Adaptive Acceptance Threshold Control using Matching Distances with Confidence Values for ROC Curve Optimization

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Adaptive Acceptance Threshold Control using Matching Distances with Confidence Values for ROC Curve Optimization"

Transcript

1 (MIRU2010) ROC {makihara,hossain,yagi}@am.sanken.osaka-u.ac.jp ROC ( ) ROC 2 ROC Adaptive Acceptance Threshold Control using Matching s with Abstract Confidence Values for ROC Curve Optimization Yasushi MAKIHARA, Md. ALTAB HOSSAIN, and Yasushi YAGI Osaka university 8-1 Mihogaoka, Ibaraki, Osaka, {makihara,hossain,yagi}@am.sanken.osaka-u.ac.jp In two-class classification problems such as one-to-one verification and object detection, the performance is usually evaluated by a so-called Receiver Operating Characteristics (ROC) curve expressing a tradeoff between False Rejection Rate (FRR) and False Acceptance Rate (FAR). On the other hand, it is also well known that the performance is significantly affected by the situation differences between enrollment and test phases. This paper describes a method to adaptively control an acceptance threshold with confidence values derived from situation differences so as to optimize the ROC curve. We show that the optimal evolution of the adaptive threshold in the domain of the distance and confidence value is equivalent to a constant evolution in the domain of the error gradient defined as a ratio of a total error rate to a total acceptance rate. An experiment with simulation and real data demonstrates the effectiveness of the proposed method, particularly under a lower FAR or FRR tolerance condition. Key words rejection rate ROC curve, Acceptance threshold, Confidence values, Error gradient, False acceptance rate, False [1] 2 [2] ID ( ) ( ) 2

2 ( False Acceptance Rate: FAR ) ( False Rejection Rate: FRR) (ROC) [3] 2 [4] [5], [6] SN (Quality measure) [7] [8] [9] [10] Hossain [11] [12] [13] [14] [15] [16] Kryszczuk [17] evidence space [17] ROC ROC ROC ROC ROC ROC ROC 1 1 ( ) ( ) ( ) 1(a) (Probability Distribution Function: PDF) T A F R (False Rejection Rate: FRR) A F A T T (< T ) FRR FAR ( 1(a)) T L (> T ) FRR FAR ( 1(a)) FRR 100% FAR 0% +. FRR 0% FAR 100% ( ) ( + ) 1(b) FRR FAR ROC [3] ROC 1 1 FRR FAR FRR FAR (Equal Error Rate: EER) ROC 1 1 PDF FRR FAR 3( ) PDF

3 Probability 1 A FA A FR T T T T L (a) PDF Positive Negative False Rejection Rate P FR 1.0 T T Tight Loose 0.0 T T L False Acceptance Rate P FA (b) ROC PDF ROC Low confidence 2 High confidence Positive Negative Confidence ROC 3( ) PDF ROC ROC ROC PDF ROC ( 2 ) ( 2 ) PDF ROC 3 FAR 0% T L NoF A T H NoF A (> T L NoF A ) FRR 0% T L NoF R and T H NoF R (< T L NoF R ) ROC T L NoF A T L NoF A T H NoF A ( 3(a) ) T H NoF R T H NoF R T L NoF R T L NoF A T H NoF A T H NoF R T L NoF R 2. 3 t PDF p P (t) p N (t) T FAR R F A (T ) FRR R F R (T )

4 Probability Probability 3 T L NoFA T H NoFA False acceptance (a) PDF Positive Negative Positive Negative False Rejection Rate P FR False Rejection Rate P FR 1.0 T L NoFA T H NoFA False Acceptance Rate P FA 1.0 T L NoFA T H NoFA False Acceptance Rate P FA (b) ROC ( ) ( ) PDF ROC R F A (T ) = T R F R (T ) = 1 T p N (t)dt (1) p P (t)dt. (2) R E (T ) R A (T ) R E (T ) = R F A (T ) + R F R (T ) (3) R A (T ) = R F A (T ) + (1 R F R (T )). (4) R A (T ) R E (T ) g(t ) = dr E(T ) dr A (T ) = pn (T ) p P (T ) p N (T ) + p P (T ). (5) ( g(t ) 1.0) ( g(t ) 1.0) ( g(t ) 0.0) FAR FRR g(t ) g(t ) 2 t c g(t) g(t ) 2. 4 N P N N i (t P i, cp i ) (tn i, cn i ) t c t j =t min + js t, j Z, 0< = j < = (t max t min )/s t (6) c k =c min + ks c, k Z, 0< = k < = (c max c min )/s c (7) i k w P i,k w P i,k = max(1.0 c P i c k /s c, 0) (8) j k PDF p j,k p P j,k = 1 N P wi,k P exp ( (tp i t j ) 2 ) Z k 2σ 2, (9) i Z k PDF j pp j,k s t = 1 σ PDFp N j,k (t j, c k ) g j,k (5). c k g = {g j,k } g =arg min S(ĝ) (10) ĝ S(ĝ)= k,j {(ĝ j,k g j,k ) 2 +α(ĝ j,k ĝ j 1,k ) 2 } (11) subject to ĝ j 1,k > = ĝ j,k, (12) α 2

5 PDF c PDF 0 < = c < = 1 PDF N (µ P (c), σ P (c)) N (µ N (c), σ N (c)) PDF c µ P (c) = c, µ N (c) = c, σ P (c) = c, σ N (c) = c, PDF 10,000 ( 4(a)) ( c = 1.0) ( c = 0.0) 10,000 PDF σ = 0.3, s t = 0.01, s c = 0.1 t min = 0.0, t max = 10.0 α = 1.0 z [3] z 1 1 µ(c) σ(c) 4(b) z (a) (b) z Confidence value 5 ( 0.1) 6 ( g = 0.0), ( g = 1.0) ( g = 0.0) ( g = 1.0) ROC 7(a) (AATC) (const) z (Z-norm)

6 False Rejection Rate Constant Z- norm AATC 6 FAR ( 7(b)) FRR ( 7(c)) z FAR FRR , Hossain [6] [6] [18] ROC z False Rejection Rate False Rejection Rate False Acceptance Rate (a) Z-Norm AATC 1.E-04 1.E-03 1.E-02 1.E-01 False Acceptance Rate 1.0E E E-03 (b) FAR Z-Norm AATC 1.0E False Acceptance Rate 8 (c) FRR 7 ROC 4. z

7 Constant False Rejection Rate 0.4 Z-norm AATC N LDA [19] SVM [20] ROC FAR FRR ROC ROC 5. 2 ROC False Acceptance Rate 11 ROC z z O(1) z N O(N) ID 1 [1] P. Viola and M. Jones, Robust real-time face detection, Int. J. of Computer Vision, vol. 57, no. 2, pp , [2] N. Dalal and B. Triggs, Histograms of oriented gradients for human detection, CVPR2005, II pp , [3] P. Phillips, H. Moon, S. Rizvi, and P. Rauss, The feret evaluation methodology for face-recognition algorithms, Trans. of Pattern Analysis and Machine Intelligence, vol. 22, no. 10, pp , [4] Y. Makihara, R. Sagawa, Y. Mukaigawa, T. Echigo, and Y. Yagi, Gait recognition using a view transformation model in the frequency domain, Proc. of the 9th European Conf. on Computer Vision, Graz, Austria pp , May [5],,, 12 (MIRU2009), pp. 1 8, [6] M. A. Hossain, Y. Makihara, J. Wang, and Y. Yagi,

8 Clothes-invariant gait identification using partbased adaptive weight control, Proc. of the 19th Int. Conf. on Pattern Recognition, Tampa, Florida USA, Dec [7] A. Harriero, D. Ramos, J. Gonzalez-Rodriguez, and J. Fierrez, Analysis of the utility of classical and novel speech quality measures for speaker verification, ICB 09: Proceedings of the Third International Conference on Advances in Biometrics, Berlin, Heidelberg Springer-Verlag pp , [8] F. Alonso Fernandez, F. Roli, G. Marcialis, J. Fierrez, and J. Ortega Garcia, Comparison of fingerprint quality measures using an optical and a capacitive sensor, BTAS07, pp. 1 6, [9] S. Muller, O. Henniger, and T. U. D. Darmstadt, Evaluating the biometric quality of handwritten signatures, In 2nd International Conference on Biometrics,, [10] E. Krichen, S. Garcia-Salicetti, and B. Dorizzi, A new probabilistic iris quality measure for comprehensive noise detection, Biometrics: Theory, Applications, and Systems, BTAS First IEEE International Conference on, pp. 1 6, [11] M. A. Hossain, Y. Makihara, J. Wang, and Y. Yagi, Clothing-invariant gait identification using partbased clothing categorization and adaptive weight control, Pattern Recognition,, 2010 (to appear). [12] H. Sellahewa and S. Jassim, Illumination and expression invariant face recognition: Toward quality-based adaptive fusion, BTAS08, pp. 1 6, [13] M. Gales and S. Young, Robust continuous speech recognition using parallel model combination, IEEE Transactions on Speech and Audio Processing, vol. 4, no. 5, pp , [14] N. Poh, J. Kittler, and T. Bourlai, Improving biometric device interoperability by likelihood ratio-based quality dependent score normalization, BTAS07, pp. 1 5, [15] J. Fierrez-Aguilar, Adapted Fusion Schemes for Multimodal Biometric Authentication PhD thesis Universidad Politecnica de Madrid, [16] S. Bengio, C. Marcel, S. Marcel, and J. Mariethoz, Confidence measures for multimodal identity verification, Information Fusion, vol. 3, no. 4, pp , [17] K. Kryszczuk and A. Drygajlo, Improving classification with class-independent quality measures: Q- stack in face verification, In 2nd International Conference on Biometrics, Seoul, South Korea,, [18],,,,,, vol. 48, no. SIG1(CVIM17), pp , Feb [19] J. H. P. Belhumeur and D. Kiregeman, Eigenfaces for recognition, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp , Jul [20] B. E. Boser, I. M. Guyon, and V. N. Vapnik, A discriminant analysis for underd data, Proc. of the 5th Annual ACM Workshop on Computational Learning Theory, pp , 1992.

[1] DNA ATM [2] c 2013 Information Processing Society of Japan. Gait motion descriptors. Osaka University 2. Drexel University a)

[1] DNA ATM [2] c 2013 Information Processing Society of Japan. Gait motion descriptors. Osaka University 2. Drexel University a) 1,a) 1,b) 2,c) 1,d) Gait motion descriptors 1. 12 1 Osaka University 2 Drexel University a) higashiyama@am.sanken.osaka-u.ac.jp b) makihara@am.sanken.osaka-u.ac.jp c) kon@drexel.edu d) yagi@am.sanken.osaka-u.ac.jp

Διαβάστε περισσότερα

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn 2015 11 Nov 2015 36 6 Journal of Zhengzhou University Engineering Science Vol 36 No 6 1671-6833 2015 06-0056 - 05 C 1 1 2 2 1 450001 2 461000 C FCM FCM MIA MDC MDC MIA I FCM c FCM m FCM C TP18 A doi 10

Διαβάστε περισσότερα

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate) THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. y y yy y 1565 0871 2 1 yy 525 8577 1 1 1 E-mail: yfmakihara,shiraig@cv.mech.eng.osaka-u.ac.jp, yyshimada@ci.ritsumei.ac.jp

Διαβάστε περισσότερα

Gait Identification Using a View Transformation Model in the Frequency Domain

Gait Identification Using a View Transformation Model in the Frequency Domain Vol. 48 No. SIG 1(CVIM 17) Feb. 2007 15 24 Gait Identification Using a View Transformation Model in the Frequency Domain Yasushi Makihara, Ryusuke Sagawa, Yasuhiro Mukaigawa, Tomio Echigo and Yasushi Yagi

Διαβάστε περισσότερα

(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)

(Υπογραϕή) (Υπογραϕή) (Υπογραϕή) (Υπογραϕή) (Υπογραϕή) (Υπογραϕή) (Υπογραϕή) F 1 F 1 RGB ECR RGB ECR δ w a d λ σ δ δ λ w λ w λ λ λ σ σ + F 1 ( ) V 1 V 2 V 3 V 4 V 5 V 6 V 7 V 8 V 9 V 10 M 1 M 2 M 3 F 1 F 1 F 1 10 M 1

Διαβάστε περισσότερα

CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity

CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity i-vector 1 1 1 1 i-vector CSJ i-vector Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity Fukuchi Yusuke 1 Tawara Naohiro 1 Ogawa Tetsuji 1 Kobayashi

Διαβάστε περισσότερα

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio C IEEJ Transactions on Electronics, Information and Systems Vol.133 No.5 pp.910 915 DOI: 10.1541/ieejeiss.133.910 a) An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software

Διαβάστε περισσότερα

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM 2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.

Διαβάστε περισσότερα

ER-Tree (Extended R*-Tree)

ER-Tree (Extended R*-Tree) 1-9825/22/13(4)768-6 22 Journal of Software Vol13, No4 1, 1, 2, 1 1, 1 (, 2327) 2 (, 3127) E-mail xhzhou@ustceducn,,,,,,, 1, TP311 A,,,, Elias s Rivest,Cleary Arya Mount [1] O(2 d ) Arya Mount [1] Friedman,Bentley

Διαβάστε περισσότερα

Adaptive grouping difference variation wolf pack algorithm

Adaptive grouping difference variation wolf pack algorithm 3 2017 5 ( ) Journal of East China Normal University (Natural Science) No. 3 May 2017 : 1000-5641(2017)03-0078-09, (, 163318) :,,.,,,,.,,. : ; ; ; : TP301.6 : A DOI: 10.3969/j.issn.1000-5641.2017.03.008

Διαβάστε περισσότερα

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb Ξ 31 Vol 31,No 1 2 0 0 1 2 JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb 2 0 0 1 :025322778 (2001) 0120016205 (, 230026) : Q ( m 1, m 2,, m n ) k = m 1 + m 2 + + m n - n : Q ( m 1, m 2,, m

Διαβάστε περισσότερα

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P) ( ) 1 ( ) : : (Differential Evolution, DE) (Particle Swarm Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] 2 2.1 (P) (P ) minimize f(x) subject to g j (x) 0, j = 1,..., q h j (x) = 0, j

Διαβάστε περισσότερα

A High Precision Iris Feature Extraction and Its Application in Iris Recognition

A High Precision Iris Feature Extraction and Its Application in Iris Recognition A High Precision Iris Feature Extraction and Its Application in Iris Recognition * ** 84 E-mail: *cld3@giga.net.tw, **pierre@isu.edu.tw ( ) ( ) CASIA ABSTRACT In this paper, a novel technique is proposed

Διαβάστε περισσότερα

DEIM Forum 2018 F3-5 657 8501 1-1 657 8501 1-1 E-mail: yuta@cs25.scitec.kobe-u.ac.jp, eguchi@port.kobe-u.ac.jp, ( ) ( )..,,,.,.,.,,..,.,,, 2..., 1.,., (Autoencoder: AE) [1] (Generative Stochastic Networks:

Διαβάστε περισσότερα

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction () () Study on e-adhesion control by monitoring excessive angular momentum in electric railway traction Takafumi Hara, Student Member, Takafumi Koseki, Member, Yutaka Tsukinokizawa, Non-member Abstract

Διαβάστε περισσότερα

Speeding up the Detection of Scale-Space Extrema in SIFT Based on the Complex First Order System

Speeding up the Detection of Scale-Space Extrema in SIFT Based on the Complex First Order System (MIRU2008) 2008 7 SIFT 572-8572 26-12 599-8531 1-1 E-mail: umemoto@ipc.osaka-pct.ac.jp, kise@cs.osakafu-u.ac.jp SIFT 1 ANN 3 1 SIFT 1 Speeding up the Detection of Scale-Space Extrema in SIFT Based on the

Διαβάστε περισσότερα

Quick algorithm f or computing core attribute

Quick algorithm f or computing core attribute 24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute

Διαβάστε περισσότερα

Detection and Recognition of Traffic Signal Using Machine Learning

Detection and Recognition of Traffic Signal Using Machine Learning 1 1 1 Detection and Recognition of Traffic Signal Using Machine Learning Akihiro Nakano, 1 Hiroshi Koyasu 1 and Hitoshi Maekawa 1 To improve road safety by assisting the driver, traffic signal recognition

Διαβάστε περισσότερα

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1 1,a) Bayesian Approach An Application of Monte-Carlo Tree Search Algorithm for Shogi Player Based on Bayesian Approach Daisaku Yokoyama 1,a) Abstract: Monte-Carlo Tree Search (MCTS) algorithm is quite

Διαβάστε περισσότερα

Simplex Crossover for Real-coded Genetic Algolithms

Simplex Crossover for Real-coded Genetic Algolithms Technical Papers GA Simplex Crossover for Real-coded Genetic Algolithms 47 Takahide Higuchi Shigeyoshi Tsutsui Masayuki Yamamura Interdisciplinary Graduate school of Science and Engineering, Tokyo Institute

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA DEIM Forum 2010 D1-4 HOSVD 191-0065 6-6 E-mail: j.morigaki@gmail.com, katayama@tmu.ac.jp Lathauwer (HOSVD) (Tensor) HOSVD Savas HOSVD Sun HOSVD,, Higher Order Data Classification Method with Autocorrelation

Διαβάστε περισσότερα

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems 2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems Multiple User Interfaces MobileSoft'16, Multi-User Experience (MUX) S1: Insourcing S2: Outsourcing S3: Responsive design

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH

Διαβάστε περισσότερα

Stabilization of stock price prediction by cross entropy optimization

Stabilization of stock price prediction by cross entropy optimization ,,,,,,,, Stabilization of stock prediction by cross entropy optimization Kazuki Miura, Hideitsu Hino and Noboru Murata Prediction of series data is a long standing important problem Especially, prediction

Διαβάστε περισσότερα

Buried Markov Model Pairwise

Buried Markov Model Pairwise Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi

Διαβάστε περισσότερα

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o Sound Source Identification based on Deep Learning with Partially-Shared Architecture 1 2 1 1,3 Takayuki MORITO 1, Osamu SUGIYAMA 2, Ryosuke KOJIMA 1, Kazuhiro NAKADAI 1,3 1 2 ( ) 3 Tokyo Institute of

Διαβάστε περισσότερα

Identifying Scenes with the Same Person in Video Content on the Basis of Scene Continuity and Face Similarity Measurement

Identifying Scenes with the Same Person in Video Content on the Basis of Scene Continuity and Face Similarity Measurement Identifying Scenes with the Same Person in Video Content on the Basis of Scene Continuity and Face Similarity Measurement Tatsunori Hirai, Tomoyasu Nakano, Masataka Goto and Shigeo Morishima Abstract We

Διαβάστε περισσότερα

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT 1,a) 1,2,b) Continuous wavelet transform, CWT CWT CWT CWT CWT 100 1. Continuous wavelet transform, CWT [1] CWT CWT CWT [2 5] CWT CWT CWT CWT CWT Irino [6] CWT CWT CWT CWT CWT 1, 7-3-1, 113-0033 2 NTT,

Διαβάστε περισσότερα

Biostatistics for Health Sciences Review Sheet

Biostatistics for Health Sciences Review Sheet Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................

Διαβάστε περισσότερα

[5] F 16.1% MFCC NMF D-CASE 17 [5] NMF NMF 3. [5] 1 NMF Deep Neural Network(DNN) FUSION 3.1 NMF NMF [12] S W H 1 Fig. 1 Our aoustic event detect

[5] F 16.1% MFCC NMF D-CASE 17 [5] NMF NMF 3. [5] 1 NMF Deep Neural Network(DNN) FUSION 3.1 NMF NMF [12] S W H 1 Fig. 1 Our aoustic event detect NMF 1 1,a) 1 AED NMF DNN IEEE D-CASE 2012 20% DNN NMF 1. Computational Auditory Scene Analysis: CASA [1] [2] [3] [4] [5] Non-negative Matrxi Factorization (NMF) NMF 2. CASA IEEE 1 Dept. Computer Science

Διαβάστε περισσότερα

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Schedulability Analysis Algorithm for Timing Constraint Workflow Models CIMS Vol.8No.72002pp.527-532 ( 100084) Petri Petri F270.7 A Schedulability Analysis Algorithm for Timing Constraint Workflow Models Li Huifang and Fan Yushun (Department of Automation, Tsinghua University,

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

ΤΕΙ ΘΕΣΣΑΛΙΑΣ. Αναγνώριση προσώπου με επιλογή των κατάλληλων κυρίων συνιστωσών. ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε ΚΑΒΒΑΔΙΑ ΑΛΕΞΑΝΔΡΟΥ.

ΤΕΙ ΘΕΣΣΑΛΙΑΣ. Αναγνώριση προσώπου με επιλογή των κατάλληλων κυρίων συνιστωσών. ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε ΚΑΒΒΑΔΙΑ ΑΛΕΞΑΝΔΡΟΥ. ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε Αναγνώριση προσώπου με επιλογή των κατάλληλων κυρίων συνιστωσών. Πτυχιακή εργασία του ΚΑΒΒΑΔΙΑ ΑΛΕΞΑΝΔΡΟΥ Επιβλέπων καθηγητής:βέντζας Δημήτριος ΛΑΡΙΣΑ ΜΑΙΟΣ

Διαβάστε περισσότερα

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A 7 2016 7 No. 7 Modular Machine Tool & Automatic Manufacturing Technique Jul. 2016 1001-2265 2016 07-0122 - 05 DOI 10. 13462 /j. cnki. mmtamt. 2016. 07. 035 * 100124 TH166 TG659 A Precision Modeling and

Διαβάστε περισσότερα

SVM. Research on ERPs feature extraction and classification

SVM. Research on ERPs feature extraction and classification 39 1 2011 2 Journal of Fuzhou University Natural Science Edition Vol 39 No 1 Feb 2011 DOI CNKI 35-1117 /N 20110121 1723 008 1000-2243 2011 01-0054 - 06 ERPs 350108 - ERPs SVM ERPs SVM 90% ERPs SVM TP391

Διαβάστε περισσότερα

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 Chapter 7: Exercises 1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 35+n:30 n a 35+n:20 n 0 0.068727 11.395336 10 0.097101 7.351745 25

Διαβάστε περισσότερα

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Feasible Regions Defined by Stability Constraints Based on the Argument Principle Feasible Regions Defined by Stability Constraints Based on the Argument Principle Ken KOUNO Masahide ABE Masayuki KAWAMATA Department of Electronic Engineering, Graduate School of Engineering, Tohoku University

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ Διπλωματική Εργασία του φοιτητή του τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Ηλεκτρονικών

Διαβάστε περισσότερα

Medium Data on Big Data

Medium Data on Big Data IT 17081 Examensarbete 15 hp November 2017 Medium Data on Big Data Predicting Disk Failures in CERNs NetApp-based Data Storage System Albin Stjerna Institutionen för informationsteknologi Department of

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Applying Markov Decision Processes to Role-playing Game

Applying Markov Decision Processes to Role-playing Game 1,a) 1 1 1 1 2011 8 25, 2012 3 2 MDPRPG RPG MDP RPG MDP RPG MDP RPG MDP RPG Applying Markov Decision Processes to Role-playing Game Yasunari Maeda 1,a) Fumitaro Goto 1 Hiroshi Masui 1 Fumito Masui 1 Masakiyo

Διαβάστε περισσότερα

ΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

ΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΑΝΑΠΛΗΡΩΤΡΙΑ ΚΑΘΗΓΗΤΡΙΑ ΤΟΥ ΤΜΗΜΑΤΟΣ ΛΟΓΙΣΤΙΚΗΣ ΤΟΥ ΤΕΙ ΚΑΒΑΛΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΙΑΝΟΥΑΡΙΟΣ 2008 ΒΙΟΓΡΑΦΙΚΟ

Διαβάστε περισσότερα

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b) 1,a) 1,b) 1,c) 1. MIDI [1], [2] U/D/S 3 [3], [4] 1 [5] Song [6] 1 Sony, Minato, Tokyo 108 0075, Japan a) Emiru.Tsunoo@jp.sony.com b) AkiraB.Inoue@jp.sony.com c) Masayuki.Nishiguchi@jp.sony.com MIDI [7]

Διαβάστε περισσότερα

Anomaly Detection with Neighborhood Preservation Principle

Anomaly Detection with Neighborhood Preservation Principle 27 27 Workshop on Information-Based Induction Sciences (IBIS27) Tokyo, Japan, November 5-7, 27. Anomaly Detection with Neighborhood Preservation Principle Tsuyoshi Idé Abstract: We consider a task of anomaly

Διαβάστε περισσότερα

ΕΥΘΑΛΙΑ ΚΑΜΠΟΥΡΟΠΟΥΛΟΥ

ΕΥΘΑΛΙΑ ΚΑΜΠΟΥΡΟΠΟΥΛΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΚΑΙ ΚΟΙΝΩΝΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΙΔΙΚΕΥΣΗ: ΣΥΝΕΧΙΖΟΜΕΝΗ ΕΚΠΑΙΔΕΥΣΗ ΕΥΘΑΛΙΑ ΚΑΜΠΟΥΡΟΠΟΥΛΟΥ H επίδραση του «e-mentor» σε επιμορφούμενους

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

{takasu, Conditional Random Field

{takasu, Conditional Random Field DEIM Forum 2016 C8-6 CRF 700 8530 3 1 1 700 8530 3 1 1 101 8430 2-1-2 E-mail: pobp52cw@s.okayama-u.ac.jp, ohta@de.cs.okayama-u.ac.jp, {takasu, adachi}@nii.ac.jp Conditional Random Field 1. Conditional

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He CS Activity 1,a) 2 2 3 CS Computer Science Activity Activity Actvity Activity Dining Eight-Headed Dragon CS Unplugged Activity for Learning Scheduling Methods Hisao Fukuoka 1,a) Toru Watanabe 2 Makoto

Διαβάστε περισσότερα

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer Naomi Morota Newman M Key Words woman diagnosed with breast cancer, rehabilitation nursing care program, the

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΤΜ. ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ 2018-2019 Επιβλέπουσα: Μπίμπη Ματίνα Ανάλυση της πλατφόρμας ανοιχτού κώδικα Home Assistant Το Home Assistant είναι μία πλατφόρμα ανοιχτού

Διαβάστε περισσότερα

1 1 1 2 1 2 2 1 43 123 5 122 3 1 312 1 1 122 1 1 1 1 6 1 7 1 6 1 7 1 3 4 2 312 43 4 3 3 1 1 4 1 1 52 122 54 124 8 1 3 1 1 1 1 1 152 1 1 1 1 1 1 152 1 5 1 152 152 1 1 3 9 1 159 9 13 4 5 1 122 1 4 122 5

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΕΙΟ Τμήμα Μηχανικών Μεταλλείων-Μεταλλουργών ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Κιτσάκη Μαρίνα

Διαβάστε περισσότερα

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment Contents Preface ix Part 1 Introduction Chapter 1 Introduction to Observational Studies... 3 1.1 Observational vs. Experimental Studies... 3 1.2 Issues in Observational Studies... 5 1.3 Study Design...

Διαβάστε περισσότερα

A research on the influence of dummy activity on float in an AOA network and its amendments

A research on the influence of dummy activity on float in an AOA network and its amendments 2008 6 6 :100026788 (2008) 0620106209,, (, 102206) : NP2hard,,..,.,,.,.,. :,,,, : TB11411 : A A research on the influence of dummy activity on float in an AOA network and its amendments WANG Qiang, LI

Διαβάστε περισσότερα

ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ

ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ Νικόλαος Κυριακούλης *, Ευάγγελος Καρακάσης, Αντώνιος Γαστεράτος, Δημήτριος Κουλουριώτης, Σπυρίδων Γ. Μουρούτσος Δημοκρίτειο

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

c Key words: cultivation of blood, two-sets blood culture, detection rate of germ Vol. 18 No

c Key words: cultivation of blood, two-sets blood culture, detection rate of germ Vol. 18 No 2008 245 2 1) 1) 2) 3) 4) 1) 1) 1) 1) 1), 2) 1) 2) 3) / 4) 20 3 24 20 8 18 2001 2 2 2004 2 59.0 2002 1 2004 12 3 2 22.1 1 14.0 (CNS), Bacillus c 2 p 0.01 2 1 31.3 41.9 21.4 1 2 80 CNS 2 1 74.3 2 Key words:

Διαβάστε περισσότερα

Secure Cyberspace: New Defense Capabilities

Secure Cyberspace: New Defense Capabilities Secure Cyberspace: New Defense Capabilities Dimitris Gritzalis November 1999 Υπουργείο Εθνικής Αμυνας Διημερίδα Πληροφορικής και Επιχειρησιακής Ερευνας Αθήνα, 2-3 Νοέμβρη 1999 Ασφάλεια στον Κυβερνοχώρο:

Διαβάστε περισσότερα

Estimation, Evaluation and Guarantee of the Reverberant Speech Recognition Performance based on Room Acoustic Parameters

Estimation, Evaluation and Guarantee of the Reverberant Speech Recognition Performance based on Room Acoustic Parameters Vol.21-SLP-83 No.9 21/1/29 1 Estimation, Evaluation and Guarantee of the Reverberant Speech Recognition Performance based on Room Acoustic Parameters Takanobu Nishiura 1 We study on estimation, evaluation

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Kernel Methods and their Application for Image Understanding

Kernel Methods and their Application for Image Understanding Vol 1 No SIG 12(CVIM 1) Jan 1960 Kernel Methods and their Application for Image Understanding Kenji Nishida and Takio Kurita Support vector machine (SVM) has been extended to build up nonlinear classifier

Διαβάστε περισσότερα

NMBTC.COM /

NMBTC.COM / Common Common Vibration Test:... Conforms to JIS C 60068-2-6, Amplitude: 1.5mm, Frequency 10 to 55 Hz, 1 hour in each of the X, Y and Z directions. Shock Test:...Conforms to JIS C 60068-2-27, Acceleration

Διαβάστε περισσότερα

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks P2P 1,a) 1 1 1 P2P P2P P2P P2P A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks NARISHIGE Yuki 1,a) ABE Kota 1 ISHIBASHI Hayato 1 MATSUURA Toshio 1

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7] Re-Pair 1 1 Re-Pair Re-Pair Re-Pair Re-Pair 1. Larsson Moffat [1] Re-Pair Re-Pair (Re-Pair) ( ) (highly repetitive text) [2] Re-Pair [7] Re-Pair Re-Pair n O(n) O(n) 1 Hokkaido University, Graduate School

Διαβάστε περισσότερα

Method to Distinguish between Handwritten and Machine-printed Characters Inspired by Human Vision System

Method to Distinguish between Handwritten and Machine-printed Characters Inspired by Human Vision System Vol. 15, No. 3 2008 165 173 1 2 1 1 2 Method to Distinguish between Handwritten and Machine-printed Characters Inspired by Human Vision System Jumpei Koyama, 1 Masahiro Kato 2 and Akira Hirose 1 Department

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Architecture for Visualization Using Teacher Information based on SOM

Architecture for Visualization Using Teacher Information based on SOM THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. 567-47 8-1 NTT 619-237 2-4 52-2194 1-5 E-mail: {k-fukui,numao}@sanken.osaka-u.ac.jp, saito@cslab.kecl.ntt.co.jp,

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

Optimization Investment of Football Lottery Game Online Combinatorial Optimization 27 :26788 (27) 2926,2, 2, 3 (, 76 ;2, 749 ; 3, 64) :, ;,,, ;,, : ; ; ; ; ; : TB4 : A Optimization Investment of Football Lottery Game Online Combinatorial Optimization HU Mao2lin,2, XU Yin2feng 2, XU Wei2jun

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Φωνής

Ψηφιακή Επεξεργασία Φωνής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Διάλεξη: Προσαρμόσιμο Αρμονικό Μοντέλο Παρουσίαση: Gilles Degottex Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών A Full-Band Adaptive Harmonic

Διαβάστε περισσότερα

Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»

Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων» Ανώτατο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ανατολικής Μακεδονίας και Θράκης Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων

Διαβάστε περισσότερα

Bayesian Discriminant Feature Selection

Bayesian Discriminant Feature Selection 1,a) 2 1... DNA. Lasso. Bayesian Discriminant Feature Selection Tanaka Yusuke 1,a) Ueda Naonori 2 Tanaka Toshiyuki 1 Abstract: Focusing on categorical data, we propose a Bayesian feature selection method

Διαβάστε περισσότερα

DATA SHEET Surface mount NTC thermistors. BCcomponents

DATA SHEET Surface mount NTC thermistors. BCcomponents DATA SHEET 2322 615 1... Surface mount N thermistors Supersedes data of 17th May 1999 File under BCcomponents, BC02 2001 Mar 27 FEATURES High sensitivity High accuracy over a wide temperature range Taped

Διαβάστε περισσότερα

Prey-Taxis Holling-Tanner

Prey-Taxis Holling-Tanner Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation 3 2 3 2 3 undle Adjustment or 3-D Reconstruction: Implementation and Evaluation Yuuki Iwamoto, Yasuyuki Sugaya 2 and Kenichi Kanatani We describe in detail the algorithm o bundle adjustment or 3-D reconstruction

Διαβάστε περισσότερα

Current Sensing Chip Resistor SMDL Series Size: 0201/0402/0603/0805/1206/1010/2010/2512/1225/3720/7520. official distributor of

Current Sensing Chip Resistor SMDL Series Size: 0201/0402/0603/0805/1206/1010/2010/2512/1225/3720/7520. official distributor of Product: Current Sensing Chip Resistor SMDL Series Size: 0201/0402/0603/0805/1206/1010/2010/2512/1225/3720/7520 official distributor of Current Sensing Chip Resistor (SMDL Series) 1. Features -3 Watts

Διαβάστε περισσότερα

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ» ΓΔΩΠΟΝΗΚΟ ΠΑΝΔΠΗΣΖΜΗΟ ΑΘΖΝΩΝ ΣΜΗΜΑ ΑΞΙΟΠΟΙΗΗ ΦΤΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗ ΜΗΥΑΝΙΚΗ ΣΟΜΕΑ ΕΔΑΦΟΛΟΓΙΑ ΚΑΙ ΓΕΩΡΓΙΚΗ ΥΗΜΕΙΑ ΕΙΔΙΚΕΤΗ: ΕΦΑΡΜΟΓΕ ΣΗ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ ΣΟΤ ΦΤΙΚΟΤ ΠΟΡΟΤ «ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ

Διαβάστε περισσότερα

High order interpolation function for surface contact problem

High order interpolation function for surface contact problem 3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300

Διαβάστε περισσότερα

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

Estimation of stability region for a class of switched linear systems with multiple equilibrium points 29 4 2012 4 1000 8152(2012)04 0409 06 Control Theory & Applications Vol 29 No 4 Apr 2012 12 1 (1 250061; 2 250353) ; ; ; TP273 A Estimation of stability region for a class of switched linear systems with

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

MathCity.org Merging man and maths

MathCity.org Merging man and maths MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)

Διαβάστε περισσότερα

Conjoint. The Problems of Price Attribute by Conjoint Analysis. Akihiko SHIMAZAKI * Nobuyuki OTAKE

Conjoint. The Problems of Price Attribute by Conjoint Analysis. Akihiko SHIMAZAKI * Nobuyuki OTAKE Conjoint Conjoint The Problems of Price Attribute by Conjoint Analysis Akihiko SHIMAZAKI * Nobuyuki OTAKE +, Conjoint - Conjoint. / 0 PSM Price Sensitivity Measurement Conjoint 1 2 + Conjoint Luce and

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t. 36 2010 8 8 Vol 36 No 8 JOURNAL OF BEIJING UNIVERSITY OF TECHNOLOGY Aug 2010 Ⅰ 100124 TB 534 + 2TP 273 A 0254-0037201008 - 1091-08 20 Hz 2 ~ 8 Hz 1988 Blondet 1 Trombetti 2-4 Symans 5 2 2 1 1 1b 6 M p

Διαβάστε περισσότερα

Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+

Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+ Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+ Ερευνητικές,Δραστηριότητες,και, Ενδιαφέροντα,, Τμήμα,Μηχανικών,Η/Υ,&,Πληροφορικής, Τομέας,Λογικού,των,Υπολογιστών, Εργαστήριο,Γραφικών,,Πολυμέσων,και,Γεωγραφικών,

Διαβάστε περισσότερα

OLS. University of New South Wales, Australia

OLS. University of New South Wales, Australia 1997 2007 5 OLS Abstract An understanding of the macro-level relationship between fertility and female employment is relevant and important to current policy-making. The objective of this study is to empirically

Διαβάστε περισσότερα

No Item Code Description Series Reference (1) Meritek Series CRA Thick Film Chip Resistor AEC-Q200 Qualified Type

No Item Code Description Series Reference (1) Meritek Series CRA Thick Film Chip Resistor AEC-Q200 Qualified Type Qualified FEATURE Excellent Mechanical Strength and Electrical Stability Ideal for Pick and Place Machinery Stable High Frequency Characteristics Miniature, High Board Density Equivalent Specification

Διαβάστε περισσότερα

Αλγοριθµική και νοηµατική µάθηση της χηµείας: η περίπτωση των πανελλαδικών εξετάσεων γενικής παιδείας 1999

Αλγοριθµική και νοηµατική µάθηση της χηµείας: η περίπτωση των πανελλαδικών εξετάσεων γενικής παιδείας 1999 Αλγοριθµική και νοηµατική µάθηση της χηµείας: η περίπτωση των πανελλαδικών εξετάσεων γενικής παιδείας 1999 Γεώργιος Τσαπαρλής, ηµήτριος Σταµοβλάσης, Χαράλαµπος Καµηλάτος, Εριφύλη Ζαρωτιάδου, ηµήτριος Παπαοικονόµου

Διαβάστε περισσότερα

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4] 212 2 ( 4 252 ) No.2 in 212 (Total No.252 Vol.4) doi 1.3969/j.issn.1673-7237.212.2.16 STANDARD & TESTING 1 2 2 (1. 2184 2. 2184) CensusX12 ARMA ARMA TU111.19 A 1673-7237(212)2-55-5 Time Series Analysis

Διαβάστε περισσότερα