1 Fuchs. Fuchs. Gauss (1.1) (α) n := α(α + 1) (α + n 1) Bessel Riemann. [MUI], [WW] Gauss. (1.2) x(1 x) d2 u dx 2 + ( γ (α + β + 1)x ) du

Σχετικά έγγραφα
Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

On the k-bessel Functions

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

The k-bessel Function of the First Kind

The k-α-exponential Function

Congruence Classes of Invertible Matrices of Order 3 over F 2

AN ELEMENTARY APPROACH TO THE GAUSS HYPERGEOMETRIC FUNCTION

ADE. 1 Introduction. (Ryo Fujita) Lie. U q (Lg) U(Lg) Dynkin. Dynkin. Dynkin. 4 A n (n Z 1 ), B n (n Z 2 ), C n (n Z 2 ), D n (n Z 4 )

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

Discriminantal arrangement

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

( ) 1.1. (2 ),,.,.,.,,,,,.,,,,.,,., K, K.

The ε-pseudospectrum of a Matrix

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Second Order Partial Differential Equations

Wishart α-determinant, α-hafnian

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

High order interpolation function for surface contact problem

N. P. Mozhey Belarusian State University of Informatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS

SPECIAL FUNCTIONS and POLYNOMIALS

Table 1. morphism U P 1 dominant (MMP) 2. dim = 3 (MMP) 3. (cf. [Ii77], [Miy01]) (Table 1) 3.

Diderot (Paris VII) les caractères des groupes de Lie résolubles

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

A summation formula ramified with hypergeometric function and involving recurrence relation

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ

Single-value extension property for anti-diagonal operator matrices and their square

The q-commutators of braided groups

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

L p approach to free boundary problems of the Navier-Stokes equation

Math-Net.Ru Общероссийский математический портал

CRASH COURSE IN PRECALCULUS

Τίτλος Μαθήματος: Ειδικές Συναρτήσεις

Γεώργιος Ακρίβης. Προσωπικά στοιχεία. Εκπαίδευση. Ακαδημαϊκές Θέσεις. Ηράκλειο. Country, Ισπανία. Λευκωσία, Κύπρος. Rennes, Γαλλία.

. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u

GAUSS-LAGUERRE AND GAUSS-HERMITE QUADRATURE ON 64, 96 AND 128 NODES

EE512: Error Control Coding

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul p q -φ. p q

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

A General Note on δ-quasi Monotone and Increasing Sequence

11 Drinfeld. k( ) = A/( ) A K. [Hat1, Hat2] k M > 0. Γ 1 (M) = γ SL 2 (Z) f : H C. ( ) az + b = (cz + d) k f(z) ( z H, γ = cz + d Γ 1 (M))

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

GegenbauerC3General. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Differential equations

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Prey-Taxis Holling-Tanner

ΜΑΡΙΑ Χ. ΠΑΠΑΤΡΙΑΝΤΑΦΥΛΛΟΥ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

Ευρετικές Μέθοδοι. Ενότητα 3: Ευρετικές μέθοδοι αρχικοποίησης και βελτίωσης για το TSP. Άγγελος Σιφαλέρας. Μεταπτυχιακό Εφαρμοσμένης Πληροφορικής

Partial Differential Equations in Biology The boundary element method. March 26, 2013

[I2], [IK1], [IK2], [AI], [AIK], [INA], [IN], [IK2], [IA1], [I3], [IKP], [BIK], [IA2], [KB]

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

: 1. 10:20 12:40. 12:50 13:50 14:00 14:50 15:00 16:30 Selberg ( ) 18:45 20:00 20:15 21:45 Selberg ( ) 7:00 9:00

The Simply Typed Lambda Calculus

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Homomorphism in Intuitionistic Fuzzy Automata

Lecture 10 - Representation Theory III: Theory of Weights


Lecture 13 - Root Space Decomposition II

Matrices and Determinants

On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University)

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Wavelet based matrix compression for boundary integral equations on complex geometries

Θεοδώρα Θεοχάρη Αποστολίδη

Mesh Parameterization: Theory and Practice

f O(U) (f n ) O(Ω) f f n ; L (K) 0(n )

Cyclic or elementary abelian Covers of K 4

ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ελευθερίου Β. Χρυσούλα. Επιβλέπων: Νικόλαος Καραμπετάκης Καθηγητής Α.Π.Θ.

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Example Sheet 3 Solutions

M a t h e m a t i c a B a l k a n i c a. On Some Generalizations of Classical Integral Transforms. Nina Virchenko

Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ±

ADVANCED STRUCTURAL MECHANICS

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Probabilistic Approach to Robust Optimization

n+1 v x x 3 u2 1 + u2 2 1 ) + 1 (u 1, u 2 ) = 1 v2 1 ) (v 1, v 2 ) =


ΚΩΝΣΤΑΝΤΙΝΟΣ Σ. ΠΟΛΙΤΗΣ Διπλ. Φυσικός Πανεπιστημίου Πατρών Υποψήφιος Διδάκτωρ Ε.Μ.Π. ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

( [T]. , s 1 a as 1 [T] (derived category) Gelfand Manin [GM1] Chapter III, [GM2] Chapter 4. [I] XI ). Gelfand Manin [GM1]

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

Lecture 16 - Weyl s Character Formula I: The Weyl Function and the Kostant Partition Function

Discretization of Generalized Convection-Diffusion

Trace evaluation of matrix determinants and inversion of 4 4 matrices in terms of Dirac covariants

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

Minimal Surfaces PDE as a Monge Ampère Type Equation

ON INTEGRAL MEANS FOR FRACTIONAL CALCULUS OPERATORS OF MULTIVALENT FUNCTIONS. S. Sümer Eker 1, H. Özlem Güney 2, Shigeyoshi Owa 3

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

IUTeich. [Pano] (2) IUTeich

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

Transcript:

Fuchs Kac-Moody root 1 Gauss 1. Fuchs (1.1) F (α, β, γ; x) = n=0 (α) n (β n ) x n (γ) n n!, (α) n := α(α + 1) (α + n 1) Bessel Riemann [MUI], [WW] Gauss (1.2) x(1 x) d2 u dx 2 + ( γ (α + β + 1)x ) du dx αβu = 0 1 Fuchs Fuchs n n Riemann P 1 (C) {c 0,..., c p } X 1. X U U O(U) n n F(U), U F(U) F (1.3) X U V : = F(V ) = F(U) V 2. F(U) 0 F(U) u(x) C, N, ɛ (1.4) u(x) < C x N (0 < x < ɛ) U {x C ; e iθ x / R + } θ R 3. n n 1 Wronskian X F(U) Wronskian X c 0 = 1 2010 1

F P P u = 0 (1.5) ( p P = (x c j ) n) d n n 1 dx n + ( p a k (x) (x c j ) k) d k dx k, k=0 a k (x) C[x], deg a k (x) (n k)(p 1). Fuchs 2. F(U) P u = 0 u 1 (x),...,u n (x) u ν (x) x λ ν log k ν x. (λ ν, k ν ) (ν = 1,..., n). {λ ν ; ν = 1,..., n} {0, 1,..., n 1} Gauss, 0, 1, {α, β}, {0, 1 γ}, {0, γ α β} Riemann scheme (2.1) x = x = 0 x = 1 α 0 0 ; x β 1 γ γ α β F ũ = (ũ 1,..., ũ n ) c j γ j M j M j (2.2) q γ 3 γ 0 γ γ 2 1 c 0 c 1 c 2 γ i γ j (ũ) = γ j (ũm i ) = γ j (ũ)m i = ũm j M i, M p M p 1 M 1 M 0 = I n. c j λ j,1,..., λ j,n M j e 2πiλ j,1,..., e 2πiλ j,n λ j,ν λ j,ν / Z (1 ν < ν n) M j Fuchs (α 1 ) ν (α n ) ν (2.3) nf n 1 (α 1,..., α n, β 1,..., β n 1 ; x) = (β 1 ) ν (β n 1 ) ν ν! xν, 0, 1 1 n 1 1 0, 1,..., n 2 2 ν=0

Jordan-Pochhammer, c j p + 1 p, c j j = 1,..., p) 0,..., p 2 p 1 λ, λ + 1,..., λ + p 1 λ x λ p 1 2.1. c j {[λ j,1 ] (mj,1),..., [λ j,nj ] (mj,nj )} (2.4) {λ j,ν + k ; k = 0,..., m j,ν 1, ν = 1,..., n j } (2.5) λ j,ν λ j,ν / Z n = m j,1 + + m j,nj λ j,ν = λ j,1 (ν = 2,..., n j ) (2.4) Jordan n m j,1 + + m j,nj dual [Os5] Riemann scheme x = c 0 c 1 c p [λ 0,1 ] (m0,1 ) [λ 1,1 ] (m1,1 ) [λ p,1 ] (mp,1 ) (2.6) {λ m } :=..... ; x [λ 0,n0 ] (m0,n0 ) [λ 1,n1 ] (m1,n1 ) [λ p,np ] (mp,np ) p + 1 n (2.7) n = m j,1 + + m j,nj (j = 0,..., p) F P Jordan-Pochhammer Riemann scheme x = 0 1 (2.8) (2.9) 1 β 1 [0] (n 1) α 1.. ; x, n α ν = ν=1 n β ν, ν=1 1 β n 1 α n 1 0 β n α n x = c 1 c p [λ 0] (p 1) [0] (p 1) [0] (p 1) ; x, (p 1)λ 0 + λ 0 λ 1 λ p p λ j = p 1 j=0 1 n, n 11, 1 n p 11, p 11,, p 11 }{{} p+1 n = 2, p = 2 Gauss 11, 11, 11 3

m = {m j,ν } 0 j p 1 ν n j (2.10) m j,ν = nδ ν,1, n j = 1 n p + 1 n = ord m (j > p), m j,ν = 0 (ν > n j ). 2.2. {λ m } Fuchs Riemann scheme (GRS) Fuchs (FC) n p j (2.11) {λ m } := m j,ν λ j,ν ord m + idx m = 0. (2.12) (2.13) j=0 ν=1 ( p idx(m, m ) := lim p j=0 ν=1 idx m := idx(m, m). m j,ν m j,ν (p 1) ord m ord m ),. m Fuchs (FC) generic λ j,ν GRS) {λ m } F Fuchs m irreduciblyrealizable Fuchs 3. Kac-Moody root (3.1) I := {0, (j, ν) ; j = 0, 1,..., ν = 1, 2,...}. α i (i I) h s i W Kac-Moody root (Π, W ) α i W Weyl (3.2) Π = {α i ; i I} = {α 0, α j,ν ; j = 0, 1, 2,..., ν = 1, 2,...}. (3.3) (3.4) I := I \ {0}, Π := Π \ {α 0 }, Q := α Π Zα Q + := α Π Z 0 α. (3.5) (α α) = 2 (α Π), (α 0 α j,ν ) = δ ν,1, 0 (i j or µ ν > 1), (α i,µ α j,ν ) = 1 (i = j and µ ν = 1). 4 α 0 α 0,1 α 0,2 α 1,1 α 1,2 α 2,1 α 2,2 α 3,1 α 3,2

(α α) 0 α h s α (3.6) (3.7) s α : h x x 2 (x α) (α α) α h, s i = s αi for i I. = re im + = Q + (3.8) (3.9) (3.10) re := W Π (), re + := re Q +, im + := W B () B := {β Q + ; supp β is connected and (β, α) 0 im := im + im, im := im +. ( α Π)}, w W, α Q (3.11) (3.12) (3.13) (w) + := re + w 1 re, L(w) := # (w) +, h(α) := n 0 + n j,ν for α = n 0 α 0 + n j,ν α j,ν Q. j 0 ν 1 j 0 ν 1 w = s i1 s i2 s ik i ν I w W minimal expression (3.14) (w) + = { α ik, s ik (α ik 1 ), s ik s ik 1 (α ik 2 ),..., s ik s i2 (α i1 ) }. α + wα B {α 0 } w W w (α) + := (w) + h (3.15) (3.16) (3.17) (3.18) (3.19) h := {Λ = λ i α i Cα i ; λ j,1 = 0 (j 1)}, i I i I Λ 0 := 1 2 α 0 + 1 2 i=ν+1 (1 ν)α j,ν, j=0 ν=1 Λ j,ν := (i ν)α j,i (j = 0,..., p, ν = 0, 1, 2,...), Λ 0 := 2Λ 0 2Λ 0,0 = α 0 + (1 + ν)α 0,ν + (1 ν)α j,ν, ν=1 ν=1 Λ 0 j,k := Λ j,0 Λ k,0 = ν(α k,ν α j,ν ) (0 j < k). ν=1 (3.20) (3.21) (3.22) (Λ 0 α) = (Λ 0 j,k α) = 0 ( α Π), (Λ j,ν α j,ν ) = δ j,j δ ν,ν (j, j = 0, 1,..., ν, ν = 1, 2,...), (Λ j,0 α i ) = δ i,0 ( i Π). 5

4. reduction. u(x) (x c j ) λj u(x) (4.1) Ad ( (x c j ) λ j ) : x x, (x c j ) d dx (x c j) d dx λ j addition gauge fractional Euler (4.2) u(x) µ u(x) = 1 Γ(µ) (4.3) µ : d dx d dx, x c j (x s) µ 1 u(s)ds x d dx x d dx µ Weyl. Weyl P P u(x) = 0 u(x) u(x) v(x) v(x) Qv(x) = 0 Q Weyl. P (2.6) GRS (1.5) Fuchs addition Ad ( ) (x c j ) λ j l = (l0,..., l p ) Z p+1 0 Euler (4.4) l P := Ad ( p p (x c j ) λ j,l j ) (x c j ) m j,l j d l (m) m 0,l 0 Ad( 1 λ 0,l0 λ p,l p ) (p 1)n m 1,l 1 m p,l p a 1 n (x) n (x c j ) n m ( p j,l j Ad (x c j ) λ j,l j )P. d l (m) := m 0,l0 + + m p,lp (p 1) ord m. l P m = l m, GRS {λ m } = l{λ m } λ j,ν Fuchs generic (4.5) m j,ν = m j,ν δ ν,lj d l (m), λ j,ν = λ j,ν + (1 δ ν,lj 2δ j,0 )µ, µ = λ 0,l0 + + λ p,lp 1 (4.6) ord l m = ord m d l (m). m j,lj 0 l m ord l m d l (m) l l l max (m) (4.7) m j,lmax (m) j = max{m j,1,..., m j,nj } max m = lmax(m)(m) d max (m), max {λ m } max P m irreducibly realizable K reduction (4.8) ord m > ord max m > ord 2 maxm > > ord K maxm, ord K m = 1 or d max ( K maxm) 0. 6

{λ m } Kac-Moody Schlesinger [CB] (4.9) α l := α 0 + l j 1 j=0 ν=1 α m := ord m α 0 + Λ(λ) := Λ 0 + p j=0 ν=1 α j,ν re +, p j=0 ν=1 i=ν+1 m j,i α j,ν Q +, λ j,ν (Λ j,ν 1 Λ j,ν ) h := h /CΛ 0. { Pm : Fuchs with {λ m } } { } (Λ(λ), α m ) ; α m + l, addition W -action, +τλ 0 0,j { Pm : Fuchs with {λ m } } { (Λ(λ), α m ) ; α m + }. P m Kac-Moody root system α m m : rigid α re + : supp α α 0 m : monotone α Q + : (α β) 0 ( β Π ) m : realizable kα : k Z >0, α +, supp α α 0 m : irreducibly realizable α +, supp α α 0 indivisible or (α α) < 0 m : basic and monotone α Q + : (α β) 0 ( β Π) indivisible α + : (α α m ) = 1 ( α (m) + ) m: simply reducible and monotone (α β) 0 ( β Π ) (α α 0 ) > 0, α α 0, indivisible ord m n 0 : α = n 0 α 0 + i,ν n i,να i,ν idx(m, m ) (α m α m ) l s αl {λ m } (Λ(λ), m) {λ m } (Λ(λ) + 1 2 α m α m ) 4.1 ( [Os5]). m irreducibly realizable {λ m } GRS (1.5) P m (λ, g 1,..., g N ) Fuchs λ j,ν generic m simply reducible {λ m } GRS Fuchs (g 1,..., g N ) C N g 1,..., g N (4.10) N = 1 1 2 idx m. P m (λ, g) (x, λ, g) g i 1 g i x ν dj dx j 7

irreducibly realizable m idx m = 2 rigid m indivisible {m j,ν } 1 basicindivisible d max (m) 0 monotone m j,1 m j,2 m j,3 m idx m (cf. [Os3]). idx m = 0 affine root D 4, Ẽ6, Ẽ7, Ẽ8 4 cf. [Ko]idx m = 2 13 [Os3] irreducible realizable m reduction (4.8) (4.11) ord i maxm = ord i 1 maxm 1 (i = 1,..., K) m simply reducible simply reducible non-rigid m idx m (cf. [Os5]) rigid simply reducible 21111, 222, 33 Simpson in [Si] (cf. [MWZ]) order type name partitions n H n hypergeometric family 1 n, 1 n, n 11 2m EO 2m even family 1 2m, mm 11, mm 2m + 1 EO 2m+1 odd family 1 2m+1, mm1, m + 1m 6 X 6 extra case 111111, 222, 42 rigid m ord m 6 49 10 306 20 10269 5. [Os5] or reduction (5.1) P m (λ)u = 0 5.1 (). m irreducible realizable (5.1) (5.2) (Λ(λ) α) / Z ( α (m) + ). (5.3) (m) + := (α m ) +. c 0 = 0, c 1 = 1m 0,n0 = 1 x = 0 u 0,n0 x λ 0,n 0 1 x = 1 u 1,n1 (1 x) λ 1,n 1 c(λ 0,n0 λ 1,n1 ). 5.2 (). l 0 n 0, l 1 n 1 l Z p 1 {λ m } = l{λ m } P m (λ )v = 0 c (λ 0,n 0 λ 1,n 1 ) (5.4) c (λ 0,n 0 λ 1,n 1 ) Γ(λ 0,n 0 λ 0,1 + 1)Γ(λ 1,1 λ 1,n 1 ) = c(λ 0,n0 λ 1,n1 ) Γ(λ 0,n0 λ 0,1 + 1)Γ(λ 1,1 λ 1,n1 ). 8

m rigid m 1,n1 = m 2,n2 = 1 c(λ 1,n1 λ 2,n2 ) cf. (4.8) (4.8) {λ(k) m(k) } = k max{λ m } k = 0,..., Kλ(k) j,max = λ(k) j,lmax (m(k)) j 5.3 (). m rigid m 1,n1 = 1, c 0 =, c 1 = 1 x = 0 λ 1,n1 u(x) u(x) u(x) x λ1,n 1 (5.5) (5.6) u(x) := K 1 k=0 s0 0 K 1 k=0 Γ ( λ(k) 1,n1 λ(k) 1,max + 1 ) Γ ( λ(k) 1,n1 λ(k) 1,max + µ(k) + 1 ) Γ ( µ(k) ) sk 1 K 1 0 s λ(k) 1,n 1 K (s k s k+1 ) µ(k) 1 k=0 ( ( sk s k+1 ) λ(k)1,max p j=2 p j=2 p ( = x λ 1,n 1 1 x ) λ(0)j,max c j K 1 i=0 K j=2 ( 1 c 1 j s k ) ) λ(k)j,max 1 c 1 j s k+1 ( 1 s ) K λ(k)j,max s0 dsk ds 1 c j =x (ν j,k ) 2 j p Z (p 1)K 0 1 k K ( λ(i)1,n1 λ(i) 1,max + 1 ) p s=2 K t=i+1 ν s,t ( λ(i)1,n1 λ(i) 1,max + µ(i) + 1 ) p i=1 s=2 ( ) p λ(i 1)s,max λ(i) s,max ν s,i! ν s,i s=2 K t=i+1 ν s,t p s=2 ( x c s ) K i=1 ν s,i. 5.4 (). m rigid m j,nj = 1 j = 0, 1, 2, c 0 = (5.7) ɛ j,ν = δ j,1 δ ν,n1 δ j,2 δ ν,n2, ɛ j,ν = δ j,0 δ ν,n0 δ j,2 δ ν,n2 j = 0,..., p, ν = 1,..., n j. u λ (x) (5.1) x = c 1 λ j,ν generic (5.8) u λ (x) (x c 1 ) λ1,n 1 (5.9) K 1 u λ (x) = u λ+ɛ (x) + (c 1 c 2 ) ν=0 λ(ν + 1) 1,n1 λ(ν) 1,l(ν)1 + 1 λ(ν) 1,n1 λ(ν) 1,l(ν)1 + 1 u λ+ɛ (x). cf. [Os2], [Os6] Gauss (1.2) α, β, α γ, β γ / Z Gauss F (α, β, γ; 1) = Γ(γ)Γ(γ α β) Γ(γ α)γ(γ β) 9

F (α, β, γ; x) = 3 Γ(γ) Γ(α)Γ(γ α) x 0 x γ+1 (x s) α+γ 1 s α 1 (1 s) β ds F (α + 1, β, γ; x) F (α, β, γ; x) = βx F (α + 1, β + 1, γ + 1; x) γ References [CB] W. Crawley-Boevey, On matrices in prescribed conjugacy classes with no common invariant subspaces and sum zero, Duke Math. J. 118 (2003), 339 352. [DG] M. Dettweiler and S. Reiter, An algorithm of Katz and its applications to the inverse Galois problems, J. Symbolic Comput. 30 (2000), 761 798. [DG2], Middle convolution of Fuchsian systems and the construction of rigid differential systems. J. Algebra 318 (2007), 1 24. [Ha] Y. Haraoka, Integral representations of solutions of differential equations free from accessory parameters, Adv. Math. 169 (2002), 187 240. [Ha2], 7,, 2002. [HF] Y. Haraoka and G. M. Filipuk, Middle convolution and deformation for Fuchsian systems, J. Lond. Math. Soc. 76 (2007), 438 450. [Kc] V. C. Kac, Infinite dimensional Lie algebras, Third Edition, Cambridge Univ. Press 1990. [Ka] N. M. Katz, Rigid Local Systems, Annals of Mathematics Studies 139, Princeton University Press, 1995. [Ko] V. P. Kostov, The Deligne-Simpson problem for zero index of rigidity, Perspective in Complex Analysis, Differential Geometry and Mathematical Physics, World Scientific 2001, 1 35. [MWZ] P. Magyar, J. Weyman and A. Zelevinski, Multiple flag variety of finite type, Adv. in Math. 141 (1999), 97 118. [MUI] III 1960 [Os1] T. Oshima, Heckman-Opdam hypergeometric functions and their specializations, Harmonische Analysis und Darstellungstheorie Topologischer Gruppen, Mathematisches Forschungsinstitut Oberwolfach, Report 49 (2007), 38 40. [Os2], Okubo, a computer program for Katz/Yokoyama/Oshima algorithms on MS- Windows, ftp://akagi.ms.u-tokyo.ac.jp/pub/math/okubo/okubo.zip, 2007-8. [Os3], Classification of Fuchsian systems and their connection problem, arxiv:0811.2916, preprint, 2008, 29pp. [Os4], Katz s middle convolution and Yokoyama s extending operation, arxiv:0812.1135, 2008, 18pp. [Os5], Fractional calculus of Weyl algebra and Fuchsian differential equations, preprint, 176pp, http://akagi.ms.u-tokyo.ac.jp/~oshima. [Os6], muldif.rr, a library of the calculation of differential operators for computer algebra Risa/Asir, ftp://akagi.ms.u-tokyo.ac.jp/pub/math/muldif/, 2009-2010. [Si] C. T. Simpson, Products of Matrices, Canadian Math. Soc. Conference Proceedings 12, AMS, Providence RI (1991), 157 185. [Si2], Katz s middle convolution algorithm, 53 pp, arxiv:math/0610526. [WW] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Fourth Edition, 1927, Cambridge University Press. [Yo] T. Yokoyama, Construction of systems of differential equations of Okubo normal form with rigid monodromy, Math. Nachr. 279 (2006), 327 348. 10