Fusing Multiple Features for Object Tracking Based on Uncertainty Measurement

Σχετικά έγγραφα
ER-Tree (Extended R*-Tree)

Detection and Recognition of Traffic Signal Using Machine Learning

Area Location and Recognition of Video Text Based on Depth Learning Method

Quick algorithm f or computing core attribute

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Buried Markov Model Pairwise

High order interpolation function for surface contact problem

Control Theory & Applications PID (, )

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Applying Markov Decision Processes to Role-playing Game

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

Adaptive grouping difference variation wolf pack algorithm

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

The optimization of EV powertrain s efficiency control strategy under dynamic operation condition

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

CorV CVAC. CorV TU317. 1

Motion analysis and simulation of a stratospheric airship

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

FENXI HUAXUE Chinese Journal of Analytical Chemistry. Savitzky-Golay. n = SG SG. Savitzky-Golay mmol /L 5700.

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Application of Wavelet Transform in Fundamental Study of Measurement of Blood Glucose Concentration with Near2Infrared Spectroscopy

A Method for Singularity Detection in Fingerprint Images

Speeding up the Detection of Scale-Space Extrema in SIFT Based on the Complex First Order System

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Journal of Central South University (Science and Technology) May Bragg TU443 A (2011)

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

ADT

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

40 3 Journal of South China University of Technology Vol. 40 No Natural Science Edition March

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Wireless capsule endoscopy video classification using an unsupervised learning approach

Probabilistic Approach to Robust Optimization

ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

ADVANCES IN WATER SCIENCE

[1] DNA ATM [2] c 2013 Information Processing Society of Japan. Gait motion descriptors. Osaka University 2. Drexel University a)

Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA

A summation formula ramified with hypergeometric function and involving recurrence relation

Research of Han Character Internal Codes Recognition Algorithm in the Multi2lingual Environment

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Indexing Methods for Encrypted Vector Databases

PACS: Pj, Gg

:,,, PACS: a. , (3D-Var) (4D-Var) [7 9].,. 4D-Var 3D-Var,.,4D-Var,., ,.,, ;,,,,. ( ), . (PF). PF EnKF,,,

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

SVM. Research on ERPs feature extraction and classification

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Lossless Image Authentication Algorithm with Minimal Expansion

Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

HSI %89 SOM RGB. Journal of Transactions on Electrical Technology Vol.2 No.7- Autumn 2011

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

The toxicity of three chitin synthesis inhibitors to Calliptamus italicus Othoptera Acridoidea

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Research on explaining porosity in carbonate reservoir by capture cross section method

L.R. Alejano, 1* J. Muralha, 2 R. Ulusay, 3 C.C. Li, 4 I. Pérez-Rey, 1 H. Karakul, 5 P. Chryssanthakis, 6 Ö. Aydan, 7 J. Martínez 8 & N.

ZnO-Bi 2 O 3 Bi 2 O 3

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

2002 Journal of Software

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Research on Economics and Management

Identifying Scenes with the Same Person in Video Content on the Basis of Scene Continuity and Face Similarity Measurement

CAP A CAP

38 8 Vol. 38, No ACTA AUTOMATICA SINICA August, , (Graphic processing unit, GPU). : 1) GPU Based Fast 3D-Object Modeling with Kinect

Analysis of energy consumption of telecommunications network and application of energy-saving techniques

College of Life Science, Dalian Nationalities University, Dalian , PR China.

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU


Congruence Classes of Invertible Matrices of Order 3 over F 2

Electronic Supplementary Information

,,, (, ) , ;,,, ; -

ΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)

Δημήτριος Θ. Τόμτσης, Ph.D. Αναλυτικό Βιογραφικό Σημείωμα

Toward a SPARQL Query Execution Mechanism using Dynamic Mapping Adaptation -A Preliminary Report- Takuya Adachi 1 Naoki Fukuta 2.

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

Evaluation on precision of occurrence measurement based on theory of errors

neutube 1.0: a New Design for Efficient Neuron Reconstruction Software Based on the SWC Format123

Study of urban housing development projects: The general planning of Alexandria City

UAV. UAV Unmanned Aerial Vehicle LED Light Emitting Diodes LQR Linear Quadratic Regulator

Automatic extraction of bibliography with machine learning

172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell

Mandibular Canal Segmentation Based on Shape-Driven Level-set Algorithm Restrained by Local Information

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

Transcript:

37 5 Vol. 37, No. 5 2011 5 ACTA AUTOMATICA SINICA May, 2011 1, 2 1 2 2 1 2.,,,.,,,,,. :. DOI,,, 10.3724/SP.J.1004.2011.00550 Fusing Multiple Features for Object Tracking Based on Uncertainty Measurement GU Xin 1, 2 WANG Hai-Tao 1 WANG Ling-Feng 2 WANG Ying 2 CHEN Ru-Bing 1 PAN Chun-Hong 2 Abstract This paper presents a novel tracking algorithm that fuses multiple features based on feature uncertainty measurement. It is based on the fact that tracking failure of particle filter often happens in the cases of low discriminative abilities of the observed features and disperse distributions of the sampled particles. To handle this failure, we first define a new feature uncertainty measurement method to adaptively adjust the relative contributions of different features. Then we introduce a self-adaptive feature fusion strategy to overcome the shortcomings of product and sum fusion ones. This strategy effectively sharpens the distribution of the fused posterior, and makes the tracking less sensitive to noises. Thereby, the tracking robustness is improved. An extensive number of comparative experiments show that the proposed algorithm is more stable and robust than the single feature, multiplicative fusion, and additive fusion tracking algorithms. Key words Object tracking, uncertainty measurement, particle filter, multiple features fusion [1].,, : [2] [3] [4] [5] [6] SIFT [7].,,, [8].,.,,.,,. [9] 2010-09-09 2010-12-27 Manuscript received September 9, 2010; accepted December 27, 2010 (60873161, 61005036, 61005013), (BK2010503), (SYG201024) Supported by National Natural Science Foundation of China (60873161, 61005036, 61005013), Natural Science Foundation of Jiangsu Province of China (BK2010503), and Project of Suzhou Science Technology Bureau (SYG201024) 1. 210016 2. 100190 1. College of Automation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 2. National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190,. Birchfield [10],., Li [11],,,,.,,. Wang [12],,.,. [13],, Frobenius,.,.,, ;,,,

5 : 551 ;,,.,.,.,,,. 1, : x t = f t (x t 1, ξ t ) (1), x t t, ξ t., : z t = h t (x t, e t ) (2), z t x t, e t. {ξ 1:t }, {e 1:t }. {ξ 1:t }, {e 1:t },., {z 1:t } {x t }, p(x t z 1:t ).,. : 1) p(x t z 1:t 1 ) = p(x t x t 1 )p(x t 1 z 1:t 1 )dx t 1 (3) 2) p(x t z 1:t ) = p(z t x t )p(x t z 1:t 1 ) p(zt x t )p(x t z 1:t 1 )dx t (4), (3) (4) [14]. [15]., p(x t z 1:t ) p(x t z 1:t ) = N w t,j δ(x t x t,j ) (5) j=1 N ; w t,j t j,, N j=1 w j=1; δ( ). q(x t,j x t 1,j, z 1:t ), : w t,j w t 1,j p(z t x t,j )p(x t,j x t 1,j ) q(x t,j x t 1,j, z 1:t ) (6) p(x t x t 1 ), (6) w t,j w t 1,j p(z t x t,j ) (7), x, x = {c x, c y, l x, l y, θ}., c x, c y, l x, l y θ., (1)., : x t = Ax t 1 + W (8), A,. W 0. 2,.,,. 2.1,,. ( ).,.,., ( ),,.,,,..,,,.,.,,,.,.

552 37,.,,,., 1 : 1),, ;, ;,,. 2), ;, ; 1). 3), ;, ; 1). 4),, ;,, ;., : β i t+1 = σ t H(p i t) (9), βt+1 i t + 1 i. σ t t,. σ t = tr(σ), Σ, σ. H(p i t) t i,., : H(p i ) = N (p(z i x j ) log 2 p(z i x j )) (10) j=1, p(z i x j ) i j. H(p i ),. 2.2,. [11].,., n : p(z 1 z n x) = n p(z i x) (11) i=1 [12],., n : p(z 1 z n x) = n φ i p(z i x) (12) i=1, φ i i, : n i=1 φi = 1. Fig. 1 1 ( : ; : ) The diagrammatic sketch of four cases in process of particle filter: the spatial distributions of particles (top row), and the distributions of probability values in particles (bottom row)

5 : 553. 2 : (Feature 1, Feature 2), (Product rule).,.,.,,,,. (Sum rule),,,.,.,,,. ( p(z 1 x)p(z 2 x) + β 1 U(x)p(z 2 x) + β 2 U(x)p(z 1 x) + β 1 β 2 (U(x)) 2 ) (14) (14),, :,,.,. β 1 0, 1, (13) 1 p(z 1 x), 1. β 1, 1, (13) 1 1, 2. 2 :, (Our rule),,.,,,,. 3 2 ( 1; 2; ; ; ) Fig. 2 The comparison of multiple feature fusion ( Feature 1; Feature 2; Sum fusion result; Product fusion result; Our result.),. n,,,. : p(z 1 z n x) = n ( ) p(z i x) + β i U(x) i=1 1 + β i (13), β i i, U(x). n = 2, (13) : p(z 1, z 2 x) = 1 (1 + β 1 )(1 + β 2 ),.,,,. 3.1,. [1],,. B c h c (u) = δ(i(x, y) u) (15) u=1, I(x, y), B c.. [16].,, I(x, y), G α:

554 37 G(x, y) = I 2 x + I 2 y, ( ) α(x, y) = tan 1 Iy (16) 4,, B e,.,,.,., Bhattacharyya [17]. h tar h mod. B ρ(h tar, h mod ) = 1 htar (u)h mod (u) (17) u=1, [16] p(z i x) exp( λ i ρ 2 i (h mod, h tar )) (18) I x 4,,.,,,., ( 1 2), ( 3 4).,,. : ; N 100; U(x) = 1/N; B e = 18; B c = 216; B c = 64; λ 1. Table 1 1 The coefficients of two features, i {1, 2}, 1, 2. 3.2 : 1. x 0, h 1 0, h 2 0, {w 0,j = 1/N} N j=1, β0 1 = β0 2 = 0.5; 2. : x t = Ax t 1 + W, x t 1 x t ; 3. p(z 1 x t,j ), p(z 2 x t,j ),, (10) H(p 1 t ), H(p 2 t ); 4., N,, ; 5. (13) p(z 1, z 2 x), (9) β 1, β 2, ; 6. : w t,j = w t 1,j p(z t x t,j ), : x t = N w j=1 t,jx t,j ; 7., 1/( N t=1 w2 t,j) < N/2, {x t,j } N j=1 N {x t,j l} N l=1, w t,l = 1/N, ; 8. 2. (λ c) (λ e) 1 90 40 2 90 30 3 90 40 4 80 40 1 1.,,., :. 3, (37 ),,.,.,,.,,,,. 2..,,.,. 1 Otcbvs Benchmark Dataset Collection [Online], available: http://www.cse.ohio-state.edu/otcbvs-bench/, December 28, 2010

5 : 555. 4,,, 121,. (346 ),.,,,, 246,.,,.,,.,,.. 2 ( 5). 1, 2.,, :,,,, ;,, ;,, ;,, ;.,,. 3 ( Fig. 3 3 1 ( 1 : ; 2 : ; 3 : ) ( : 1, 28, 37, 43, 61) Some results on experiment 1 by using single feature: color (the first row), edge (the second row), and proposed multi-feature fusion method (the third row) (Frames: 1, 28, 37, 43, 61) 4 2 ( 1 : ; 2 : ; 3 : ) ( : 6, 206, 246, 346, 376) Fig. 4 Some results on experiment 2 by using single feature: color (the first row), edge (the second row), and proposed multi-feature fusion method (the third row) (Frames: 6, 206, 246, 346, 376)

556 37 Fig. 5 5 ( ), ( ) The representative video frames in the five stages (top row), and the uncertainty of two features (bottom row) 6 3 ( 1 : ; 2 : ; 3 : ) ( : 251, 456, 486, 546, 386) Fig. 6 Some results on experiment 3 by using product rule (the first row), sum rule (the second row), and proposed multi-feature fusion method (the third row) (Frames: 251, 456, 486, 546, 586) 1).. 6, (486 ),., ( ),,, ;.,.,,,,.,,. 4.. 7, (116 ),.,,,,,. (291 ),,.,.,. :

5 : 557 7 4 ( 1 : ; 2 : ; 3 : ) ( : 61, 116, 271, 291, 396) Fig. 7 Some results on experiment 4 by using: product rule (the first row), sum rule (the second row), and proposed multi-feature fusion method (the third row) (Frames: 61, 116, 271, 291, 396) Table 2 2 ( ) Comparison results ( interprets that we did not perform in this sequence) 1 150 31 ( ) 2 378 346 ( ) 246 ( ) 3 647 456 ( ) 486 ( ) 4 393 291 ( ) 116 ( ),,,. 2 (, ). :,, ( ),,,,.,,,,. P4 3.4 GHz 1024 M Matlab 7.6.,,,,. 3 fps ( / ).. Table 3 3 5 The comparison of computation costs of the five methods (fps) 1 25.8 24.7 11.5 11.4 10.9 2 21.3 21.5 10.1 10.0 9.7 3 24.9 24.1 10.9 11.0 10.3 4 25.6 24.5 12.3 12.1 11.8

558 37 5,,.,,,. ( ),.,, ;,,. References 1 Hou Zhi-Qiang, Han Chong-Zhao. A survey of visual tracking. Acta Automatica Sinica, 2006, 32(4): 603 617 (,.., 2006, 32(4): 603 617) (,,. SIFT., 2010, 36(8): 1204 1208) 8 Yilmaz A, Javed O, Shah M. Object tracking: a survey. ACM Computing Surveys, 2006, 38(4): 13 58 9 Wang Yong-Zhong, Liang Yan, Zhao Chun-Hui, Pan Quan. Kernel-based tracking based on adaptive fusion of multiple cues. Acta Automatica Sinica, 2008, 34(4): 393 399 (,,,.., 2008, 34(4): 393 399) 10 Birchfield S. Elliptical head tracking using intensity gradients and color histograms. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Santa Barbara, USA: IEEE, 1998. 232 237 11 Li P H, Chaumette F. Image cues fusion for object tracking based on particle filter. In: Proceedings of the 3rd International Workshop on Articulated Motion and Deformable Objects. Palma de Mallorca, Spain: Springer, 2004. 99 107 2 Perez P, Hue C, Vermaak J, Gangnet M. Color-based probabilistic tracking. In: Proceedings of the 7th European Conference on Computer Vision. London, UK: Springer, 2002. 661 675 3 Kim B G, Park D J. Unsupervised video object segmentation and tracking based on new edge features. Pattern Recognition Letters, 2004, 25(15): 1731 1742 4 Baker S, Matthews I. Lucas-Kanade 20 years on: a unifying framework. International Journal of Computer Vision, 2004, 56(3): 221 255 5 Bastos R, Dias J M S. Fully automated texture tracking based on natural features extraction and template matching. In: Proceedings of the ACM SIGCHI International Conference on Advances in Computer Entertainment Technology. New York, USA: ACM, 2005. 180 183 12 Wang X, Tang Z M. Modified particle filter-based infrared pedestrian tracking. Infrared Physics and Technology, 2010, 53(4): 280 287 13 Zhong Xiao-Pin, Xue Jian-Ru, Zheng Nan-Ning, Ping Lin- Jiang. An adaptive fusion strategy based multiple-cue tracking. Journal of Electronics and Information Technology, 2007, 29(5): 1017 1021 (,,,.., 2007, 29(5): 1017 1021) 14 Arulampalam M S, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for online nonlinear/non-gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 2002, 50(2): 174 188 15 Isard M, Blake A. Condensation conditional density propagation for visual tracking. International Journal of Computer Vision, 1998, 29(1): 5 28 6 Du W, Piater J. A probabilistic approach to integrating multiple cues in visual tracking. In: Proceedings of the 10th Europe on Conference on Computer Vision. Berlin, Germany: Springer, 2008. 225 238 16 Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 886 893 7 Lin Hai-Feng, Ma Yu-Feng, Song Tao. Research on object tracking algorithm based on SIFT. Acta Automatica Sinica, 2010, 36(8): 1204 1208 17 Perez P, Vermaak J, Blake A. Data fusion for visual tracking with particles. Proceedings of the IEEE, 2004, 92(3): 495 513

5 : 559... E-mail: xingu396@gmail.com (GU Xin Master student at the College of Automation, Nanjing University of Aeronautics and Astronautics. His research interest covers visual object tracking and intelligent video surveillance. Corresponding author of this paper.).. E-mail: htwang2002@126.com (WANG Hai-Tao Associate professor at the College of Automation, Nanjing University of Aeronautics and Astronautics. His research interest covers photoelectric detecting technology and computer control technique.) ers video surveillance and medical image processing.).,. E-mail: ywang@nlpr.ia.ac.cn (WANG Ying Ph. D. candidate at the Institute of Automation, Chinese Academy of Sciences. His research interest covers image processing, probabilistic graphical models, and object tracking.).. E-mail: chenrb@szjl.com.cn (CHEN Ru-Bing Engineer at Suzhou Institute of Measurement and Testing Technology. His research interest covers measuring and testing technologies.).. E-mail: lfwang@nlpr.ia.ac.cn (WANG Ling-Feng Ph. D. candidate at the Institute of Automation, Chinese Academy of Sciences. His research interest cov-.. E-mail: chpan@nlpr.ia.ac.cn (PAN Chun-Hong Professor at the Institute of Automation, Chinese Academy of Sciences. His research interest covers image processing and computer vision.)