NLO BFKL and anomalous dimensions of light-ray operators

Σχετικά έγγραφα
Structure constants of twist-2 light-ray operators in the triple Regge limit

Solution of the NLO BFKL Equation and γ γ cross-section at NLO

AdS black disk model for small-x DIS

Duality Symmetry in High Energy Scattering

Reminders: linear functions

Spherical Coordinates

Homework 8 Model Solution Section

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Space-Time Symmetries

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

ECE 468: Digital Image Processing. Lecture 8

Srednicki Chapter 55

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Parametrized Surfaces

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Areas and Lengths in Polar Coordinates

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Three coupled amplitudes for the πη, K K and πη channels without data

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Review Exercises for Chapter 7

D Alembert s Solution to the Wave Equation

CRASH COURSE IN PRECALCULUS

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

1 String with massive end-points

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Fourier Analysis of Waves

Math221: HW# 1 solutions

Areas and Lengths in Polar Coordinates

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Example Sheet 3 Solutions

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

SPECIAL FUNCTIONS and POLYNOMIALS

EE512: Error Control Coding

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Matrices and Determinants

What happens when two or more waves overlap in a certain region of space at the same time?

Graded Refractive-Index

Second Order Partial Differential Equations

Durbin-Levinson recursive method

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

6.3 Forecasting ARMA processes

Numerical Analysis FMN011

Solutions to Exercise Sheet 5

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Answer sheet: Third Midterm for Math 2339

Laplace s Equation in Spherical Polar Coördinates

6.4 Superposition of Linear Plane Progressive Waves

Lifting Entry (continued)

Variational Wavefunction for the Helium Atom

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Geodesic Equations for the Wormhole Metric

Section 8.3 Trigonometric Equations

Finite difference method for 2-D heat equation

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Hartree-Fock Theory. Solving electronic structure problem on computers

derivation of the Laplacian from rectangular to spherical coordinates

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Κβαντική Χρωμοδυναμική και Κορεσμός Παρτονίων

d 2 y dt 2 xdy dt + d2 x

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

Finite Field Problems: Solutions

4.6 Autoregressive Moving Average Model ARMA(1,1)

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

Inverse trigonometric functions & General Solution of Trigonometric Equations

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Large β 0 corrections to the energy levels and wave function at N 3 LO

On the Galois Group of Linear Difference-Differential Equations

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Τύπος TAYLOR. f : [a, b] R f (n 1) (x) συνεχής x [a, b] f (n) (x) x (a, b) ξ μεταξύ x και x 0. (x x 0 ) k k! f(x) = f (k) (x 0 ) + R n (x)

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Mellin transforms and asymptotics: Harmonic sums

Andreas Peters Regensburg Universtity

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Local Approximation with Kernels

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Non-Gaussianity from Lifshitz Scalar

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Rectangular Polar Parametric

Trigonometric Formula Sheet

Differentiation exercise show differential equation

= df. f (n) (x) = dn f dx n

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

F19MC2 Solutions 9 Complex Analysis

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Α Ρ Ι Θ Μ Ο Σ : 6.913

Transcript:

NLO BFKL and anomalous dimensions of light-ray operators I. Balitsky JLAB & ODU (Non)Perturbative QFT 13 June 013 (Non)Perturbative QFT 13 June 013 1 /

Outline Light-ray operators. Regge limit in the coordinate space. BFKL representation of 4-point correlation function in N = 4 SYM. DGLAP representation of 4-point correlation function. Anomalous dimensions from DGAP vs BFKL representations. (Non)Perturbative QFT 13 June 013 /

Problem Gluon operators of leading twist O g n F i a n Fai Anomalous dimension (in gluodynamics) γ n = π α [ 1 sn c n(n 1) 1 (n + 1)(n + ) + ψ(n + 1) + γ E 11 ] + O(α 1 s ) (Non)Perturbative QFT 13 June 013 3 /

Problem Gluon operators of leading twist O g n F i a n Fai Anomalous dimension (in gluodynamics) γ n = π α [ 1 sn c n(n 1) 1 (n + 1)(n + ) + ψ(n + 1) + γ E 11 ] + O(α 1 s ) BFKL gives γ(nα s ) at the non-physical point n 1 γ n = [ A LO BFKL n NLO BFKL + ωbn +... ] ( α s N c ) n ω n 1 πω LO: Jaroszewicz (1980), NLO: Lipatov, Fadin, Camici, Ciafaloni (1998) (Non)Perturbative QFT 13 June 013 3 /

Problem Gluon operators of leading twist O g n F i a n Fai Anomalous dimension (in gluodynamics) γ n = π α [ 1 sn c n(n 1) 1 (n + 1)(n + ) + ψ(n + 1) + γ E 11 ] + O(α 1 s ) BFKL gives γ(nα s ) at the non-physical point n 1 γ n = [ A LO BFKL n NLO BFKL + ωbn +... ] ( α s N c ) n ω n 1 πω LO: Jaroszewicz (1980), NLO: Lipatov, Fadin, Camici, Ciafaloni (1998) ω = n 1 0 corresponds to F i a ω 1 Fai - some non-local operator. (Non)Perturbative QFT 13 June 013 3 /

Problem Gluon operators of leading twist O g n F i a n Fai Anomalous dimension (in gluodynamics) γ n = π α [ 1 sn c n(n 1) 1 (n + 1)(n + ) + ψ(n + 1) + γ E 11 ] + O(α 1 s ) BFKL gives γ(nα s ) at the non-physical point n 1 γ n = [ A LO BFKL n NLO BFKL + ωbn +... ] ( α s N c ) n ω n 1 πω LO: Jaroszewicz (1980), NLO: Lipatov, Fadin, Camici, Ciafaloni (1998) ω = n 1 0 corresponds to F i a ω 1 Fai - some non-local operator. Q: which one? A: gluon light-ray (LR) operator (Non)Perturbative QFT 13 June 013 3 /

Light-ray operators and parton densities Gluon light-ray (LR) operator of twist F a i(x + + x )[x +, x + ] ab F b i (x + + x ) Forward matrix element - gluon parton density z µ z ν p Fµξ(z)[z, a 0] ab Fν bξ (0) p µ z =0 = (pz) dx B x B D g (x B, µ) cos(pz)x B Evolution equation (in gluodynamics) µ d dµ Fa i(x + + x )[x +, x + ] ab F b i (x + + x ) = x + x + dz + z + x + 0 dz + K(x +, x + ; z +, z + ; α s )F a i(z + + x )[z +, z + ] ab F b i (z + + x ) Forward LR operator F(L +, x ) = dx + F i(l a + + x + + x )[L + + x +, x + ] ab F (x bi + + x ) (Non)Perturbative QFT 13 June 013 4 /

Light-ray operators and parton densities Expansion in ( forward ) local operators F(L +, x ) = n= Evolution equation for F(L +, x ) L n + (n )! Og n(x ), O g n dx + F i a n Fai (x +, x ) µ d dµ F(L +, x ) = γ n (α s ) = u 1 K gg - DGLAP kernel 0 0 du K gg (u, α s )F(uL +, x ) du u n K gg (u, α s ) µ d dµ Og n = γ n (α s )O g n u 1 K gg (u) = α ( [ sn c 1 ūu + π ūu] + 11 ) + 1 δ(ū) + higher orders in α s (Non)Perturbative QFT 13 June 013 5 /

Light-ray operators Conformal LR operator (j = 1 + iν) F µ (L +, x ) = F µ j (x ) = 0 dν π (L +) 3 +iν F µ 1 dl + L 1 j + F µ (L +, x ) +iν(x ) Evolution equation for forward conformal light-ray operators µ d dµ F j(z ) = γ j (α s ) is an analytical continuation of γ n (α s ) 0 du K gg (u, α s )u j F j (z ) (Non)Perturbative QFT 13 June 013 6 /

Conformal four-point amplitude in N = 4 SYM 4-point correlation function (CF) A(x, y, x, y ) = [(x y) (x y ) ] +γ k N c O(x)O(y)O(x )O(y ) O = φ a I φa I - Konishi operator (γ k - anomalous dimension) In a conformal theory the amplitude is a function of two conformal ratios A = F(R, R ) R = (x y) (x y ) (x x ) (y y ), R = (x y) (x y ) (x y ) (x y) At large N c A(x, y, x, y ) = A(g N c ) g N c = λ t Hooft coupling (Non)Perturbative QFT 13 June 013 7 /

Regge limit in the coordinate space Regge limit: x + ρx +, x + ρx +, y ρ y, y ρ y ρ, ρ z_ x +, x _, y _ y + z_ z + x, x _ y _, y _ Full 4-dim conformal group: A = F(R, r) R = (x y) (x y ) (x x ) (y y ) ρ ρ x + x +y y (x x ) (y y ) r = [(x y) (x y ) (x y) (x y ) ] (x x ) (y y ) (x y) (x y ) [(x y ) x +y + x +y (x y) + x +y (x y) + x +y (x y ) ] (x x ) (y y ) x +x + y y (Non)Perturbative QFT 13 June 013 8 /

4-dim conformal group versus SL(, C) Regge limit: x + ρx +, x + ρx +, y ρ y, y ρ y ρ, ρ z_ x +, x _, y _ y + z_ z + x, x _ y _, y _ Regge limit symmetry: -dim conformal group SL(, C) formed from P 1, P, M 1, D, K 1 and K which leave the plane (0, 0, z ) invariant. (Non)Perturbative QFT 13 June 013 9 /

Pomeron in a conformal theory f + (ω) = eiπω 1 sin πω Ω(r, ν) = A(x, y; x, y ) s = i dν f + (ℵ(λ, ν))f(λ, ν)ω(r, ν)r ℵ(λ,ν)/ - signature factor sin νρ sinh ρ, cosh ρ = r - solution of the eqn ( H3 + ν + 1)Ω(r, ν) = 0 The dynamics is described by: ℵ(λ, ν) - pomeron intercept, and F(λ, ν) - pomeron residue. L. Cornalba (007) (Non)Perturbative QFT 13 June 013 10 /

Pomeron in the conformal theory A(x, y; x, y ) s = i dν f + (ℵ(λ, ν))f(λ, ν)ω(r, ν)r ℵ(λ,ν)/ Pomeron intercept: ℵ(ν, λ) = λ [ λ χ(ν) + 4π 16π δ(ν)] + O(λ 3 ) χ(ν) = ψ(1) ψ( 1 + iν) ψ( 1 iν) = S 1( 1 + iν) + c.c. - BFKL intercept, δ(ν) = 3 ζ(3)+π ln + π 3 S 1( 1 +iν)+s 3( 1 +iν)+π S 1 ( 1 +iν) 4S,1( 1 +iν)+c.c. - NLO BFKL intercept S i (x) - harmonic sums Lipatov, Kotikov (000) Pomeron residue F(ν, λ): F 0 (ν) = π sinh πν 4ν cosh 3 πν F(ν, λ) = λ F 0 (ν) + λ 3 F 1 (ν) +... Cornalba, Costa, Penedones (007) F 1 (ν) = see below G. Chirilli and I.B. (009) (Non)Perturbative QFT 13 June 013 11 /

NLO Amplitude in N =4 SYM theory: factorization in rapidity x y x y x y Y A Y B <Y< Y A + +... Y B x y x y x y [(x y) (x y ) ] +γk T{Ô(x)Ô(y)Ô(x )Ô(y )} = d z 1 d z d z 1 d z IF a0 (x, y; z 1, z )[DD] a0,b0 (z 1, z ; z 1, z )IF b0 (x, y ; z 1, z ) a 0 = x+y+ (x y), b 0 = x y (x y ) impact factors do not scale with energy all energy dependence is contained in [DD] a0,b0 (a 0 b 0 = R) (Non)Perturbative QFT 13 June 013 1 /

NLO Amplitude in N =4 SYM theory: factorization in rapidity x y x y x y Y A Y B <Y< Y A + +... Y B x y x y x y [(x y) (x y ) ] +γk T{Ô(x)Ô(y)Ô(x )Ô(y )} = d z 1 d z d z 1 d z IF a0 (x, y; z 1, z )[DD] a0,b0 (z 1, z ; z 1, z )IF b0 (x, y ; z 1, z ) Dipole-dipole scattering χ(γ) C ψ(γ) ψ(1 γ) ( z ) 1 1 [DD] = dν dz +iν ( z ) 1 1 iν 0 z 10 z 0 z D( 1 + iν; λ)rω(ν)/ 10 z 0 D(γ; λ) = Γ( γ)γ(γ 1) Γ(1 + γ)γ( γ) { 1 λ [ χ(γ) 4π γ(1 γ) π 3 ] } + O(λ ) (Non)Perturbative QFT 13 June 013 1 /

NLO Amplitude in N =4 SYM theory: factorization in rapidity x y x y x y Y A Y B <Y< Y A + +... Y B x y x y x y [(x y) (x y ) ] +γk T{Ô(x)Ô(y)Ô(x )Ô(y )} = d z 1 d z d z 1 d z IF a0 (x, y; z 1, z )[DD] a0,b0 (z 1, z ; z 1, z )IF b0 (x, y ; z 1, z ) Result : (G.A. Chirilli and I.B., 010) F(ν) = N c 4π 4 α { s Nc 1 cosh 1 + α [ sn c π πν π π cosh πν 8 1 + 4ν ] } + O(αs ) (Non)Perturbative QFT 13 June 013 1 /

Light-cone OPE in Cornalba s formula [x1x 34] +γk O(x 1 )O(x )O(x 3 )O(x 4 ) = i dν tanh πν F(ν)Ω(r, ν)r 1 ℵ(ν) f + (ℵ(ν)) ν ℵ(ν) - pomeron intercept, f + (ω) = (e iπω 1)/ sin πω - signature factor Ω(r, ν) = ν sin νρ r π sinh ρ, cosh ρ = In the double limit (Regge) + (x 1 0) R = x 13 x x 1 x 34 x 1 + x + x 3 x 4 x 1 x 34 r x 1 + (x 3 x 14 x 4 x 13 ) x 1+ x + x 3 x 4 x 1 x 34 Ω(r, ν) ν ( r 1 π +iν r 1 iν) i (Non)Perturbative QFT 13 June 013 13 /

Light-cone limit of Cornalba s formula Cornalba s formula as x 1 0 [x 1x 34] +γk dx + dx 3 O(L + + x +, x 1 )O(x +, x )O(L + x 3, x )O(x 3, x 3 ) = iα s 8 π L + L 0 tanh πν ( x dudv dν 1 x 34 ūu vv ) 1 +iν ( L + L ūu vv ν cosh πν [x13 v + x 14 v] x 1 x 34 ) ℵ(ν)/f+ = iα s 8 π +i dv dξ f ( ℵ(ξ) ) ξ 1 1 0 i + iν ℵ(ξ) ( vv)1 ξ+ cos πξ B ( ξ + ℵ(ξ) ) ( x ) 1 x ξ 34 (ξ 1 ) sin3 πξ [x13 v + x 14 v]+ℵ(ξ) [x13 v + x 14 v] ℵ(ξ) (L + L ) 1+ℵ(ξ) = BFKL representation of the amplitude in the (Regge) + (x1 0) limit (Non)Perturbative QFT 13 June 013 14 /

Supermultiplet of twist- operators SU 4 singlet operators. (Korchemsky et al, 003) S 1n (z) = Og(z) n + n 1 n(n 1) 8 On λ (z) Oφ n 8 (z) S n (z) = Og(z) n 1 n(n + 1) 8 On λ (z) + Oφ n (z) S 3n (z) = Og(z) n n + (n + 1)(n + ) 4 On λ (z) Oφ n 8 (z) Oλ n (x ) = dx + i λ a n 1 σ λ a (x +, x ) Oφ n (z) = dx φa,i + n φ a,i (x +, x ) All operators have the same anomalous dimension γ S 1 n (α s ) γ n (α s ) = α s π N c[ψ(n 1) + C] + O(α s ), γ S n = γ S 1 n+1, γs 3 n = γ S 1 n+ (Non)Perturbative QFT 13 June 013 15 /

Supermultiplet of LR operators Gluino and scalar LR operators Λ(L +, x ) = i dx + [ λ a (L + + x + + x )[x + + x +, x + ] ab σ λ b (x + + x ) + c.c] Φ(L +, x ) = dx + φ a,i (L + + x + + x )[x + + x +, x + ] ab φ b,i (x + + x ) Λ j (x ) = 0 SU 4 singlet LR operators. dl + L j+1 + Λ(L +, x ), Φ j (x ) = 0 dl + L j+1 + Φ(L +, x ) S 1j (x ) = F j (x ) + j 1 8 Λ j(j 1) j(x ) Φ j (x ) 8 S j (x ) = F j (x ) 1 8 Λ j(j + 1) j(x ) + Φ j (x ) S 3j (x ) = F j (x ) j + 4 Λ (j + 1)(j + ) j(x ) Φ j (x ) 8 All operators have the same anomalous dimension γ S 1 j (α s ) γ j (α s ) = α s π N c[ψ(j 1) + C] + O(αs ), γ S j = γ S 1 j+1, γs 3 j = γ S 1 j+ (Non)Perturbative QFT 13 June 013 16 /

Three-point CF of LR operator and two locals Three-point correlation function of local operators (O = φ a I φa I - Konishi operator) (µ z 3) γ K S 1n (z 1 )O(z )O(z 3 ) = c n [1 + ( 1) n ] z 1 z 13 z 3 ( z1 z 1 z 13 z 13 x3 (µ x3 ) γ K dx 1+ S 1n (x 1+, x 1 )O(x, x )O(x 3, x 3 ) ) n ( µ z 3 z 1 z 13 ) 1 γ(n,αs) = πi c n[1 + ( 1) n ] Γ(1 + n + γ n ) ( x3 ) ( 1+ γn x 1 x3 4 Γ (1 + n + 1 γ + x ) 13 1 n γn n) x x 3 x x 3 CF of light-ray operator and two local operators x 3 (µ x 3 ) γ K S 1j (x 1 )O(x, x )O(x 3, x 3 ) = πi c j[1 + e iπj ] Γ(1 + j + γ j ) ( x3 ) γ 1+ j ( x x3 4 Γ (1 + j + 1 1 γ + x ) 13 1 j γj j) x x 3 x x 3 (Non)Perturbative QFT 13 June 013 17 /

Three-point CF of LR operator and two locals Proof: compare conformal Ward identities for dx + S 1n (x +, x ) and S 1j (x ) i[d, dx + S 1n (x +, x )] = vs i[d, Φ(x +, x ) Φ(x +, x )] = i[d, Φ j (x )] = [ j + 1 + (x x 0 ) i ( dx + x+ + n + + (x x 0 ) i x + [ 4 + x + + x + x + x i ] Φj (x ) x + x i + (x x 0 ) i ) S1n = (n + 1) dx + S 1n (x +, x ) x i ] Φ(x +, x ) Φ(x +, x ) Similarly i[k +, dx + Φ(x ) n Φ(x )] = 4 [ n + (x x 0 ) i x i ] dx + x + Φ(x ) n Φ(x ) vs i[k +, dx + ds + (s + ) j+1 Φ(x + + s + 0 + x ) Φ(x + s + + x )] = 4 [ j + (x x 0 ) ] i dx + x + ds + (s + ) j+1 Φ(x + + s + + x )Φ(x + s + + x ) x i 0 (Non)Perturbative QFT 13 June 013 18 /

Light-cone OPE CF of light-ray operator and two local operators in forward kinematics x3 (µ x3 ) γ K dx 3 S µ j (x 1 )O(L + x 3, x )O(x 3, x 3 ) = 0 du c(j, α s)[1 + e iπj ]L j [ (ūu)j ( ūuµ x ) 1 3 γ(j,αs) x 1 u + x13 ū] 1+j [x1 u + x13 ū] (Non)Perturbative QFT 13 June 013 19 /

Light-cone OPE CF of light-ray operator and two local operators in forward kinematics x3 (µ x3 ) γ K dx 3 S µ j (x 1 )O(L + x 3, x )O(x 3, x 3 ) = 0 du c(j, α s)[1 + e iπj ]L j [ (ūu)j ( ūuµ x ) 1 3 γ(j,αs) x 1 u + x13 ū] 1+j [x1 u + x13 ū] Limit x 3 0 (µ ) γ K dx 3 S j + (x 1 )O(L + x 3, x )O(x 3, x 3 ) = Γ( 1 + j + γ ) c(j, α s )[1 + e iπj ]L j Γ( + j + γ) (x1 ) 1+j (µ x1 (µ )γ(j,αs) ) γ(j,αs) (Non)Perturbative QFT 13 June 013 19 /

Light-cone OPE Light-ray operators in (+) and (-) directions: Φ + (L +, x ) = dx + φ a,i (L + + x + + x )[x + + x +, x + ] ab φ b,i (x + + x ) Φ + j (x ) = dl + L j+1 + Φ(L +, x ) 0 Φ (L, x ) = dx + φ a,i (L + x + x )[x + x, x ] ab + φ b,i (x + x ) Φ j (x ) = 0 dl L j+1 + Φ(L, x ) and similarly for Λ j s and G j s CF of two LRs : S + j= 3 +iν(x 1 )S j = 3 +iν (x 3 ) = δ(ν ν )a(j, α s ) (x 13 ) j+1 (x 13 µ ) γ(j,αs) (Non)Perturbative QFT 13 June 013 0 /

DGLAP represenation of 4-point CFs Light-cone OPE x1 (µ x1 ) γk dx 1+ O(L + + x +, x 1 )O(x +, x ) = +i dj c(j, α s )[1 + e iπj ]L+(µ j x 1 i 1 ) γ(j,αs) S j + (x 1 ) (Non)Perturbative QFT 13 June 013 1 /

DGLAP represenation of 4-point CFs Light-cone OPE x1 (µ x1 ) γk dx 1+ O(L + + x +, x 1 )O(x +, x ) = +i dj c(j, α s )[1 + e iπj ]L+(µ j x 1 i 1 ) γ(j,αs) S j + (x 1 ) DGLAP result (at x 1 0) µ 4 (µ 4 x 1x 34) +γk dx + dx 3 O(L + + x +, x 1 )O(x +, x )O(L + x 4, x 3 )O(x 4, x 4 ) (Non)Perturbative QFT 13 June 013 1 /

DGLAP represenation of 4-point CFs Light-cone OPE x1 (µ x1 ) γk dx 1+ O(L + + x +, x 1 )O(x +, x ) = +i dj c(j, α s )[1 + e iπj ]L+(µ j x 1 i 1 ) γ(j,αs) S j + (x 1 ) DGLAP result (at x 1 0) µ 4 (µ 4 x 1x 34) +γk dx + dx 3 O(L + + x +, x 1 )O(x +, x )O(L + x 4, x 3 )O(x 4, x 4 ) = +i dj C(j, α s )[1 + e iπj ]L+(µ j x 1 i 1 ) 1 γ(j,αs) S µ j (x )O(L + x 4, x 3 )O(x 4, x 4 ) (Non)Perturbative QFT 13 June 013 1 /

DGLAP represenation of 4-point CFs Light-cone OPE x1 (µ x1 ) γk dx 1+ O(L + + x +, x 1 )O(x +, x ) = +i dj c(j, α s )[1 + e iπj ]L+(µ j x 1 i 1 ) γ(j,αs) S j + (x 1 ) DGLAP result (at x 1 0) µ 4 (µ 4 x 1x 34) +γk dx + dx 3 O(L + + x +, x 1 )O(x +, x )O(L + x 4, x 3 )O(x 4, x 4 ) = = +i dj C(j, α s )[1 + e iπj ]L+(µ j x 1 i 1 ) 1 +i dj C(j, α s ) 1 i 0 dv [1 + eiπj ](L + L ) [ j ( x 1 v + x13 v] 1+j γ(j,αs) S µ j (x )O(L + x 4, x 3 )O(x 4, x 4 ) x 1 x 34 [x 13 v + x 14 v] ) 1 γ(j,αs) ( vv) j+ 1 γ(j,αs) (Non)Perturbative QFT 13 June 013 1 /

DGLAP vs BFKL for 4-point CFs DGLAP result (leading twist) µ 4 (µ 4 x 1x 34) +γk dx + dx 3 O(L + + x +, x 1 )O(x +, x )O(L + x 4, x 3 )O(x 4, x 4 ) = +i dj C(j, α s ) 1 i 0 dv [1 + eiπj ](L + L ) [ j ( x 1 v + x13 v] 1+j x 1 x 34 [x 13 v + x 14 v] ) 1 γ(j,αs) ( vv) j+ 1 γ(j,αs) (Non)Perturbative QFT 13 June 013 /

DGLAP vs BFKL for 4-point CFs DGLAP result (leading twist) µ 4 (µ 4 x 1x 34) +γk dx + dx 3 O(L + + x +, x 1 )O(x +, x )O(L + x 4, x 3 )O(x 4, x 4 ) = +i dj C(j, α s ) 1 i 0 dv [1 + eiπj ](L + L ) [ j ( x 1 v + x13 v] 1+j x 1 x 34 [x 13 v + x 14 v] ) 1 γ(j,αs) ( vv) j+ 1 γ(j,αs) BFKL result (ℵ(ξ, α s ) = αsnc π χ(ξ) +... - pomeron intercept) [x1x 34] +γk dx + dx 3 O(L + + x +, x 1 )O(x +, x )O(L + x 3, x )O(x 3, x 3 ) = iα s 8 π +i dv dξ f ( ℵ(ξ) ) ξ 1 1 0 i + iν ℵ(ξ) ( vv)1 ξ+ cos πξ B ( ξ + ℵ(ξ) ) ( x ) 1 x ξ 34 (ξ 1 ) sin3 πξ [x13 v + x 14 v]+ℵ(ξ) [x13 v + x 14 v] ℵ(ξ) (L + L ) 1+ℵ(ξ) (Non)Perturbative QFT 13 June 013 /

DGLAP vs BFKL for 4-point CFs DGLAP result (leading twist) µ 4 (µ 4 x 1x 34) +γk dx + dx 3 O(L + + x +, x 1 )O(x +, x )O(L + x 4, x 3 )O(x 4, x 4 ) = +i dj C(j, α s ) 1 i 0 dv [1 + eiπj ](L + L ) [ j ( x 1 v + x13 v] 1+j x 1 x 34 [x 13 v + x 14 v] ) 1 γ(j,αs) ( vv) j+ 1 γ(j,αs) BFKL result (ℵ(ξ, α s ) = αsnc π χ(ξ) +... - pomeron intercept) [x1x 34] +γk dx + dx 3 O(L + + x +, x 1 )O(x +, x )O(L + x 3, x )O(x 3, x 3 ) = iα s 8 π +i dv dξ f ( ℵ(ξ) ) ξ 1 1 0 i + iν ℵ(ξ) ( vv)1 ξ+ cos πξ B ( ξ + ℵ(ξ) ) ( x ) 1 x ξ 34 (ξ 1 ) sin3 πξ [x13 v + x 14 v]+ℵ(ξ) [x13 v + x 14 v] We compare these results around ξ j 1 0 ℵ(ξ) ℵ(ξ)ℵ (ξ) α sn c πξ +ζ(3)α s ξ 1 + ℵ(ξ, α s ) = j and γ(j, α s ) = ξ ℵ(ξ) +... γ j = α sn c π(j 1) ℵ(ξ) (L + L ) 1+ℵ(ξ) s N c α + [0 + ζ(3)(j 1)]( π(j 1) )) 3 +... (Non)Perturbative QFT 13 June 013 /

Result s N c γ j = α sn c α + [0 + ζ(3)(j 1)]( π(j 1) π(j 1) )) 3 +... is an anomalous dimension of light-ray operator F j F(x ) (Non)Perturbative QFT 13 June 013 3 /

Conclusions and Outlook 1 Conclusions: NLO BFKL gives anomalous dimensions of light-ray operators F +i ω 1 F+ i as ω 0 (in all orders in α s ) (Non)Perturbative QFT 13 June 013 /

Conclusions and Outlook 1 Conclusions: NLO BFKL gives anomalous dimensions of light-ray operators F +i ω 1 F+ i as ω 0 (in all orders in α s ) Outlook In QCD 3-point CF of F ω1 1 F(x 1 ) F ω 1 F(x ) F ω3 1 F(x 3 ) as ω 1, ω, ω 3 0 (joint project with V. Kazakov and E. Sobko): (Non)Perturbative QFT 13 June 013 /