Canada: IEEE, 2005: 3401 3406. : (1973 ),,,, E-mail: fengchisun@nankai.edu.cn; (1964 ),,,, E-mail: huangyl@nankai.edu.cn; (1977 ),,,, E-mail: chinakang@mail.nankai.edu.cn.