[1] DNA ATM [2] c 2013 Information Processing Society of Japan. Gait motion descriptors. Osaka University 2. Drexel University a)

Σχετικά έγγραφα
Gait Identification Using a View Transformation Model in the Frequency Domain

Adaptive Acceptance Threshold Control using Matching Distances with Confidence Values for ROC Curve Optimization

Comparison of Discriminant Analysis in Ear Recognition

ΤΕΙ ΘΕΣΣΑΛΙΑΣ. Αναγνώριση προσώπου με επιλογή των κατάλληλων κυρίων συνιστωσών. ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε ΚΑΒΒΑΔΙΑ ΑΛΕΞΑΝΔΡΟΥ.

(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

ΑΡΧΙΜΗ ΗΣ - ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑ ΩΝ ΣΤΑ ΤΕΙ. Υποέργο: «Ανάκτηση και προστασία πνευµατικών δικαιωµάτων σε δεδοµένα

ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ

A High Precision Iris Feature Extraction and Its Application in Iris Recognition

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

ΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ


Μοντελοποίηση της Οπτικής Προσοχής Visual Attention Modeling

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

Anomaly Detection with Neighborhood Preservation Principle

Detection and Recognition of Traffic Signal Using Machine Learning


Speeding up the Detection of Scale-Space Extrema in SIFT Based on the Complex First Order System

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

Method to Distinguish between Handwritten and Machine-printed Characters Inspired by Human Vision System

ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΑΛΓΟΡΙΘΜΩΝ ΕΞΑΓΩΓΗΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

Area Location and Recognition of Video Text Based on Depth Learning Method

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

{takasu, Conditional Random Field

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

Identifying Scenes with the Same Person in Video Content on the Basis of Scene Continuity and Face Similarity Measurement

From Information Security to Cyber Defense. Dimitris Gritzalis

BCI On Feature Extraction from Multi-Channel Brain Waves Used for Brain Computer Interface

Random Forests Leo. Hitoshi Habe 1

Research on model of early2warning of enterprise crisis based on entropy

Towards a more Secure Cyberspace

CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

BΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ.

ΕΡΕΥΝΗΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΑΡΧΙΜΗΔΗΣ ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑΔΩΝ ΣΤΟ ΤΕΙ ΣΕΡΡΩΝ. Ενέργεια στ ΘΕΜΑ ΕΡΕΥΝΑΣ: ΔΙΑΡΘΡΩΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΕΧΡΩΜΩΝ ΕΓΓΡΑΦΩΝ

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

Kernel Methods and their Application for Image Understanding

Bayesian Discriminant Feature Selection

Ειδικές Επιστηµονικές Εργασίες

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)

Abstract. Detection of Feature Points for Computer Vision. Harris. (feature point) (interest point) (corner) Moravec. Harris.

A Method for Singularity Detection in Fingerprint Images

Adaptive grouping difference variation wolf pack algorithm

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΗΜΕΡΟΜΗΝΙΑ ΓΕΝΝΗΣΗΣ : 1981 ΟΙΚΟΓΕΝΕΙΑΚΗ ΚΑΤΑΣΤΑΣΗ. : mkrinidi@gmail.com

Secure Cyberspace: New Defense Capabilities

Security in the Cloud Era

Δημήτριος Θ. Τόμτσης, Ph.D. Αναλυτικό Βιογραφικό Σημείωμα

GIS. . Harris SIFT : SIFT. SIFT Harris. GIS

40 3 Journal of South China University of Technology Vol. 40 No Natural Science Edition March

[2] T.S.G. Peiris and R.O. Thattil, An Alternative Model to Estimate Solar Radiation

Mapping Textures on 3D Geometric Model Using Reflectance Image

Wireless capsule endoscopy video classification using an unsupervised learning approach

Robust Feature Extraction Method Based on Run-Length Compensation for Degraded Character Recognition

ER-Tree (Extended R*-Tree)

ΑΡΧΙΜΗ ΗΣ - ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑ ΩΝ ΣΤΑ ΤΕΙ. Υποέργο: «Ανάκτηση και προστασία πνευµατικών δικαιωµάτων σε δεδοµένα

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΛΕΩΝΙΔΑΣ Α. ΣΠΥΡΟΥ Διδακτορικό σε Υπολογιστική Εμβιομηχανική, Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Θεσσαλίας.

Gaze Estimation from Low Resolution Images Insensitive to Segmentation Error

Ευφυές Σύστημα Ανάλυσης Εικόνων Μικροσκοπίου για την Ανίχνευση Παθολογικών Κυττάρων σε Εικόνες Τεστ ΠΑΠ

Critical Infrastructures: The Nervous System of every Welfare State. G. Stergiopoulos, D. Gritzalis

Critical ICT Infrastructures Protection: Trends and Perspectives. Dimitris Gritzalis

GridFTP-APT: Automatic Parallelism Tuning Mechanism for Data Transfer Protocol GridFTP

Everything can be hacked in the Internet-of-Things. Dimitris Gritzalis March 2017

SVM. Research on ERPs feature extraction and classification

CorV CVAC. CorV TU317. 1

Εφαρμογή Υπολογιστικών Τεχνικών στην Γεωργία

Critical Infrastructure Protection: A Roadmap for Greece D. Gritzalis

Organizing the Protection of Critical ICT Infrastructures. Dimitris Gritzalis

Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+

Gemini, FastMap, Applications. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Spam over Internet Telephony (SPIT): An emerging threat. Dimitris Gritzalis

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

UAV. UAV Unmanned Aerial Vehicle LED Light Emitting Diodes LQR Linear Quadratic Regulator

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Estimation, Evaluation and Guarantee of the Reverberant Speech Recognition Performance based on Room Acoustic Parameters

Automatic extraction of bibliography with machine learning

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΠΑΤΗΣΙΩΝ ΑΘΗΝΑ Ε - ΜΑΙL : mkap@aueb.gr ΤΗΛ: , ΚΑΠΕΤΗΣ ΧΡΥΣΟΣΤΟΜΟΣ. Βιογραφικό Σημείωμα

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

ΣΙΣΛΟ ΓΙΑΣΡΙΒΗ ΔΞΑΓΧΓΗ ΥΑΡΑΚΣΗΡΙΣΙΚΧΝ ΔΙΚΟΝΟΠΛΑΙΙΧΝ ΑΠΟ ΑΚΟΛΟΤΘΙΔ ΒΙΝΣΔΟ ΜΔ ΥΡΗΗ ΟΜΑΓΟΠΟΙΗΗ ΠΟΛΛΑΠΛΧΝ ΟΦΔΧΝ ΜΔΣΑΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ ΔΞΔΙΓΙΚΔΤΗ

Ημερίδα διάχυσης αποτελεσμάτων έργου Ιωάννινα, 14/10/2015

substructure similarity search using features in graph databases

Current Status and Future Prospects of Camera-Based Character Recognition and Document Image Analysis

Real time mobile robot control with a multiresolution map representation

Αυτόματη Ανακατασκευή Θραυσμένων Αντικειμένων

A Method for Detection of Occlusal Position Using a Robust Estimator

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

BoVW. (Histogram Encoding) [2], [5], [6] [7], [8], (Fisher Encoding) [3] VLAD [9] Super Vector [10] Locality Constrained [11], [12], [13]

Online Social Networks: Posts that can save lives. Sotiria Giannitsari April 2016

Υπολογιστικές μέθοδοι για την ανάλυση της πληροφορίας των εικόνων και την κατανόηση του περιεχομένου

Gain self-tuning of PI controller and parameter optimum for PMSM drives

Ultrasound Probe Calibration Method Based on Optical Tracking Systems

Indexing Methods for Encrypted Vector Databases

HSI %89 SOM RGB. Journal of Transactions on Electrical Technology Vol.2 No.7- Autumn 2011

PACS: Ox, Cw, a, TP

ΑΝΑΓΝΩΡΙΣΗ ΚΟΙΝΟΤΗΤΩΝ ΚΑΙ ΣΥΣΤΑΣΗ ΠΛΗΡΟΦΟΡΙΑΣ ΜΕ ΤΗΝ ΧΡΗΣΗ ΣΥΝΘΕΤΙΚΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ

HMY 795: Αναγνώριση Προτύπων

ΚΑΤΑΤΜΗΣΗ ΥΦΗΣ ΜΕ ΧΡΗΣΗ ΤΕΛΕΣΤΗ ΤΟΠΙΚΟΥ ΥΑ ΙΚΟΥ ΠΡΟΤΥΠΟΥ ΚΑΙ ΕΦΑΡΜΟΓΗ ΜΟΝΤΕΛΟΥ ΕΝΕΡΓΟΥ ΠΕΡΙΓΡΑΜΜΑΤΟΣ ΧΩΡΙΣ ΑΚΜΕΣ *

Transcript:

1,a) 1,b) 2,c) 1,d) Gait motion descriptors 1. 12 1 Osaka University 2 Drexel University a) higashiyama@am.sanken.osaka-u.ac.jp b) makihara@am.sanken.osaka-u.ac.jp c) kon@drexel.edu d) yagi@am.sanken.osaka-u.ac.jp [1] DNA ATM [2] 2 1

Urtasun [3] Spencer [4] Han Bhanu[5] Gait energy image (GEI) Makihara [6] (Frequency domain feature, FDF) Bashir [8] 1 Gait entropy image (GEnI) Lam [9] Gait flow image (GFI) Bashir [10] GEnI GEI Masked GEI based on GEnI (MGEI) Wang [11] 4 1 Chrono-gait image (CGI) Kobayashi Otsu[12] 251 (Cubic higher-order local auto-corelation, CHLAC) Bashir [13] Gait motion descriptor (GMD) Iwama [14] 4,000 (GEI FDF GEnI GFI MGEI CGI) (1) (2) (3) (a) GEI (b) FDF (c) GENI (d) MGEI (e) GFI (f) CGI (g) CHLAC (h) GMD 1 2 2. 2.1 [7] 1 [6] GEI GEI [14] 1(a) GEI 2

FDF 1 FDF GEI 0 GEI GEI 1(b) FDF GEnI GEI GEnI GEI 0 GEI GEI 1(c) GEnI MGEI GEI GEnI GEnI GEI MGEI 1(d) GEI GEnI GFI GFI 1(e) GFI CGI 4 1 CGI 1(f) CGI 2.2 t t + n CHLAC CHLAC CHLAC 1(g) CHLAC 2.3 GMD GFI GMD GMD 1(h) GMD GMD 3. 3.1 P G D x P i R D (i =1,...,N P ) x G j RD (j =1,...,N G ) N P N G P G ( ) P i x P i G j x G j M i,j M i,j = x P i x G j (1) M M i,j 3.2 M =min i,j M i,j (2) 3

1 OU-ISIR Gait Database, The Treadmill Dataset Dataset A 9 14 20 Dataset B 32 21 47 (a) PCA (b) LDA 2 GEI (Linear discriminant analysis, LDA) (Principal component analysis, PCA) (LDA) 2(a) GEI PCA 2 S W S B S W = S B = N class i=1 N class i=1 N i features j=1 (x i,j m i )(x i,j m i ) T (3) N i features(m i m)(m i m) T (4) S W x = λs B x,x 0 (5) N class N features i i x i,j i j m i i m 2(b) GEI LDA 2 PCA ( 2(a)) LDA ( 2(b)) 4. 3 ( ) ( ) 4.1 The OU-ISIR Gait Database, The Treadmill Dataset [15] Dataset A B Dataset A 2km/h 10km/h 1km/h 34 Dataset B 32 68 1 3 DatasetA 2 Dataset B 1 31 4.2 1 1 (Vefirication) 1 N (Identification) 1 1 (False rejection rate, FRR) (False acceptance rate, FAR) (Receiver Operating Characteristics, ROC) 4

(a) ROC ( ) (c) ROC ( ) (b) CMC ( ) (d) CMC ( ) 4(a), (b) ROC CMC 4(c), (d) ROC CMC 4(e) (f) 1 GEI FDF GEnI MGEI ( 4(a), (b) ) ( 4(c), (d)) GEI FDF GEnI MGEI GEnI MGEI GEI FDF 4(e), (f) (e) (f) 1 4 1 1 (Equal error rate, EER) 1 1 1 N N N (Cumulative matching characteristics, CMC) CMC 3 90% 3 90% 1 4.3 4.4 5 1 1 6 1 N 7(a) 7(b) 1 GFI GMD GEI FDF 5. GEI GMD 5

(a) 2 km/h vs. 4 km/h (b) 2 km/h vs. 6 km/h (a) 2 km/h vs. 4 km/h (b) 2 km/h vs. 6 km/h (c)2km/hvs.8km/h (d) 2 km/h vs. 10 km/h (c)2km/hvs.8km/h (d) 2 km/h vs. 10 km/h (e)4km/hvs.6km/h (f) 4 km/h vs. 8 km/h (e)4km/hvs.6km/h (f) 4 km/h vs. 8 km/h (g) 4 km/h vs. 10 km/h (h) 6 km/h vs. 8 km/h (g) 4 km/h vs. 10 km/h (h) 6 km/h vs. 8 km/h (i) 6 km/h vs. 10 km/h (j) 8 km/h vs. 10 km/h 5 ROC (i) 6 km/h vs. 10 km/h (j) 8 km/h vs. 10 km/h 6 CMC 8(a) 8(d) GEI, GMD 8(b) 8(c) 8(e) 8(f) 8(g) 8(h) GEI GMD 2 GMD 6

(a) (b) (c) (a) (b) 1 7 1 (d) (e) (f) (a) (b) (c) (g) (h) (d) (e) (f) 9 : : : GEI GMD (g) (h) GEI GFI (g) (h) 8 : : : GEI GMD (g) (h) GEI GFI GMD GEI 9(a) 9(d) GEI GMD 9(b) 9(c) 9(e) 9(f) 9(g) 9(h) GMD 2 GEI GMD GEI GMD GEI GMD 6. 7

The OU-ISIR Gait Database, The Treadmill Dataset 1 1 1 N GEnI MGEI GMD (1) CHLAC GMD (2) ( HumanID Gait Database [16] ) (3) JSPS (S)21220003 Vision, pp. 257 270, October 2010. [12] T Kobayashi and N Otsu. Action and simultaneous multiple-person identification using cubic higher-order local auto-correlation. Proc of the 17th International Conference on Pattern Recognition, Vol. 4, pp. 741 744, August 2004. [13] K Bashir, T Xiang, S Gong, and Q Mary. Gait representation using flow fields. Proc. of the British Machine Vision Conference 2009, September 2009. [14] H Iwama, M Okumura, Y Makihara, and Y Yagi. The OU-ISIR Gait Database Comprising the Large Population Dataset and Performance Evaluation of Gait Recognition. IEEE Trans. on Information Forensics and Security, Vol. 7, pp. 1511 1521, October 2012. [15] Y. Makihara, H. Mannami, A. Tsuji, M.A. Hossain, K. Sugiura, A. Mori, and Y. Yagi. The ou-isir gait database comprising the treadmill dataset. IPSJ Trans. on Computer Vision and Applications, Vol. 4, pp. 53 62, Apr. 2012. [16] S Sarkar, P J Philips, Z Liu, I Robledo, P Grother, and KBowyer.IEEE Transactions on Pattern Analysis and Machine Intelligence. [1] Uidai. http://uidai.gov.in/. [2] How biometrics could change security. http: //news.bbc.co.uk/2/hi/programmes/click_ online/7702065.stm, Oct. 2008. [3] R. Urtasun and P. Fua. 3D Tracking for Gait Characterization and Recognition. In Automatic Face and Gesture Recognition, 2004. Proceedings. Sixth IEEE International Conference on, Vol. 1, pp. 17 22, May. 2004. [4] S Nicholas and J Carter. Towards pose invariant gait reconstruction. Proc. of the IEEE International Conference on Image Processing 2005, Vol. 3, pp. 261 264, September. 2005. [5] J Han and B Bhanu. Individual recognition using gait energy image. IEEE Trans. on Pattern Analysis and Machine Intelligence, pp. 316 322, February 2006. [6] Y Makihara, R Sagawa, Y Mukaigawa, T Echigo, and Y Yagi. Gait recognition using a view transformation model in the frequency domain. Proc.ofthe9thEuropean Conf. on Computer Vision, pp. 151 163, May 2006. [7] Y Makihara and Y Yagi. Silhouette Extraction based on Iterative Spatio-temporal Local Color Transformation and Graph-Cut Segmentation. Proc. of the 19th Int. Conf. on Pattern Recognition, pp. 1-4, Dec 2008. [8] K Bashir, T Xiang, and S Gong. Gait recognition using gait entropy image. in Proc. 3rd Int. Conf. Imaging for Crime Detection and Prevention,, pp. 1 6, December 2009. [9] Toby HW Lam, K. H. Cheung, and James NK Liu. Gait flow image: A silhouette-based gait representation for human identification. Pattern recognition, Vol. 44, No. 4, pp. 973 987, April 2011. [10] K Bashir, T Xiang, and S Gong. Gait recognition without subject cooperation. Pattern Recognit. Letters, Vol. 31, No. 13, pp. 2052 2060, October 2010. [11] C Wang, J Zhang, J Pu, X Yuan, and L Wang. Chronogait image: a novel temporal template for gait recognition. Proc. of the 11th European Conf. on Computer 8