BoVW. (Histogram Encoding) [2], [5], [6] [7], [8], (Fisher Encoding) [3] VLAD [9] Super Vector [10] Locality Constrained [11], [12], [13]
|
|
- Γεννάδιος Δεσποτόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 1,a) SIFT Bag-of-Visual-Words Bag-of-Visual-Words 1. BoVW [2] BoVW Dense [3] Interest Point [4] School of Science and Technology, Gunma University Tenjin-cho 1 5 1, Kiryu-shi, Gunma, Japan Graduate School of Engineering, Tohoku University, , Aramaki Aza Aoba, Aoba-ku, Sendai, , Japan a) matsuzawa-tomoki@kato-lab.cs.gunma-u.ac.jp BoVW (Histogram Encoding) [2], [5], [6] [7], [8], (Fisher Encoding) [3] VLAD [9] Super Vector [10] Locality Constrained Linear Encoding [11] [11], [12], [13] (Average Pooling) (Max Pooling) [11], [12], [13] [5], [13] [12] Chatfield [14] [3] [6] [15] BoVW c 2015 Information Processing Society of Japan 1
2 [16], [17]. BoVW K- Visual Word [18] 2. : BoVW (FV) 2.1 Bag-of-Visual-Words (BoVW) BoVW [2] BoVW. (e.g. SIFT [19]), Visual Word [14]. Visual Word. [12] Visual Word K K Visual Word 2.2 (FV) (FV) θ = [θ 1,..., θ m ] p(x θ) [20] X FV T X := [x 1,..., x T ] FV f(x) := θ1 log p(x θ) EX (( θ1 log p(x θ)) 2 ). θm log p(x θ) EX (( θm log p(x θ)) 2 ). p(x θ) K p(x θ) = T K π k N (x t ; µ k, diag(σ k ) 2 ) π k k π k = 1 µ k R d σ k R d θ = [ π 1,..., π K, µ 1,..., µ K, σ1,..., σk ] (2d + 1)K FV (2d + 1)K K π 1,..., π K K FV 2dK [21], [22], [23] 2dK FV [24] E X (( θi log p(x θ)) 2 ) (a) (responsibility) [25] (b) T FV f euc (X) := [ f µ1 euc(x),..., f µk euc (X), f σ1 euc(x),..., f σk euc (X) ] k = 1,..., K c 2015 Information Processing Society of Japan 2
3 f µ k euc(x) 1 T πk diag(σ k ) 1 Y k,euc γ k,euc, f σ 1 ( k euc(x) diag(σk ) 2 Y k,euc Y k,euc 1 d 1 ) 2T T γk,euc πk Y k,euc := X µ k 1 T γ k,euc R T k γ k,euc t π k N (x t ; µ k, diag(σ k ) 2 ) k π k N (x t ; µ k, diag(σ k ) 2 ). BoVW FV N (x t ; µ k, diag(σ k ) 2 ) Visual Word FV 3. : BoVW FV [1], [26] x, x R d D(x, x ; A) := (x x ) A(x x ) A ( ) ( ) 3.1 BoVW [18] BoWV K Visual Word V := [v 1,..., v K ] R d K J cb-ho (V ; A) := T min D(x t, v kt ; A) k t {1,...,K} t=1 K Greedy T BoVW Bagof-Visual-Words(HoMahaBoVW) d Visual Word v k A k BoVW Bag-of-Visual-Words(HeMahaBoVW) HeMahaBoVW x k argmin D(x, v k ; A k ). k {1,...,K} Visual Word v k 3.2 FV [18] FV A = UΛU W := Λ 1/2 U x (i.e. D(x, x ; A) = W x W x ) [18] : p ho (X θ) := det(w ) T T K π k N (W x t ; µ k, diag(σ k ) 2 ). FV f ho (X) (HoMahaFV) HoMahaFV f ho (X) := [ f µ1 ho (X),..., f µk ho (X), f σ1 ho (X),..., f σk ho (X) ] E X (( θi log p ho (X θ)) 2 ) FV (2.2 ) f µ k ho (X) 1 T πk diag(σ k ) 1 Y k γ k, f σ k ho (X) 1 2T πk ( diag(σk ) 2 Y k Y k 1 d 1 T ) γk Y k := W X µ k 1 T γ k R T t π k N (W x t ; µ k, diag(σ k ) 2 ) k π k N (W x t ; µ k, diag(σ k ) 2 ). HoMahaFV W HoMahaFV (HeMahaFV) FV W 1,..., W K : c 2015 Information Processing Society of Japan 3
4 p he (X θ) := T K π k det(w k ) N (W k x t ; µ k, diag(σ k ) 2 ). W k k A k Y k := W k X µ k 1 T p he(x θ) µ k σ k FV f µ k he (X) 1 T πk diag(σ k ) 1 Y kγ k, f σ k he (X) 1 2T πk ( diag(σk ) 2 Y k Y k 1 d 1 T ) γ k T γ k t π k det(w k ) N (W k x t ; µ k, diag(σ k ) 2 ) k π k det(w k ) N (W k x t ; µ k, diag(σ k ) 2 ). 4. HeMahaFV 4.1 HeMahaBoVW HeMahaBoVW K Visual Word A 1,..., A K HeMahaBoVW c A (c) c A (c) 0.05 Visual Word Visual Word K K 2 HeMahaBoVW A (c) W (c) K 2 K 2 K p he (X θ) Greedy EM EM E-step M-step c K µ 1,c,..., µ K,c R d, σ 1,c,..., σ K,c R d, π c R K T x 1,..., x T : L(θ (c) ) := det(w (c) ) T π k,c N (W (c) x t ; µ k,c, diag(σ k,c ) 2 ) T K θ (c) := {µ 1,c,..., µ K,c, σ 1,c,..., σ K,c, π c } EM Algorithm 1 EM Algorithm for HeMahaFV Method Input: Observation x 1,..., x T R d and initial values µ (0) 1,c,..., µ(0) K,c Rd, σ (0) 1,c,..., σ(0) K,c Rd, π c R K 1: for l = 1, 2,... do 2: E step Compute γ (l) t,k := π(l 1) k,c k π(l 1) k,c N (W (c) x t ; µ (l 1) k,c, diag(σ (l 1) k,c ) 2 ) N (W (c)x t ; µ (l 1) k,c, diag(σ(l 1) k,c )2 ). for (t, k) {1,..., T } {1,..., K }; 3: M step Update the parameter values by µ (l) k,c := t γ(l) t,k W (c)x t. (σ (l) k,c )2 := π (l) k,c := 1 T t γ(l) t,k t γ(l) for k = 1,..., K ; 4: end for t k,c )) t,k ((W (c)x t µ (l) k,c ) (W (c)x t µ (l) γ (l) t,k. t γ(l) t,k. 4.2 HeMahaFV HeMahaFV K 2 K 2 5. HeMahaBoVW, HeMahaFV 6 c 2015 Information Processing Society of Japan 4
5 (a) FMD 2 LSP15 15, (b) LSP15 1 Categorization Performance. BoVW, FV (HoEucBoVW, HoEucFV) HeMahaBoVW (HeEucBoVW) HeMahaFV θ (HeEucFV) [18] (HoMahaBoVW, HoMahaFV) Dense SIFT Visual Word BoVW K = 1024 FV K = 256 FV Power L2 [27] HeEucFV HeMahaFV L2 Flickr Material Database(FMD)[28] LSP15[5] One-vs-rest SVM FMD Flickr.com FMD LSP15 BoVW FV HeMahaFV CalTech 101(Cal 101)[29] (Cal 10 Cal Cal 50) (Cal 10 Cal Cal 50) Cal Cal 101 Top-N Accuracy 2 N HeMahaFV FV(EucHoFV) 6. BoVW FV HeMahaBoVW HeMahaFV HeMac 2015 Information Processing Society of Japan 5
6 habovw HeMahaFV HeMahaFV BoVW 1 (background clutter) Ramazan [22] Fraz [4] Mid-Level BoVW Visual Word [11], [12], [13] Visual Word [1] Kato, T., Takei, W. and Omachi, S.: A Discriminative Metric Learning Algorithm for Face Recognition, IPSJ Transactions on Computer Vision and Applications, Presented at MIRU2013 as Oral Presentation, Vol. 5, pp (2013). [2] Csurka, G., Dance, C., Fan, L., Willamowski, J. and Bray, C.: Visual categorization with bags of keypoints, Workshop on statistical learning in computer vision, ECCV, Vol. 1, p. 22 (2004). [3] Sánchez, J., Perronnin, F., Mensink, T. and Verbeek, J.: Image classification with the Fisher vector: Theory and practice, International journal of computer vision, Vol. 105, No. 3, pp (2013). [4] Fraz, M., Edirisinghe, E. A. and Sarfraz, M. S.: Midlevel-Representation Based Lexicon for Vehicle Make and Model Recognition, Pattern Recognition (ICPR), nd International Conference on, IEEE, pp (2014). [5] Lazebnik, S., Schmid, C. and Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories, Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, Vol. 2, IEEE, pp (2006). [6] Sivic, J. and Zisserman, A.: Efficient Visual Search of Videos Cast as Text Retrieval, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 31, No. 4, pp (2009). [7] Farquhar, J., Szedmak, S., Meng, H. and Shawe-Taylor, J.: Improving bag-of-keypoints image categorisation: Generative models and pdf-kernels (2005). [8] Winn, J., Criminisi, A. and Minka, T.: Object categorization by learned universal visual dictionary, Computer Vision, ICCV Tenth IEEE International Conference on, Vol. 2, IEEE, pp (2005). [9] Jégou, H., Perronnin, F., Douze, M., Sánchez, J., Pérez, P. and Schmid, C.: Aggregating local image descriptors into compact codes, Pattern Analysis and Machine Intelligence, IEEE Transactions on, Vol. 34, No. 9, pp (2012). [10] Zhou, X., Yu, K., Zhang, T. and Huang, T. S.: Image classification using super-vector coding of local image descriptors, Computer Vision ECCV 2010, Springer, pp (2010). [11] Wang, J., Yang, J., Yu, K., Lv, F., Huang, T. and Gong, Y.: Locality-constrained linear coding for image classification, Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, IEEE, pp (2010). [12] Boureau, Y.-L., Bach, F., LeCun, Y. and Ponce, J.: Learning mid-level features for recognition, Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, IEEE, pp (2010). [13] Yang, J., Yu, K., Gong, Y. and Huang, T.: Linear spatial pyramid matching using sparse coding for image classification, Computer Vision and Pattern Recognition, CVPR IEEE Conference on, IEEE, pp (2009). [14] Chatfield, K., Lempitsky, V., Vedaldi, A. and Zisserman, A.: The devil is in the details: an evaluation of recent feature encoding methods (2011). [15] Boiman, O., Shechtman, E. and Irani, M.: In defense of nearest-neighbor based image classification, Computer Vision and Pattern Recognition, CVPR IEEE Conference on, IEEE, pp. 1 8 (2008). [16] Cinbis, R. G., Verbeek, J. and Schmid, C.: Image categorization using Fisher kernels of non-iid image models, Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, IEEE, pp (2012). [17] Tanaka, M., Torii, A. and Okutomi, M.: Fisher Vector based on Full-covariance Gaussian Mixture Model, IPSJ Transactions on Computer Vision and Applications CVA Vol. 5, pp (2013). [18]. PRMU Vol. 113, No. 403, pp (2014). [19] Lowe, D. G.: Distinctive image features from scaleinvariant keypoints, International journal of computer vision, Vol. 60, No. 2, pp (2004). [20] Jaakkola, T., Haussler, D. et al.: Exploiting generative models in discriminative classifiers, Advances in neural information processing systems, pp (1999). [21] Ji, Z.: Decoupling Sparse Coding with Fusion of Fisher Vectors and Scalable SVMs for Large-Scale Visual Recognition, Computer Vision and Pattern Recognition Workshops (CVPRW), 2013 IEEE Conference on, IEEE, pp (2013). [22] Cinbis, R. G., Verbeek, J. and Schmid, C.: Segmentation driven object detection with Fisher vectors, Computer Vic 2015 Information Processing Society of Japan 6
7 sion (ICCV), 2013 IEEE International Conference on, pp (2013). [23] Sydorov, V., Sakurada, M. and Lampert, C. H.: Deep Fisher Kernels End to End Learning of the Fisher Kernel GMM Parameters. [24] Perronnin, F. and Dance, C.: Fisher kernels on visual vocabularies for image categorization, Computer Vision and Pattern Recognition, CVPR 07. IEEE Conference on, IEEE, pp. 1 8 (2007). [25] Bishop, C. M.: Pattern Recognition and Machine Learning, Springer Science+Business Media, LLC, New York, USA (2006). [26] Weinberger, K. Q. and Saul, L. K.: Distance Metric Learning for Large Margin Nearest Neighbor Classification, J. Mach. Learn. Res., Vol. 10, pp (online), available from (2009). [27] Perronnin, F., Sanchez, J. and Mensink, T.: Improving the fisher kernel for large-scale image classification, Computer Vision ECCV 2010, Springer, pp (2010). [28] Sharan, L., Rosenholtz, R. and Adelson, E.: Material perception: What can you see in a brief glance?, Journal of Vision, Vol. 9, No. 8, pp (2009). [29] Fei-Fei, L., Fergus, R. and Perona, P.: Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories, Computer Vision and Image Understanding, Vol. 106, No. 1, pp (2007). c 2015 Information Processing Society of Japan 7
Speeding up the Detection of Scale-Space Extrema in SIFT Based on the Complex First Order System
(MIRU2008) 2008 7 SIFT 572-8572 26-12 599-8531 1-1 E-mail: umemoto@ipc.osaka-pct.ac.jp, kise@cs.osakafu-u.ac.jp SIFT 1 ANN 3 1 SIFT 1 Speeding up the Detection of Scale-Space Extrema in SIFT Based on the
Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]
Re-Pair 1 1 Re-Pair Re-Pair Re-Pair Re-Pair 1. Larsson Moffat [1] Re-Pair Re-Pair (Re-Pair) ( ) (highly repetitive text) [2] Re-Pair [7] Re-Pair Re-Pair n O(n) O(n) 1 Hokkaido University, Graduate School
E-mail: nakayama@ci.i.u-tokyo.ac.jp Abstract (C C (FWM C 1 (deep learning [12, 17] (convolutional neural networks, C [25, 30, 19] [5, 21, 23] C [18] C C GPU [5, 21] C C [11] [16] [2] C (FWM FWM FWM 2 (FWM
3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o
Sound Source Identification based on Deep Learning with Partially-Shared Architecture 1 2 1 1,3 Takayuki MORITO 1, Osamu SUGIYAMA 2, Ryosuke KOJIMA 1, Kazuhiro NAKADAI 1,3 1 2 ( ) 3 Tokyo Institute of
CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity
i-vector 1 1 1 1 i-vector CSJ i-vector Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity Fukuchi Yusuke 1 Tawara Naohiro 1 Ogawa Tetsuji 1 Kobayashi
ER-Tree (Extended R*-Tree)
1-9825/22/13(4)768-6 22 Journal of Software Vol13, No4 1, 1, 2, 1 1, 1 (, 2327) 2 (, 3127) E-mail xhzhou@ustceducn,,,,,,, 1, TP311 A,,,, Elias s Rivest,Cleary Arya Mount [1] O(2 d ) Arya Mount [1] Friedman,Bentley
Wireless capsule endoscopy video classification using an unsupervised learning approach
16 11 2011 11 Journal of Image and Graphics Vol. 16 No. 11 Nov. 2011 TP391. 4 A 1006-8961 2011 11-2041-06 Bill P. Buckles. J. 2011 16 11 2041-2046 1 1 Bill P. Buckles 2 1 1 230009 2 76203 WCE WCE WCE SIFT
[1] DNA ATM [2] c 2013 Information Processing Society of Japan. Gait motion descriptors. Osaka University 2. Drexel University a)
1,a) 1,b) 2,c) 1,d) Gait motion descriptors 1. 12 1 Osaka University 2 Drexel University a) higashiyama@am.sanken.osaka-u.ac.jp b) makihara@am.sanken.osaka-u.ac.jp c) kon@drexel.edu d) yagi@am.sanken.osaka-u.ac.jp
Detection and Recognition of Traffic Signal Using Machine Learning
1 1 1 Detection and Recognition of Traffic Signal Using Machine Learning Akihiro Nakano, 1 Hiroshi Koyasu 1 and Hitoshi Maekawa 1 To improve road safety by assisting the driver, traffic signal recognition
Random Forests Leo. Hitoshi Habe 1
1 tree forestleo Breiman 2001 Random Forests Hitoshi Habe 1 Abstract: Random Forests is a machine learning framework that consists of many decision trees. It can be categorized as an ensemble classifier
Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn
2015 11 Nov 2015 36 6 Journal of Zhengzhou University Engineering Science Vol 36 No 6 1671-6833 2015 06-0056 - 05 C 1 1 2 2 1 450001 2 461000 C FCM FCM MIA MDC MDC MIA I FCM c FCM m FCM C TP18 A doi 10
Buried Markov Model Pairwise
Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi
2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems
2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems Multiple User Interfaces MobileSoft'16, Multi-User Experience (MUX) S1: Insourcing S2: Outsourcing S3: Responsive design
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A
7 2016 7 No. 7 Modular Machine Tool & Automatic Manufacturing Technique Jul. 2016 1001-2265 2016 07-0122 - 05 DOI 10. 13462 /j. cnki. mmtamt. 2016. 07. 035 * 100124 TH166 TG659 A Precision Modeling and
Adaptive grouping difference variation wolf pack algorithm
3 2017 5 ( ) Journal of East China Normal University (Natural Science) No. 3 May 2017 : 1000-5641(2017)03-0078-09, (, 163318) :,,.,,,,.,,. : ; ; ; : TP301.6 : A DOI: 10.3969/j.issn.1000-5641.2017.03.008
Identifying Scenes with the Same Person in Video Content on the Basis of Scene Continuity and Face Similarity Measurement
Identifying Scenes with the Same Person in Video Content on the Basis of Scene Continuity and Face Similarity Measurement Tatsunori Hirai, Tomoyasu Nakano, Masataka Goto and Shigeo Morishima Abstract We
MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)
1,a) 1,b) 1,c) 1. MIDI [1], [2] U/D/S 3 [3], [4] 1 [5] Song [6] 1 Sony, Minato, Tokyo 108 0075, Japan a) Emiru.Tsunoo@jp.sony.com b) AkiraB.Inoue@jp.sony.com c) Masayuki.Nishiguchi@jp.sony.com MIDI [7]
Quick algorithm f or computing core attribute
24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute
HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA
DEIM Forum 2010 D1-4 HOSVD 191-0065 6-6 E-mail: j.morigaki@gmail.com, katayama@tmu.ac.jp Lathauwer (HOSVD) (Tensor) HOSVD Savas HOSVD Sun HOSVD,, Higher Order Data Classification Method with Autocorrelation
SocialDict. A reading support tool with prediction capability and its extension to readability measurement
SocialDict 1 2 2 2 Web SocialDict A reading support tool with prediction capability and its extension to readability measurement Yo Ehara, 1 Takashi Ninomiya, 2 Nobuyuki Shimizu 2 and Hiroshi Nakagawa
Current Status and Future Prospects of Camera-Based Character Recognition and Document Image Analysis
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. 599 8531 1 1 980 8579 6 6 05 812 8581 6 10 1 E-mail: {kise,masa}@cs.osakafu-u.ac.jp, machi@aso.ecei.tohoku.ac.jp,
1530 ( ) 2014,54(12),, E (, 1, X ) [4],,, α, T α, β,, T β, c, P(T β 1 T α,α, β,c) 1 1,,X X F, X E F X E X F X F E X E 1 [1-2] , 2 : X X 1 X 2 ;
ISSN1000-0054 CN11-2223/N ( ) 2014 54 12 JTsinghuaUniv(Sci& Technol), 2014,Vol.54, No.12 4/20 1529-1533,, (,, (), 100084) [1-2] :,,,,,,,, :, 0.3~ [3] 0.8BLEU,, : ; ; [4], ; :TP391.2 :A, :1000-0054(2014)12-1529-05,
ΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ
ΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΑΝΑΠΛΗΡΩΤΡΙΑ ΚΑΘΗΓΗΤΡΙΑ ΤΟΥ ΤΜΗΜΑΤΟΣ ΛΟΓΙΣΤΙΚΗΣ ΤΟΥ ΤΕΙ ΚΑΒΑΛΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΙΑΝΟΥΑΡΙΟΣ 2008 ΒΙΟΓΡΑΦΙΚΟ
Area Location and Recognition of Video Text Based on Depth Learning Method
21 6 2016 12 Vol 21 No 6 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Dec 2016 1 1 1 2 1 150080 2 130300 Gabor RBM OCR DOI 10 15938 /j jhust 2016 06 012 TP391 43 A 1007-2683 2016 06-0061- 06
An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio
C IEEJ Transactions on Electronics, Information and Systems Vol.133 No.5 pp.910 915 DOI: 10.1541/ieejeiss.133.910 a) An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software
ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ
ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ Νικόλαος Κυριακούλης *, Ευάγγελος Καρακάσης, Αντώνιος Γαστεράτος, Δημήτριος Κουλουριώτης, Σπυρίδων Γ. Μουρούτσος Δημοκρίτειο
Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation
3 2 3 2 3 undle Adjustment or 3-D Reconstruction: Implementation and Evaluation Yuuki Iwamoto, Yasuyuki Sugaya 2 and Kenichi Kanatani We describe in detail the algorithm o bundle adjustment or 3-D reconstruction
1 n-gram n-gram n-gram [11], [15] n-best [16] n-gram. n-gram. 1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e)
1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e) 1. [11], [15] 1 Nara Institute of Science and Technology a) akabe.koichi.zx8@is.naist.jp b) neubig@is.naist.jp c) ssakti@is.naist.jp d) tomoki@is.naist.jp
Anomaly Detection with Neighborhood Preservation Principle
27 27 Workshop on Information-Based Induction Sciences (IBIS27) Tokyo, Japan, November 5-7, 27. Anomaly Detection with Neighborhood Preservation Principle Tsuyoshi Idé Abstract: We consider a task of anomaly
Applying Markov Decision Processes to Role-playing Game
1,a) 1 1 1 1 2011 8 25, 2012 3 2 MDPRPG RPG MDP RPG MDP RPG MDP RPG MDP RPG Applying Markov Decision Processes to Role-playing Game Yasunari Maeda 1,a) Fumitaro Goto 1 Hiroshi Masui 1 Fumito Masui 1 Masakiyo
DEIM Forum 2 D3-6 819 39 744 66 8 E-mail: kawamoto@inf.kyushu-u.ac.jp, tawara@db.soc.i.kyoto-u.ac.jp, {asano,yoshikawa}@i.kyoto-u.ac.jp 1.,, Amazon.com The Internet Movie Database (IMDb) 1 Social spammers
{takasu, Conditional Random Field
DEIM Forum 2016 C8-6 CRF 700 8530 3 1 1 700 8530 3 1 1 101 8430 2-1-2 E-mail: pobp52cw@s.okayama-u.ac.jp, ohta@de.cs.okayama-u.ac.jp, {takasu, adachi}@nii.ac.jp Conditional Random Field 1. Conditional
[5] F 16.1% MFCC NMF D-CASE 17 [5] NMF NMF 3. [5] 1 NMF Deep Neural Network(DNN) FUSION 3.1 NMF NMF [12] S W H 1 Fig. 1 Our aoustic event detect
NMF 1 1,a) 1 AED NMF DNN IEEE D-CASE 2012 20% DNN NMF 1. Computational Auditory Scene Analysis: CASA [1] [2] [3] [4] [5] Non-negative Matrxi Factorization (NMF) NMF 2. CASA IEEE 1 Dept. Computer Science
Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)
( ) 1 ( ) : : (Differential Evolution, DE) (Particle Swarm Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] 2 2.1 (P) (P ) minimize f(x) subject to g j (x) 0, j = 1,..., q h j (x) = 0, j
(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)
(Υπογραϕή) (Υπογραϕή) (Υπογραϕή) (Υπογραϕή) F 1 F 1 RGB ECR RGB ECR δ w a d λ σ δ δ λ w λ w λ λ λ σ σ + F 1 ( ) V 1 V 2 V 3 V 4 V 5 V 6 V 7 V 8 V 9 V 10 M 1 M 2 M 3 F 1 F 1 F 1 10 M 1
[15], [16], [17] [6] [2] [5] Jiang [6] 2.1 [6], [10] Score(x, y) y ( 1) ( 1 ) b e ( 1 ) b e. O(n 2 ) 2.3. 2.2 Jiang [6] (word lattice reranking)
1,a) 1 2 10 1. [6] [1], [6], [8], [10], [11] 2 n n+1 C 2 O(n 2 ) 1 153-8505 4-6-1 a) kaji@tkl.iis.u-tokyo.ac.jp [10] [19], [23] [6] [6] (3 ) 10 (1) (2) 3 c 2012 Information Processing Society of Japan
EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.
Baum-Welch Step by Step the Baum-Welch Algorithm and its Application Jin ichi MURAKAMI EM EM EM Baum-Welch Baum-Welch Baum-Welch Baum-Welch, EM 1. EM 2. HMM EM (Expectationmaximization algorithm) 1 3.
Schedulability Analysis Algorithm for Timing Constraint Workflow Models
CIMS Vol.8No.72002pp.527-532 ( 100084) Petri Petri F270.7 A Schedulability Analysis Algorithm for Timing Constraint Workflow Models Li Huifang and Fan Yushun (Department of Automation, Tsinghua University,
D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, 60(2):91-110, 2004.
D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, 60(2):91-110, 2004. 1/45 Τι είναι ο SIFT-Γενικά Scale-invariant feature transform detect and
IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He
CS Activity 1,a) 2 2 3 CS Computer Science Activity Activity Actvity Activity Dining Eight-Headed Dragon CS Unplugged Activity for Learning Scheduling Methods Hisao Fukuoka 1,a) Toru Watanabe 2 Makoto
Stabilization of stock price prediction by cross entropy optimization
,,,,,,,, Stabilization of stock prediction by cross entropy optimization Kazuki Miura, Hideitsu Hino and Noboru Murata Prediction of series data is a long standing important problem Especially, prediction
ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ
H O G feature descriptor global feature the most common algorithm associated with person detection Με τα Ιστογράμματα της Βάθμωσης (Gradient) μετράμε τον προσανατολισμό και την ένταση της βάθμωσης σε μία
Μεταπτυχιακή Διπλωματική Εργασία. Βαθιά Αραιή Κωδικοποίηση (Deep Sparse Coding)
Εργαστήριο Ηλεκτρονικής Τομέας Ηλεκτρονικής και Υπολογιστών Τμήμα Φυσικής Πανεπιστήμιο Πατρών Μεταπτυχιακή Διπλωματική Εργασία Βαθιά Αραιή Κωδικοποίηση (Deep Sparse Coding) Τσουρούνης Δημήτριος Α.Μ. :
CorV CVAC. CorV TU317. 1
30 8 JOURNAL OF VIBRATION AND SHOCK Vol. 30 No. 8 2011 1 2 1 2 2 1. 100044 2. 361005 TU317. 1 A Structural damage detection method based on correlation function analysis of vibration measurement data LEI
DEIM Forum 2018 F3-5 657 8501 1-1 657 8501 1-1 E-mail: yuta@cs25.scitec.kobe-u.ac.jp, eguchi@port.kobe-u.ac.jp, ( ) ( )..,,,.,.,.,,..,.,,, 2..., 1.,., (Autoencoder: AE) [1] (Generative Stochastic Networks:
Reading Order Detection for Text Layout Excluded by Image
19 5 JOURNAL OF CHINESE INFORMATION PROCESSING Vol119 No15 :1003-0077 - (2005) 05-0067 - 09 1, 1, 2 (11, 100871 ; 21IBM, 100027) :,,, PMRegion,, : ; ; ; ; :TP391112 :A Reading Order Detection for Text
GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU
GPGPU Grover 1, 2 1 3 4 Grover Grover OpenMP GPGPU Grover qubit OpenMP GPGPU, 1.47 qubit On Large Scale Simulation of Grover s Algorithm by Using GPGPU Hiroshi Shibata, 1, 2 Tomoya Suzuki, 1 Seiya Okubo
Automatic extraction of bibliography with machine learning
Automatic extraction of bibliography with machine learning Takeshi ABEKAWA Hidetsugu NANBA Hiroya TAKAMURA Manabu OKUMURA Abstract In this paper, we propose an extraction method of bibliography using support
[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1
1,a) Bayesian Approach An Application of Monte-Carlo Tree Search Algorithm for Shogi Player Based on Bayesian Approach Daisaku Yokoyama 1,a) Abstract: Monte-Carlo Tree Search (MCTS) algorithm is quite
Kernel Methods and their Application for Image Understanding
Vol 1 No SIG 12(CVIM 1) Jan 1960 Kernel Methods and their Application for Image Understanding Kenji Nishida and Takio Kurita Support vector machine (SVM) has been extended to build up nonlinear classifier
Ανάκτηση πολυμεσικού περιεχομένου
Ανάκτηση πολυμεσικού περιεχομένου Ανίχνευση / αναγνώριση προσώπων Ανίχνευση / ανάγνωση κειμένου Ανίχνευση αντικειμένων Οπτικές λέξεις Δεικτοδότηση Σχέσεις ομοιότητας Κατηγοριοποίηση ειδών μουσικής Διάκριση
ΤΕΙ ΘΕΣΣΑΛΙΑΣ. Αναγνώριση προσώπου με επιλογή των κατάλληλων κυρίων συνιστωσών. ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε ΚΑΒΒΑΔΙΑ ΑΛΕΞΑΝΔΡΟΥ.
ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε Αναγνώριση προσώπου με επιλογή των κατάλληλων κυρίων συνιστωσών. Πτυχιακή εργασία του ΚΑΒΒΑΔΙΑ ΑΛΕΞΑΝΔΡΟΥ Επιβλέπων καθηγητής:βέντζας Δημήτριος ΛΑΡΙΣΑ ΜΑΙΟΣ
Japanese Fuzzy String Matching in Cooking Recipes
1 Japanese Fuzzy String Matching in Cooking Recipes Michiko Yasukawa 1 In this paper, we propose Japanese fuzzy string matching in cooking recipes. Cooking recipes contain spelling variants for recipe
Comparison of Discriminant Analysis in Ear Recognition
IPSJ SIG echnical Report PCA 288 XM2VS 97.8% Null space LDA Random LDA Comparison of Discriminant Analysis in Ear Recognition Yuki ajima oji Soma Sai Hideyasu Daishi Watae Discriminant analyses are popular
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ Εξαγωγή χαρακτηριστικών μαστογραφικών μαζών και σύγκριση
Probabilistic Approach to Robust Optimization
Probabilistic Approach to Robust Optimization Akiko Takeda Department of Mathematical & Computing Sciences Graduate School of Information Science and Engineering Tokyo Institute of Technology Tokyo 52-8552,
Elements of Information Theory
Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure
A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks
P2P 1,a) 1 1 1 P2P P2P P2P P2P A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks NARISHIGE Yuki 1,a) ABE Kota 1 ISHIBASHI Hayato 1 MATSUURA Toshio 1
Gemini, FastMap, Applications. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών
Gemini,, Applications Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών Εαρινό Εξάμηνο 2011-2012 Table of contents 1 Table of contents 1 2 Table of contents 1 2 3 Table of contents
476,,. : 4. 7, MML. 4 6,.,. : ; Wishart ; MML Wishart ; CEM 2 ; ;,. 2. EM 2.1 Y = Y 1,, Y d T d, y = y 1,, y d T Y. k : p(y θ) = k α m p(y θ m ), (2.1
2008 10 Chinese Journal of Applied Probability and Statistics Vol.24 No.5 Oct. 2008 (,, 1000871;,, 100044) (,, 100875) (,, 100871). EM, Wishart Jeffery.,,,,. : :,,, EM, Wishart. O212.7. 1.,. 1894, Pearson.
DEIM Forum 2014 A8-1, 606 8501 E-mail: {tsukuda,ohshima,kato,tanaka}@dl.kuis.kyoto-u.ac.jp 1 2,, 1. Google 1 Yahoo 2 Bing 3 Web Web BM25 [1] HITS [2] PageRank [3] Web 1 [4] 1http://www.google.com 2http://www.yahoo.com
Bayesian Discriminant Feature Selection
1,a) 2 1... DNA. Lasso. Bayesian Discriminant Feature Selection Tanaka Yusuke 1,a) Ueda Naonori 2 Tanaka Toshiyuki 1 Abstract: Focusing on categorical data, we propose a Bayesian feature selection method
ΣΤΟΙΧΕΙΑ ΠΡΟΤΕΙΝΟΜΕΝΟΥ ΕΞΩΤΕΡΙΚΟΥ ΕΜΠΕΙΡΟΓΝΩΜΟΝΟΣ Προσωπικά Στοιχεία:
Όνομα Marios Πανεπιστήμιο / Brunel University London Επώνυμο Angelides E-mail Marios.Angelides@brun el.ac.uk Electronic and Computer Engineering Βαθμίδα Professor Επιστημονική Περιοχή Multimedia Content
ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΑΛΓΟΡΙΘΜΩΝ ΕΞΑΓΩΓΗΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ
ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΑΛΓΟΡΙΘΜΩΝ ΕΞΑΓΩΓΗΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ Ρήγας Κουσκουρίδας, Βασίλειος Μπελαγιάννης, Δημήτριος Χρυσοστόμου και Αντώνιος Γαστεράτος Δημοκρίτειο Πανεπιστήμιο Θράκης, Πανεπιστημιούπολη, Κιμμέρια,
Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)
1,a) 2,b) 1,c) 3,d) Quantum-Inspired Evolutionary Algorithm 0-1 Search Performance Analysis According to Interpretation Methods for Dealing with Permutation on Integer-Type Gene-Coding Method based on
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διδάσκων: Γεώργιος Μήτσης, Λέκτορας, Τμήμα ΗΜΜΥ Γραφείο: GP401 Ώρες γραφείου: Οποτεδήποτε (κατόπιν επικοινωνίας) Τηλ: 22892239 Ηλ. Ταχ.: gmitsis@ucy.ac.cy Βιβλιογραφία C. M.
n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. y y yy y 1565 0871 2 1 yy 525 8577 1 1 1 E-mail: yfmakihara,shiraig@cv.mech.eng.osaka-u.ac.jp, yyshimada@ci.ritsumei.ac.jp
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Rahim Alhamzawi, Haithem Taha Mohammad Ali Department of Statistics, College of Administration and Economics,
ΣΙΣΛΟ ΓΙΑΣΡΙΒΗ ΔΞΑΓΧΓΗ ΥΑΡΑΚΣΗΡΙΣΙΚΧΝ ΔΙΚΟΝΟΠΛΑΙΙΧΝ ΑΠΟ ΑΚΟΛΟΤΘΙΔ ΒΙΝΣΔΟ ΜΔ ΥΡΗΗ ΟΜΑΓΟΠΟΙΗΗ ΠΟΛΛΑΠΛΧΝ ΟΦΔΧΝ ΜΔΣΑΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ ΔΞΔΙΓΙΚΔΤΗ
ΣΙΣΛΟ ΓΙΑΣΡΙΒΗ ΔΞΑΓΧΓΗ ΥΑΡΑΚΣΗΡΙΣΙΚΧΝ ΔΙΚΟΝΟΠΛΑΙΙΧΝ ΑΠΟ ΑΚΟΛΟΤΘΙΔ ΒΙΝΣΔΟ ΜΔ ΥΡΗΗ ΟΜΑΓΟΠΟΙΗΗ ΠΟΛΛΑΠΛΧΝ ΟΦΔΧΝ Η ΜΔΣΑΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ ΔΞΔΙΓΙΚΔΤΗ Τπνβάιιεηαη ζηελ νξηζζείζα από ηελ Γεληθή πλέιεπζε Δηδηθήο ύλζεζεο
From Secure e-computing to Trusted u-computing. Dimitris Gritzalis
From Secure e-computing to Trusted u-computing Dimitris Gritzalis November 2009 11 ο ICT Forum Αθήνα, 4-5 Νοέμβρη 2009 Από το Secure e-computing στο Trusted u-computing Καθηγητής Δημήτρης Γκρίτζαλης (dgrit@aueb.gr,
HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332
,**1 The Japanese Society for AIDS Research The Journal of AIDS Research +,, +,, +,, + -. / 0 1 +, -. / 0 1 : :,**- +,**. 1..+ - : +** 22 HIV AIDS HIV HIV AIDS : HIV AIDS HIV :HIV AIDS 3 :.1 /-,**1 HIV
Research on Economics and Management
36 5 2015 5 Research on Economics and Management Vol. 36 No. 5 May 2015 490 490 F323. 9 A DOI:10.13502/j.cnki.issn1000-7636.2015.05.007 1000-7636 2015 05-0052 - 10 2008 836 70% 1. 2 2010 1 2 3 2015-03
ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ
ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΤΜ. ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ 2018-2019 Επιβλέπουσα: Μπίμπη Ματίνα Ανάλυση της πλατφόρμας ανοιχτού κώδικα Home Assistant Το Home Assistant είναι μία πλατφόρμα ανοιχτού
Toward a SPARQL Query Execution Mechanism using Dynamic Mapping Adaptation -A Preliminary Report- Takuya Adachi 1 Naoki Fukuta 2.
SIG-SWO-041-05 SPAIDA: SPARQL Toward a SPARQL Query Execution Mechanism using Dynamic Mapping Adaptation -A Preliminary Report- 1 2 Takuya Adachi 1 Naoki Fukuta 2 1 1 Faculty of Informatics, Shizuoka University
Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker
Ειδική Ερευνητική Εργασία Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker ΚΑΡΑΔΗΜΑΣ ΗΛΙΑΣ Α.Μ. 323 Επιβλέπων: Σ. Φωτόπουλος Καθηγητής, Μεταπτυχιακό Πρόγραμμα «Ηλεκτρονική και Υπολογιστές», Τμήμα Φυσικής,
Research on model of early2warning of enterprise crisis based on entropy
24 1 Vol. 24 No. 1 ont rol an d Decision 2009 1 Jan. 2009 : 100120920 (2009) 0120113205 1, 1, 2 (1., 100083 ; 2., 100846) :. ;,,. 2.,,. : ; ; ; : F270. 5 : A Research on model of early2warning of enterprise
Gaussian Processes Classification Combined with Semi-supervised Kernels
35 7 Vol. 35, No. 7 2009 7 ACTA AUTOMATICA SINICA July, 2009 1 1 1 2. : 1) ; 2) ; 3),. :,.,.,,, TP391 Gaussian Processes Classification Combined with Semi-supervised Kernels LI Hong-Wei 1 LIU Yang 1 LU
Control Theory & Applications PID (, )
26 12 2009 12 : 1000 8152(2009)12 1317 08 Control Theory & Applications Vol. 26 No. 12 Dec. 2009 PID,, (, 200240) : PID (PIDNN), PID,, (BP).,, PIDNN PIDNN (MPIDNN), (CPSO) BP, MPIDNN CPSO MPIDNN CRPSO
ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕΣ» OSWINDS RESEARCH GROUP
ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕΣ» OSWINDS RESEARCH GROUP 2015-2016 http://oswinds.csd.auth.gr/pms-theses201516 Ιδιωτικότητα και ανωνυμία σε ανοικτές πλατφόμες Privacy and anonymity
Ευφυές Σύστημα Ανάλυσης Εικόνων Μικροσκοπίου για την Ανίχνευση Παθολογικών Κυττάρων σε Εικόνες Τεστ ΠΑΠ
Ευφυές Σύστημα Ανάλυσης Εικόνων Μικροσκοπίου για την Ανίχνευση Παθολογικών Κυττάρων σε Εικόνες Τεστ ΠΑΠ ΚΩΔΙΚΟΣ MIS: 346961 Φορέας Υποβολής: Πανεπιστήμιο Ιωαννίνων - Τμήμα Πληροφορικής Φορέας Χρήστης:
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
FX10 SIMD SIMD. [3] Dekker [4] IEEE754. a.lo. (SpMV Sparse matrix and vector product) IEEE754 IEEE754 [5] Double-Double Knuth FMA FMA FX10 FMA SIMD
FX,a),b),c) Bailey Double-Double [] FMA FMA [6] FX FMA SIMD Single Instruction Multiple Data 5 4.5. [] Bailey SIMD SIMD 8bit FMA (SpMV Sparse matrix and vector product) FX. DD Bailey Double-Double a) em49@ns.kogakuin.ac.jp
Indexing Methods for Encrypted Vector Databases
Computer Security Symposium 2013 21-23 October 2013 305-0006 1-1-1 junpei.kawamoto@acm.org LSH LSH LSH Indexing Methods for Encrypted Vector Databases Junpei Kawamoto Faculty of Engineering, Information
substructure similarity search using features in graph databases
substructure similarity search using features in graph databases Aleksandros Gkogkas Distributed Management of Data Laboratory intro Θα ενασχοληθούμε με το πρόβλημα των ερωτήσεων σε βάσεις γραφημάτων.
Ειδικές Επιστηµονικές Εργασίες
Ειδικές Επιστηµονικές Εργασίες 2005-2006 1. Ανίχνευση προσώπων από ακολουθίες video και παρακολούθηση (face detection & tracking) Η ανίχνευση προσώπου (face detection) αποτελεί το 1 ο βήµα σε ένα αυτόµατο
Spring 2010: Lecture 3. Ashutosh Saxena. Ashutosh Saxena
CS 4758/6758: Robot Learning Spring 2010: Lecture 3. Slides coutesy: Prof Noah Snavely, Yung-Yu Chung, Frédo Durand, Alexei Efros, William Freeman, Svetlana Lazebnik, Srinivasa Narasimhan, Steve Seitz,
40 3 Journal of South China University of Technology Vol. 40 No Natural Science Edition March
40 3 Journal of South China University of Technology Vol 40 No 3 2012 3 Natural Science Edition March 2012 1000-565X 2012 03-0106-06 * 510640 MFCC K-L K-L MFCC K-L 46 61% 42 25% 39 68% 36 36% K-L TN912
D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, 60(2):91-110, 2004.
D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, 60(2):91-110, 2004. Εισαγωγικά: SIFT~Harris Harris Detector: Δεν είναι ανεξάρτητος της κλίμακας
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
Ανάλυση σχημάτων βασισμένη σε μεθόδους αναζήτησης ομοιότητας υποακολουθιών (C589)
Ανάλυση σχημάτων βασισμένη σε μεθόδους αναζήτησης ομοιότητας υποακολουθιών (C589) Μεγαλοοικονόμου Βασίλειος Τμήμα Μηχ. Η/ΥκαιΠληροφορικής Επιστημονικός Υπεύθυνος Στόχος Προτεινόμενου Έργου Ανάπτυξη μεθόδων
ΠΑΡΑΔΟΤΕΟ 3.1 : Έκθεση καταγραφής χρήσεων γης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ ΚΑΙ ΕΦΑΡΜΟΓΗΣ ΤΩΝ ΔΡΑΣΕΩΝ ΘΡΗΣΚΕΥΜΑΤΩΝ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΣΤΟΥΣ ΤΟΜΕΙΣ ΤΗΣ
Αυτόματη Ανακατασκευή Θραυσμένων Αντικειμένων
Αυτόματη Ανακατασκευή Θραυσμένων Αντικειμένων Κωνσταντίνος Παπαοδυσσεύς Καθηγητής ΣΗΜΜΥ, Δημήτρης Αραμπατζής Δρ. ΣΗΜΜΥ Σολομών Ζάννος Υ.Δ. ΣΗΜΜΥ Φώτιος Γιαννόπουλος Υ.Δ. ΣΗΜΜΥ Μιχαήλ Έξαρχος Δρ. ΣΗΜΜΥ
Newman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3
DEWS2007 D3-6 y yy y y y y yy / DC 7313194 341 E-mail: yfktamura,mori,kuroki,kitakamig@its.hiroshima-cu.ac.jp, yymakoto@db.its.hiroshima-cu.ac.jp Newman Newman Newman Newman Newman A Clustering Algorithm
Mapping Textures on 3D Geometric Model Using Reflectance Image
Mark D. Wheeler Mapping Textures on 3D Geometric Model Using Reflectance Image Ryo KURAZUME, Ko NISHINO, Mark D. WHEELER, and Katsushi IKEUCHI 3 3 CAD albedo 1. VR modeling-from-realitymfr 1 2 3 Institute
SVM. Research on ERPs feature extraction and classification
39 1 2011 2 Journal of Fuzhou University Natural Science Edition Vol 39 No 1 Feb 2011 DOI CNKI 35-1117 /N 20110121 1723 008 1000-2243 2011 01-0054 - 06 ERPs 350108 - ERPs SVM ERPs SVM 90% ERPs SVM TP391
Robust Feature Extraction Method Based on Run-Length Compensation for Degraded Character Recognition
Robust Feature Extraction Method Based on Run-Length Compensation for Degraded Character Recognition Minoru MORI, Minako SAWAKI, Norihiro HAGITA, Hiroshi MURASE, and Naoki MUKAWA OCR 1. [1] [4] [5] [7]
GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs
GPU 1 1 NP number partitioning problem Pedroso CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA C Pedroso Python 323 Python C 12.2 Parallelizing the Number Partitioning Problem for