Multi-objective design of control chart for short-run production

Σχετικά έγγραφα
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Λέκτορας στο Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων, Πανεπιστήμιο Πειραιώς, Ιανουάριος 2012-Μάρτιος 2014.

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

Application of Statistical Process Control in Pretreatment Production Process of Gardenia jasminoides

ER-Tree (Extended R*-Tree)

A System Dynamics Model on Multiple2Echelon Control

CorV CVAC. CorV TU317. 1

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Quick algorithm f or computing core attribute

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

The optimization of EV powertrain s efficiency control strategy under dynamic operation condition

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

Arbitrage Analysis of Futures Market with Frictions

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

46 2. Coula Coula Coula [7], Coula. Coula C(u, v) = φ [ ] {φ(u) + φ(v)}, u, v [, ]. (2.) φ( ) (generator), : [, ], ; φ() = ;, φ ( ). φ [ ] ( ) φ( ) []

Motion analysis and simulation of a stratospheric airship

A research on the influence of dummy activity on float in an AOA network and its amendments

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

Research on real-time inverse kinematics algorithms for 6R robots

CAP A CAP

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

ΒΕΛΤΙΩΜΕΝΑ R ΑΠΟ M ΔΙΑΓΡΑΜΜΑΤΑ ΕΛΕΓΧΟΥ

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

Research on model of early2warning of enterprise crisis based on entropy

Analysis of energy consumption of telecommunications network and application of energy-saving techniques

Adaptive grouping difference variation wolf pack algorithm

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

Approximation Expressions for the Temperature Integral

Research on vehicle routing problem with stochastic demand and PSO2DP algorithm with Inver2over operator

ΔΘΝΙΚΗ ΥΟΛΗ ΓΗΜΟΙΑ ΓΙΟΙΚΗΗ ΚΑ ΔΚΠΑΙΓΔΤΣΙΚΗ ΔΙΡΑ ΣΔΛΙΚΗ ΔΡΓΑΙΑ

* * E mail : matsuto eng.hokudai.ac.jp. Zeiss

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Antimicrobial Ability of Limonene, a Natural and Active Monoterpene

Research on Economics and Management

Prey-Taxis Holling-Tanner

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

The toxicity of three chitin synthesis inhibitors to Calliptamus italicus Othoptera Acridoidea

MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Buried Markov Model Pairwise

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

Ανάλυση Προτιμήσεων για τη Χρήση Συστήματος Κοινόχρηστων Ποδηλάτων στην Αθήνα

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

ΑΝΑΠΤΥΞΗ ΣΕΝΑΡΙΩΝ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΚΑΙ ΤΗΣ ΥΔΡΟΗΛΕΚΤΡΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΤΟΥ ΥΔΡΟΣΥΣΤΗΜΑΤΟΣ ΤΟΥ ΠΟΤΑΜΟΥ ΝΕΣΤΟΥ

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΣΤΥΛΙΑΝΗΣ Κ. ΣΟΦΙΑΝΟΠΟΥΛΟΥ Αναπληρώτρια Καθηγήτρια. Τµήµα Τεχνολογίας & Συστηµάτων Παραγωγής.

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης

MSM Men who have Sex with Men HIV -

Analysis on construction application of lager diameter pile foundation engineering in Guangdong coastal areas

IL - 13 /IL - 18 ELISA PCR RT - PCR. IL - 13 IL - 18 mrna. 13 IL - 18 mrna IL - 13 /IL Th1 /Th2

Homomorphism in Intuitionistic Fuzzy Automata

AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

Εφαρμογή Υπολογιστικών Τεχνικών στη Γεωργία

1 h, , CaCl 2. pelamis) 58.1%, (Headspace solid -phase microextraction and gas chromatography -mass spectrometry,hs -SPME - Vol. 15 No.

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

ΠΕΡΙΛΗΨΗ. Λέξεις κλειδιά: Υγεία και συμπεριφορές υγείας, χρήση, ψυχότροπες ουσίες, κοινωνικό κεφάλαιο.

CLIMATE CHANGE IMPACTS ON THE WATER BALANCE OF SMALL SCALE WATER BASINS

Fenton. COD ρ NH N TP ENVIRONMENTAL PROTECTION OF CHEMICAL INDUSTRY

Congruence Classes of Invertible Matrices of Order 3 over F 2

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ.Ε.Ι.) ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΤΕΥΘΥΝΣΗ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

, Snowdon. . Frahm.

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Δυνατότητα Εργαστηρίου Εκπαιδευτικής Ρομποτικής στα Σχολεία (*)

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

Applying Markov Decision Processes to Role-playing Game

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙO ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

The Dos and Don ts of Control Charting Part II

,,, (, ) , ;,,, ; -

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

PLATEAU METEOROLOGY. X 6 min. 6 min Vol. 34 No. 4 August doi /j. issn X X / cosθcosφ P412.

Design Method of Ball Mill by Discrete Element Method

Technical and Economic Evaluation of a Road Project Application in the case of the new road axis Serres Kavala (E61)

«ΧΩΡΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΑΝΟΜΗΣ ΤΟΥ ΠΛΗΘΥΣΜΟΥ ΤΗΣ ΠΕΡΔΙΚΑΣ (ALECTORIS GRAECA) ΣΤΗ ΣΤΕΡΕΑ ΕΛΛΑΔΑ»

Το μέλλον των μεταφορών στην Ευρώπη: Οι προκλήσεις και η αντιμετώπιση τους

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

MIA MONTE CARLO ΜΕΛΕΤΗ ΤΩΝ ΕΚΤΙΜΗΤΩΝ RIDGE ΚΑΙ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell

Οικονοµετρική ιερεύνηση των Ελλειµµάτων της Ελληνικής Οικονοµίας

ΣΤΥΛΙΑΝΟΥ ΣΟΦΙΑ

Instruction Execution Times

Cite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare ( Massachusetts

Μαθαίνοντας µε την Τεχνολογία των Πολυµέσων Υπόσχεση ή Πραγµατικότητα;


ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. 1.3.Ξένες γλώσσες Αγγλικά πολύ καλά 1.4.Τεχνικές γνώσεις

Accounts receivable LTV ratio optimization based on supply chain credit

ΔΙΑΓΡΑΜΜΑΤΑ ΕΛΕΓΧΟΥ SHEWHART ΜΕ ΚΑΝΟΝΕΣ ΕΥΑΙΣΘΗΤΟΠΟΙΗΣΗΣ ΠΟΥ ΒΑΣΙΖΟΝΤΑΙ ΣΤΗ ΘΕΩΡΙΑ ΡΟΩΝ

ΕΛΕΓΧΟΣ ΚΑΙ ΤΡΟΦΟΔΟΤΗΣΗ ΜΕΛΙΣΣΟΚΟΜΕΙΟΥ ΑΠΟ ΑΠΟΣΤΑΣΗ

Investigation of ORP (Oxidation-Reduction Potential) Measurement on Sulfur Springs and Its Application on Hot Spring Waters in Nozawa Onsen

Transcript:

30 3 2015 6 JOURAL OF SYSTEMS EGIEERIG Vol.30 o.3 Jun. 2015 1,2,3, 1,2,3, 1,2,3 (1., 710049; 2., 710049; 3., 710049) : X.,., ;,. : ; ; ; : F253.3 : A : 1000 5781(2015)03 0297 09 doi: 10.13383/j.cnki.jse.2015.03.002 Multi-objective design of control chart for short-run production Li Chenglong 1,2,3, Su Qin 1,2,3, Zhang Pengwei 1,2,3 (1. School of Management, Xi an Jiaotong University, Xi an 710049, China; 2. State Key Laboratory for Manufacturing Systems Engineering, Xi an 710049, China; 3. The Key Lab of the Ministry of Education for Process Control & Efficiency Engineering, Xi an 710049, China) Abstract: Based on Markov chain this paper constructs and studies an X control chart model for short-run production which bases on Markov chain. A synthesis optimization is built considering cost per unit, production duration and defective percentage, while the existing relevant research only focuses on cost objective. A real production case study is carried out and indicates that multi-objective control chart is superior to economic control chart in most cases. Besides, the application of economic control chart easily induces the enterprise s short-term behavior under certain conditions, while the use of synthesis optimization can maximally avoid it. Key words: multi-objective; synthesis optimization; short-run; control chart design 1,.,,,.,,,,. : 2013 01 31; : 2013 10 10. : (70872091; 71371151).

298 30,.,,,.,, 1 3],., 4,5].,,,. Montgomery 6],.,,. Shamsuzzaman 7] X EWMA. Chen 8],,.,,,,, 9,10],,.,,. Hillier 11],,., 12,13]. Montgomery 14] X R, 4 6. Yang 15],X n = 1., enes 16] 17,18],.,,, (n 5), n = 1,2,...,5.,,,.,. X.,,,,,. 2,, T T U, Q Q U. m, n (0 n m), d,. : 1) ( ) X, X (µ,σ 2 ), µ {0,ε}. ( I, µ 1 = 0); 2) 1 ; 3) p, q = 1 p.,, ε, µ 2 = µ 1 + ε( II, )., 1 Duncan 19] Chiu 20],,.

3 : 299 ; 4), ; 5) +, i X i >, ; 6),,. 3, Ω = {(0,0),(0,1),(1, 0), (1,1),(2,0), (2, 1)}, (u,w), u : u = 0,., u = 0,u = 1, ( ), ; u = 2,,. w, w = 0, w = 1., ( i ) i 1, i 1., G (0,0),(0,0) G (0,0),(0,1) G (0,0),(2,0) G (0,0),(2,1) G (0,1),(0,0) G (0,1),(0,1) G (0,1),(2,0) G (0,1),(2,1) G m =......., (1) G (2,0),(0,0) G (2,0),(0,1) G (2,0),(2,0) G (2,0),(2,1) G (2,1),(0,0) G (2,1),(0,1) G (2,1),(2,0) G (2,1),(2,1) G m 6 6, m m.g (a),(b) a b,, G (0,0),(0,0) G (0,0),(1,0). G (0,0),(0,0) m, G (0,0),(0,0) = q m (1 α), (2) G (0,0),(1,0),, n G (0,0),(1,0) = (1 q m n )β+ τ i pq m n+i 1, (3) ( τ i = Φ (d (n i + 1)ε/n) / ) ( σ 2 /n Φ ( d (n i + 1)ε/n) / ) σ 2 /n, α β.. G (0,0),(0,0) G (0,0),(0,1) G (0,0),(1,0) G (0,0),(1,1) 0 0 G (0,0),(0,0) G (0,0),(0,1) G (0,0),(1,0) G (0,0),(1,1) 0 0 G m = 0 0 0 0 β 1 β. (4) G (0,0),(0,0) G (0,0),(0,1) G (0,0),(1,0) G (0,0),(1,1) 0 0 0 0 0 0 β 1 β G (0,0),(0,0) G (0,0),(0,1) G (0,0),(1,0) G (0,0),(1,1) 0 0

300 30 4 4.1,,,., : C i, ; C f,, ; C a,, ; C c,, ; C n,, ; L,,.,h p,h i, h f, h a ( ), h c. 4.2,,,,, ;,,,., C (u,w) = nc i + kh i L + η (u,w) C n + γ (u,w) (C c + h c L) + ( Ca + h a L (C a + h a L C f h f L)I (0) (u) ) I (1) (w), (5) T (u,w) = mh p + kh i + γ (u,w) h c + ( h a (h a h f )I (0) (u) ) I (1) (w), (6) k, k = 1.η (u,w) γ (u,w),η (u,w), γ (u,w)., γ (u,w),.,, C m = (C (0,0),C (0,1),C (1,0),C (1,1),C (2,0),C (2,1) ) T, T m = (T (0,0),T (0,1),T (1,0),T (1,1),T (2,0),T (2,1) ) T, η m = (η (0,0),η (0,1),η (1,0),η (1,1),η (2,0),η (2,1) ) T. m, m m.,,. m < m, n < m < m, n,, 0 < m n. π (0),, π (0) = 1 0 0 0 0 0]. π (i) = π (i 1) G m., π (i) C m, m = 0 C = π (i) C m + π C m, 0 < m n (7) π (i) C m + π G m C m, n < m < m,

3 : 301 π (i) η m, m = 0 Q = π (i) η m + π η m, 0 < m n (8) π (i) η m + π G m η m, n < m < m, π (i) T m + m h p, 0 m n T = π (i) T m + π G m T m, n < m < m, ] m m, C m η m. 4.3, (m,n,d),,. (C s,t s,q s ), Min {v C F(C) + v T F(T) + v Q F(Q)} s.t. (10) T T U Q Q U, F(C),F(T) F(Q) C,T Q ( ), v C,v T v Q, 21], v C + v T + v Q = 1.,,. (C e,t e,q e ) ( v C = 1,v T = v Q = 0), (C e,t e,q e ) = arg min {C}. (11) C, T Q; (10) (11),. (9) 5. 22], 5]..,, = 100, T 600, Q 2%, = 2.5. p = 0.01, ε = 2. C i = 0.2, C f = 1.5, C a = 50, C c = 4 C n = 12, L = 0.5, h p = 5, h i = 1, h f = 3, h a = 20, h c = 3.,. 5.1,. C, T Q.

302 30 1) 1, U,,. 2) 2,, U,,. 3),,. 1 3 : 1),.,,. 2),.,,,.,. C 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 n = 1 n = 2 n = 5 (n = 1) (n = 2) (n = 5) 0.9 500 520 540 560 580 600 620 640 T 1 Fig. 1 C T Cost per unit-production duration diagram C 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 n = 1 n = 2 n = 5 (n = 1) (n = 2) (n =5) 0.9 0 2% 4% 6% 8% 10% 12% Q Fig. 2 2 C Q Cost per unit-defective percentage diagram 14% 12% 10% n = 1 n = 2 n = 5 (n = 1) (n = 2) (n = 5) 8% Q 6% 4% 2% 0 500 520 540 560 580 600 620 640 T 3 Q T Fig. 3 Production duration-defective percentage diagram

3 : 303 5.2 23] :v C = 0.4,v T = 0.3, v Q = 0.3.,,. 1. : m(1 100), n(1 5), d(0 4). Table 1 1 Comparative results between economic optimization and synthesis optimization p ε C e T e Q e C s T s Q s C o T o Q o 0.187 0 501.1 1.49% 0.187 0 501.1 1.49% 0.181 1 500 1.51% ε = 1 : (100,1,4) : (100,1,4) 0.288 1 507.0 1.35% 0.291 5 505.9 1.44% 0.322 7 500 2.69% p = 0.001 ε = 2 : (24,4,1.2) : (32,5,1.1) 0.320 0 510.2 1.49% 0.327 5 508.8 1.36% 0.547 3 500 4.56% ε = 3 : (14,2,1.7) : (19,5,1.2) 0.392 9 501.7 3.04% 0.4232 512.1 1.89% 0.393 1 500 3.28% ε = 1 : (100,5,3.9) : (13,5,3.9) 0.944 0 536.2 0.97% 0.950 2 531.2 1.71% 1.472 2 500 12.27% p = 0.01 ε = 2 : (8,5,1.1) : (12,5,1) 1.054 5 543.8 1.08% 1.055 2 545.3 0.59% 3.183 3 500 26.53% ε = 3 : (6,4,1.2) : (6,5,1.1) 0.641 7 538.6 0.00% 0.641 7 538.5 0.00% 0.745 5 500 6.21% ε = 1 : (5,5,3.9) : (5,5,4) 1.850 4 604.6 0.00% / / / 3.382 7 500 28.19% p = 0.1 ε = 2 : (5,5,4) / 3.835 1 710.0 0.00% / / / 7.564 2 500 63.04% ε = 3 : (5,5,4) / : (10), /.,,.,. 33.3%(3/9 ) (T 600) (Q 2%),.,,,., 1, : 1) ( p = 0.001,ε = 1),, ; 2) ( p = 0.1,ε = 3),.,,,. 5.3,. 2(a) 2(b). 2,,,,.

304 30,. 2(a) Table 2(a) Results of sensitivity analysis C i C a C n 0.1 0.2 0.5 20 50 80 4 8 12 16 20 2(b) Table 2(b) Results of sensitivity analysis L h i h a 0 0.5 1 0.5 1 2 10 20 30 :,. 6,,,.,, X.,,,,.,.,,,.,,,,,.,.,,,. : 1] Balm J G, alina S. Project management with time, cost and quality considerationsj]. European Journal of Operation Research, 1998, 47(2): 243 266. 2] Khang D B, Myint Y M. Time, cost and quality trade-off in project management: A case studyj]. International Journal of Project Management, 1999, 13(9): 122 134. 3],,. J]., 2006, 26(7): 112 117. Yang Yaohong, Wang Yingluo, Wang engmin. Fuzzy tradeoff optimization of time-cost-quality in construction projectj]. Systems Engineering: Theory & Practice, 2006, 26(7): 112 117. (in Chinese)

3 : 305 4] Bakir M A, Altunkaynak B. The optimization with the genetic algorithm approach of the multi-objective, joint economical design of the X and R control chartsj]. Journal of Applied Statistics, 2004, 31(7): 753 772. 5] Shamsuzzaman M, Wu Z. Control chart design for minimizing the proportion of defective unitsj]. Journal of Manufacturing Systems, 2006, 25(4): 269 278. 6] Montgomery D C, Heikes R G, Mance J F. Economic design of fraction defective control chartsj]. Management Science, 1975, 21(11): 1272 1284. 7] Shamsuzzaman M, Wu Z. Design of EWMA control chart for minimizing the proportion of defective unitsj]. The International Journal of Quality & Reliability Management, 2012, 29(8): 953 969. 8] Chen Y K, Liao H C. Multi-criteria design of an X control chartj]. Computers & Industrial Engineering, 2004, 46(4): 877 891. 9] Makis V. Multivariate Bayesian control chartj]. Operations Research, 2008, 56(2): 487 496. 10] Ho L L, Anderson G T. Economic design of an X chart for short-run productionj]. International Journal of Production Economics, 2009, 120(2): 613 624. 11] Hillier F S. Chart control limits based on a small number of subgroupsj]. Industrial Quality Control, 1964, 20(8): 24 29. 12] enes G, Tagaras G. The economically designed CUSUM chart for monitoring short production runsj]. International Journal of Production Research, 2006, 44(8): 1569 1587. 13] Makis V. Multivariate Bayesian process control for a finite production runj]. European Journal of Operational Research, 2009, 194(3): 795 806. 14] Montgomery D C. Introduction to Statistical Quality ControlM]. ew York: John Wiley & Sons, 2009. 15] Yang M, Wu Z, Lee K M, et al. The X control chart for monitoring process shifts in mean and variancej]. International Journal of Production Research, 2012, 50(3): 893 907. 16] enes G, Tagaras G. The economically designed two-sided Bayesian X control chartj]. European Journal of Operational Research, 2007, 183(1): 263 277. 17],,. J]., 2012, 27(1): 111 118. Zhang Pengwei, Su Qin, Liu Weiyan. Economic design of a Bayesian chart for short-run productionj]. Journal of Systems Engineering, 2012, 27(1): 111 118. (in Chinese) 18],,. J]., 2013, 28(3): 387 393. Zhang Pengwei, Su Qin, Li Chenglong. Economically designed multivariate Bayesian control chart for short-run productionj]. Journal of Systems Engineering, 2013, 28(3): 387 393. (in Chinese) 19] Duncan A J. The economic design of X charts when there is a multiplicity of assignable causesj]. Journal of the American Statistical Association, 1971, 66(333): 107 121. 20] Chiu W K. Economic design of np charts for processes subject to a multiplicity of assignable causesj]. Management Science, 1976, 23(4): 404 411. 21],. J]., 1999, 14(3): 247 250. Da Qingli, Liu Xinwang. A weighted aggregate method for the fuzzy decision making of multiobjective linear programmingj]. Journal of Systems Engineering, 1999, 14(3): 247 250. (in Chinese) 22] Taguchi G, Elsayed E A, Hsiang T. Quality Engineering in Production SystemsM]. ew York: McGraw-Hill, 1989. 23],,. J]., 2004, 19(2): 148 153. Wang Jian, Liu Erlie, Luo Gang. Alalysis of time-cost-quality tradeoff optimization in construction project managementj]. Journal of Systems Engineering, 2004, 19(2): 148 153. (in Chinese) : (1989 ),,,, :, Email: Liassy@stu.xjtu.edu.cn; (1963 ),,,,, :,, Email: qinsu@mail.xjtu.edu.cn; (1985 ),,,, :, Email: kimi.2004@stu.xjtu.edu.cn. η (u,w) γ (u,w) n > 1 η (u,w) γ (u,w) : η (0,0) m n, ( 318 )