25 3 20125 ChinaJournalofHighwayandTransport Vol.25 No.3 May2012 :1001-7372(2012)03-0059-06 ( 410004) : : ; ; : ; ; ; ; :U416.14 :A DevelopingLawofTransientSaturatedAreasofHighwaySlope UnderRainfalConditions FU Hong-yuanZENGLingJIANGZhong-mingHEZhong-ming (InstituteofGeotechnicalEngineeringChangshaUniversityofScience & Technology Changsha410004HunanChina) Abstract:Inordertoanalyzetheefectofrainfalonslopestabilityaccordingtotheactual situationofengineeringanddiferentcalculationschemesthat were workedouttheauthors simulatedthechangeofgroundwatertableandtransientsaturatedareaintheslopeunderrainfal conditionwiththeapplicationofsaturatedandunsaturatedseepagetheory.theauthorsmadea deepstudyontheinfluenceofchangeofgroundwatertableandtransientsaturatedareainslope onslopestabilityduringrainingprocess.theresultsshowthattheformationtimeoftransient saturated area depends ontherainfalintensitywhilethe developmentextentoftransient saturatedareaisinfluencedbybothrainfaldurationandrainfalintensitytheformationand dissipationoftransientsaturatedareaarelagging.therainfalcannotresultinalargedegreeof continuousincreasingofthegroundwatertablerapidlyandtheleveloftheinitialgroundwater table wilhave greatefectontheformationtimeandthe developmentextentoftransient saturatedarea. Keywords:roadengineering;highwayslope;saturatedandunsaturatedseepagetheory;rainfal process;transientsaturatedarea;groundwatertable :2011-07-21 : (51078042); (2009003); (2009318000048) : (1965-) E-mail:fuhy1@163.com
60 2012 0 1 [1-3] : [12-13] [4-5] x ( H K x x ) + x ( H K y y ) H +w=u s t ( 1) ; :H ;K x K y x y ;w ;u s ;t [6] (2) [7] KH+MH t=q (2) :K ;M ;Q ;H ;H t [8] H(xyt)=H t (xy) S 1 (3) [9] K H S 2=q(xyt) (xy) S n 2 (4) :K ;S 1 ;S 2 ;H t ;q(xy t) ;n H(xy0)=H 0 (xy) Ω (5) :H 0 ;Ω : VanGenu- chten Van Genuchten [10-11] h(θ)= 1 α [(θ-θr ) - 1 m -1 ] 1-m (6) θs-θr K(h)= { 1-[αh(θ)] n-1 [1+(αh(θ)) n ] -m } 2 [1+(αh(θ)) n ] K m/2 s (7) :h(θ) ;θ ;θsθr ;αmn m=1-1/n;k s ; K(h)
3 : 61 2 2.1 80 m 1 11 1.51 1.51 1.5 7~20m ( ) 2 m 1 5100 5301 1A~B ) q Green-Ampt [14] -6 1 ( ) Fig.1 ProfileofSlopeComputationGridandInitialWater 2.3 2.2 50 3d K x =K y = 3d 1.0 10-9 m s -1 () 150295.3357 mm 1 1 K x=1.0 10-7 m s -1 K y =0.83 10-7 m s -1 1 0.2 Tab.1 NumericalSimulationSchemes 0.05 θr 1 2 3 / 0.02 3.14 10-6 Van Genuchten 1.37 10 (m s -1 ) /h 1 /d 2 23 24 10 72 10 2 4 -ρgh 0 ( ρ ;g L i ( 1) ;h 0 0.25L i ( 2) 0.5L i (
62 2012 4)4 3 : 1~4 3) 0.75L i ( 3 4(b) 4 2 : 4(a) 5 1 12 min 23 3 (467 m 2 ) 2 4 Fig.4 TransientSaturatedAreaandGroundwaterLevel 5 ChangingwithTimeDuringandAfterRainfal Fig.5 ChangingProcesofTransientSaturated AreawithTime
3 : 63 2 4 Fredlund [15] τf=c +(σa-u a ) ftan( φ )+(u a-u w ) ftan( φb )(8) :τf ;c φ ;(σa-u a ) f ; φb ;(u a- u w ) f Tab.2 2 TransientSaturatedAreasEigenvalues /h /m 2 1 6.0 467 2 5.0 505 3 4.5 550 4 2.5 580 (8) 4 6 a( 1) (8) ; 5 a (1) (2) ; (3) (4) ; 6 Fig.6 ChangesofMatricSuctionDuringRainfalProces
64 2012 : References: [J]. 200829(2):386-391. WU Chang-fuZHU Xiang-rongYIN Xiao-taoetal. [1]. [M]. : AnalysisofSoilSlope stransientstabilityunderin- tensiverainfal[j].rockandsoilmechanics200829 1999. (2):386-391. ZHANG You-tian.HighRockSlopeDeformationandIn- [9]. stability[m].beijing:china WaterPowerPress1999. [2] [J].. 2010(3):88-89. [J]. NIU Wen-mingGAO Wu-zhenYANG He-rong etal.thecorrelationanddiferenceofconsolidation 201133(3):306-310. TheoryBetweenSaturatedand UnsaturatedSoil[J]. XIONG WeiFAN WenDENG Long-shengetal. ScienceTechnicalInformation2010(3):88-89. Amendmentof Analytical Solution on Stability of [10] FREDLUND D GRAHADJO H. JointRock Slope Based on Finite Element Method [M].. : [J].Journalof Earth Sciences and Environment 1997. 201133(3):306-310. [3]. FREDLUND D GRAHADJO H.SoilMechanicsfor [J]. UnsaturatedSoils[M].TranslatedbyCHEN Zhong- 201234(1):104-110. yizhangzai-mingchen Yu-jiongetal.Beijing: ChinaArchitecture & BuildingPress1997. WANG A-danWANG Chang-yeLIPingetal.Reliabil- [11]. ity Analysisfor Stability of Loess Slopes Alongthe [J]. 2011 NorthernEdgeofBailuyuanXi an[j].journalofearth 33(3):300-305. SciencesandEnvironment201234(1):104-110. [4]. - LITong-luWANG Liu-huaZHANG Chang-liang [J]. etal.optimistic Method for 200324(3):381-384. Searching the Spatial CriticalSlipSurfaceofEarthSlopes[J].JournalofEarth TAN XinCHEN Shan-xiongYANG Ming.Satura- SciencesandEnvironment201133(3):300-305. ted-unsaturated Seepage Analysis of Slope Under [12]. [M]. : Rainfal[J].RockandSoil Mechanics200324(3): 2000. 381-384. [5]. GU Wei-ci.SeepageCalculationPrincipleand Appli- [J]. 200322(4): cation[m].beijing:chinabuilding MaterialsPress 2000. 625-629. [13]. QIGuo-qingHUANG Run-qiuSU Bao-yuetal.Nu- [J]. 2012 meric Simulation on RainfalInfiltration on Rock 34(1):72-78. Slope[J].ChineseJournalofRock MechanicsandEn- CHEN Jia-junWANG HaoQUAN Xiang-chun gineering200322(4):625-629. [6] etal.studyonan Analytical Modelforthe. [J]. Assess- 200829(4):1061-1066. mentofaccidentalpolution[j].journalofearthsci- encesandenvironment201234(1):72-78. LIU Li-lingYIN Kun-long.AnalysisofRainfalInfil- [14]. [M]. : tration Mechanism ofrainstorm Landslide[J].Rock 1988. andsoilmechanics200829(4):1061-1066. [7]. LEIZhi-dongYANG Shi-xiuXIE Sen-chuan.Soil [J]. Water Dynamics Parameter[M].Beijing:Tsinghua UniversityPress1988. 200625(2):355-362. [15] FREDLUND D GVANAPALLISKXING Aetal. TANG Ming-gaoXU QiangHUANG Run-qiuetal. Experimentand AnalysisofSuctionof Unsaturated PredictingtheShearStrengthFunctionforUnsaturat- ed Soils Usingthe Soil-water Characteristic Curve SoilinSlope[J].ChineseJournalofRock Mechanics andengineering200625(2):355-362. [C]//TRB.ProceedingsofFirstInternationalConfer- [8]. enceonunsaturatedsoils.paris:trb1995:189-193.