2010 30 16 4401 4407 Acta Ecologica Sinica 1 2 3 * 4 3 3 1. 100101 2. 422200 3. 330045 4. 100091 K Monte-Carlo Inhomogeneous spatial point pattern analysis of moso bamboo Phyllostachys edulis SHI Peijian 1 GUO Shiquan 2 YANG Qingpei 3 * WANG Bing 4 YANG Guangyao 3 FANG Kai 3 1 Institute of Zoology Chinese Academy of Sciences 2 Institute of Educational Science of Longhui County Hunan Province Longhui 422200 China 3 Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization Jiangxi Agricultural University Nanchang 330045 China 4 Institute of Forest Ecology Environment and Protection Chinese Academy of Forestry Beijing 100091 China Abstract Moso bamboo is a plant of significant economic importance. The study of moso spatial distribution is beneficial in order to calculate potential distribution patterns. The spatial distribution of a moso bamboo forest area comprising of varying levels of fertilization was researched using inhomogeneous spatial point pattern analysis. The results show a significant scattered distribution pattern without clustering formation. For obtaining the instensity of moso bamboo the quadratic equation in 2 variables is used to fit the observed data and the goodness-of-fit of moso bamboo instensity is statisfactory. This study illustrates the spatial distribution patterns of moso bamboo as well as the latent potential of varying levels of fertilizer on the spatial distribution of moso bamboo. This has particular significance when considering intensive management practices within bamboo plantations. Moreover in light of the lack of domestic ecosystems research considering heterogeneous point pattern analysis this research aims to extensively popularize the adoption of the methodology throughout domestic ecological research. Key Words inhomogeneous point pattern K function kernel estimation Monte-Carlo simulations moso bamboo 1 2 Ripley K 3 Ripley 2006ABD03A0703 GJJ08192 2009-07-11 2009-11-09 * Corresponding author. E-mail Qingpeiyang@ 126. com
4402 30 K CSR Diggle Chetwynd 4 Cuzick Edwards 5 Diggle Chetwynd 6 Baddeley 7 Ripley K K Diggle 8 Baddeley Gabriel Diggle 9 K 10 Phyllostachys edulis 11-13 1 1. 1 14 8 Diggle Chetwynd K ij K ij d = λ - 1 j E n ij n ij i d j d j = 1 j = 2 K 11 d K 22 d K k 11 d = k 22 d = k 12 d D d = K 11 d - K 22 d 0 0 D d 1 2 K^ 11 d = D^ d = K^ 11 d - K^ 22 d n1 n 1 n 1-1 i = 1 n 1 w ij I d ij d j = 1 3
16 K^ 22 d = K^ 12 d = n 2 n 2-1 n i = n 1 +1 n1 n n 1-1 n 2-1 n w ij I d ij d j = n 1 +1 i = 1 n n 2 w ij j = n 1 +1 + n 1 w ji I d ij d 4403 4 n 1 n 2 n w ij w ji I d ij d 1 0 Diggle Chetwynd D d r - 1 r - 1 D d D d k p k /r p 0. 05 - - 1. 2 K Baddeley Ripley K K Baddeley Diggle 8 λ x = lim dx 0 λ 2 x y = lim dx 0 dy 0 E N dx { dx } E { } g x y = λ 2 x y λ x λ y N dx N dy dx dy x y λ x 0 g x y = g x - y d K I d = 2π ug u du 0 K I d = πd 2 K I d > πd 2 K I d < πd 2 K I d K^ I d λ = 1 w ij I d ij d n i = 1 j 1 λ x i λ x j Baddeley λ^ h x = n i = 1 κ h x - x i /C h x C h x = A κ h x - u du κ h u = h - 2 κ u /h к u /h u h Baddeley λ^ h x j = n i = 1 i j 5 6 7 8 9 10 κ h x j - x i /C h x j 11 15-17 7 -
4404 30 2 2. 1 A = 0 31. 5 0. 46 45. 1 31. 35m 44. 64m 1 CSR 2009 1 409 2009 655 386 269 2009 1 1 2009 Fig. 1 B1 B2 2. 2 R 2. 7. 0 Splancs Spatstat 2. 3 2 D d Baddeley 3 B1 5m Spatial distribution of moso bamboo 2 D d B2 Fig. 2 Estimated D d of moso bamboo D d - 999 B1 B2 λ B1 x y = exp - 5. 050322237 + 0. 314012427x + 0. 111865394y - 0. 008244884x 2 + 0. 00161075xy - 0. 002888616y 2 λ B2 x y = exp - 3. 976412857 + 0. 267554501x + 0. 108162738y - 0. 007266459x 2 + 0. 001555068xy - 0. 002831286y 2 x y 4 2 P 0. 0837 0. 1906 0. 05 B2 P 4 B2 B1 B2 12
16 4405 Fig. 3 3 Estimated intensity surfaces a. B1 b. B1 c. B2 d. B2 B1 B2 Monte-Carlo 5 5 K I d 5b 5d K I d B2 10m 4 4 B2 Fig. 4 Goodness-of-fit of parametric estimate of intensity surface for group B2 Spatstat
4406 30 5 K I d Fig. 5 Estimated K I d and envelopes a. B1 K I d b. B1 K I d c. B2 K I d d. B2 K I d 999 1 /4 8m 3 18-20 K Adrian Baddeley Kathleen Buckingham
16 4407 References 1 Gatrell A C Bailey T C Diggle P J Rowlingson B S. Spatial point pattern analysis and its application in geographical epidemiology. Transactions of the Institute of British Geographers 1996 21 1 256-274. 2 Zhang J T. Analysis of spatial point pattern for plant species. Chinese Journal of Plant Ecology 1998 22 4 344-349. 3 Ripley B D. Modelling spatial patterns with discussion. Journal of the Royal Statistical Society Series B 1977 39 2 172-212. 4 Diggle P J Chetwynd A G. Second-order analysis of spatial clustering for inhomogeneous populations Biometrics 1991 47 3 1155-1163. 5 Cuzick J Edwards R. Spatial clustering for inhomogeneous populations with discussion. Journal of the Royal Statistical Society Series B 1990 52 1 73-104. 6 Bivand R Gebhardt A. Implementing functions for spatial statistical analysis using the R language. Journal of Geographical Systems 2000 2 3 307-317. 7 Baddeley A M ller J Waagepetersen R. Non- and semi-parametric estimation of interaction in inhomogeneous point patterns. Statistica Neerlandica 2000 54 3 329-350. 8 Diggle P J Gómez-Rubio V Brown P E Chetwynd A G Gooding S. Second-order analysis of inhomogeneous spatial point processes using casecontrol data. Biometrics 2007 63 2 550 557. 9 Gabriel E Diggle P J. Second-order analysis of inhomogeneous spatio-temporal point process data. Statistica Neerlandica 2009 63 1 43-51. 10 Diggle P J Chetwynd A G H ggkvist R Morris S E. Second-order analysis of space-time clustering. Statistical Methods in Medical Research 1995 4 2 124 136. 11 Zhou W W. An analysis of the influence of precipitation on the growth of bamboo forest. Journal of Bamboo Research 1991 10 2 33-39. 12 Li W C Sheng B Y Wang S D Zhong Z K. The response of moso bamboo seeds germination to temperature and light. Journal of Bamboo Research 2007 26 4 26-29. 13 Guo Z J Zou X H Liu J B Lin R F Wang Z Q. Study on effect of fertilization to moso bamboo plantation. China Forestry Science and Technology 2005 19 6 32-34. 14 Prince M I Chetwynd A Diggle P J Jarner M Metcalf J V James O F W. The geographical distribution of primary biliary cirrhosis in a welldefined cohort. Hepatology 2001 34 6 1083-1088. 15 Berman M Turner T R. Approximating point process likelihoods with GLIM. Applied Statistics 1992 41 1 31-38. 16 Baddeley A Turner R. Practical maximum pseudolikelihood for spatial point patterns with discussion. Australian and New Zealand Journal of Statistics 2000 42 3 283-322. 17 Baddeley A Turner R M ller J Hazelton M. Residual analysis for spatial point processes with discussion. Journal of the Royal Statistical Society Series B 2005 67 5 617-666. 18 Yang H X Zhang J T Wu B Li X S Zhang Y Y. Point pattern analysis of Artemisia ordosica population in the Mu Us sandy land. Journal of Plant Ecology 2006 30 4 563-570. 19 Xie J B Liu T Cui Y H Zhang Y H. Multispecies multi-patterns at multiple scales a case study of four shrubs at Mosuowan desert China. Acta Ecologica Sinica 2008 28 5 2176-2190. 20 Shi P J Ge F Yang Q P Wang J G. A new algorithm of the edge correction in the point pattern analysis and its application. Acta Ecologica Sinica 2009 29 2 804-809. 2.. 1998 22 4 344-349. 11.. 1991 10 2 33-39. 12.. 2007 26 4 26-29. 13. 2005 19 6 32-34. 18.. 2006 30 4 563-570 19.. 2008 28 5 2176-2190. 20.. 2009 29 2 804-809.