[1, 2, 3, 4, 5, 6, 7, 8]

Σχετικά έγγραφα
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Α Ρ Ι Θ Μ Ο Σ : 6.913

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

# % % % % % # % % & %


The Finite Element Method

NoC. SoC (Systems-on-Chip) NoC (Network-on-Chip) (2) (3) 45% Flattened Butterfly [7] SoC. (QAP, quadratic assignment 2.1. (NoC) NoC.

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ

< = ) Τ 1 <Ο 6? <? Ν Α <? 6 ϑ<? ϑ = = Χ? 7 Π Ν Α = Ε = = = ;Χ? Ν !!! ) Τ 1. Ο = 6 Μ 6 < 6 Κ = Δ Χ ; ϑ = 6 = Σ Ν < Α <;< Δ Π 6 Χ6 Ο = ;= Χ Α

Ν Κ Π 6Μ Θ 5 ϑ Μ % # =8 Α Α Φ ; ; 7 9 ; ; Ρ5 > ; Σ 1Τ Ιϑ. Υ Ι ς Ω Ι ϑτ 5 ϑ :Β > 0 1Φ ς1 : : Ξ Ρ ; 5 1 ΤΙ ϑ ΒΦΓ 0 1Φ ς1 : ΒΓ Υ Ι : Δ Φ Θ 5 ϑ Μ & Δ 6 6

ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:

Novel rotor position detection method of line back EMF for BLDCM

High order interpolation function for surface contact problem

Harmonic Oscillations and Resonances in 3-D Nonlinear Dynamical System

! # %& # () & +( (!,+!,. / #! (!

Eulerian Simulation of Large Deformations

ΕΘΝΙΚΟΝ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟΝ ΠΑΝΕΠΙΣΤΗΜΙΟΝ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΏΝ

Συστήματα αλουμινίου νέας γενιάς Ευφυΐα υψηλής ενεργειακής απόδοσης

8 9 Θ ] :! : ; Θ < + ###( ] < ( < ( 8: Β ( < ( < ( 8 : 5 6! 5 < 6 5 : ! 6 58< 6 Ψ 5 ; 6 5! < 6 5 & = Κ Ο Β ϑ Β > Χ 2 Β ϑβ Ι? ϑ = Α 7

ELASTOPLASTIC ACCUMULATION MODEL FOR PREDICTING SOIL PLASTIC ENVELOPE DUE TO HIGH-CYCLIC LOADING

Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν

Α θ ή ν α, 7 Α π ρ ι λ ί ο υ

Διάγνωση βλαβών σε κατασκευές σκυροδέματος με χρήση "ευφυών" πιεζοηλεκτρικών αισθητήρων σαν αδρανή σκυροδέματος

Study of urban housing development projects: The general planning of Alexandria City

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

NONLINEAR FINITE ELEMENT ANALYSIS OF PLATE BENDING

A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3

Robust Temperature Control of a Reformer by Using Stable Continuous-Time Generalized Predictive Control


ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ

16 Electromagnetic induction

XAΡ Τ Η Σ Ε Τ Α Ι ΡΙ ΚΗ Σ Δ Ι Α Κ Υ Β Ε Ρ Ν Η ΣΗ Σ ΤΗΣ V I O H A L C O SA

Supporting Information for: electron ligands: Complex formation, oxidation and

DYNAMICAL BEHAVIORS OF A DELAYED REACTION-DIFFUSION EQUATION. Zhihao Ge

Αυτόματη Ανακατασκευή Θραυσμένων Αντικειμένων


! # !! # % % & ( ) + & # % #&,. /001 2 & 3 4


! # % ) + +, #./ )

= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f

Ενότητα 6 η : Μεταβατική αγωγή Θερμότητας

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Α Ρ Η Θ Μ Ο : ΠΡΑΞΗ ΣΡΟΠΟΠΟΙΗΗ ΠΡΑΞΗ ΚΑΣΑΘΕΗ ΟΡΩΝ

Legal use of personal data to fight telecom fraud

Toward a SPARQL Query Execution Mechanism using Dynamic Mapping Adaptation -A Preliminary Report- Takuya Adachi 1 Naoki Fukuta 2.

Εκπομπές και πορεία των χημικών ουσιών στο περιβάλλον

Gapso t e q u t e n t a g ebra P open parenthesis N closing parenthesis fin i s a.. pheno mno nd iscovere \ centerline

STEAM TABLES. Mollier Diagram

Two-mass Equivalent Link

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

ΑΠΑΝΤΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ ΘΕΜΑ Α

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Œ Œ ˆ ˆ ˆŠ ˆˆ 58. ˆ. Œ. ƒμ É. Œμ ±μ ± μ Ê É Ò É ÉÊÉ Ô² ±É μ ± ³ É ³ É ± (É Ì Î ± Ê É É), Œμ ±

? 9 Ξ : Α : 4 < ; : ; 4 ϑ Α Λ Χ< : Χ 9 : Α Α Χ : ;: Ψ 8< ;: 9 : > Α ϑ < > = 8 Α;< 4 <9 Ξ : 9 : > Α 4 Α < >

Οικονομική δυσπραγία και διεργασίες επιπολιτισμοποίησης μεταναστών εφήβων: Διαχρονική μελέτη κατά την περίοδο της οικονομικής κρίσης

Lecture 26: Circular domains

clearing a space (focusing) clearing a space, CS CS CS experiencing I 1. E. T. Gendlin (1978) experiencing (Gendlin 1962) experienc-


Αναζητώντας παράξενα σωµατίδια στο ALICE

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΛΕΩΝΙΔΑΣ Α. ΣΠΥΡΟΥ Διδακτορικό σε Υπολογιστική Εμβιομηχανική, Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Θεσσαλίας.


: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΣΤΥΛΙΑΝΗΣ Κ. ΣΟΦΙΑΝΟΠΟΥΛΟΥ Αναπληρώτρια Καθηγήτρια. Τµήµα Τεχνολογίας & Συστηµάτων Παραγωγής.

The Greek Data Protection Act: The IT Professional s Perspective

DOI /J. 1SSN

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Parametrized Surfaces


το προφίλ της γάστρας, η ίσαλος σχεδίασης, η καμπύλη εμβαδών εγκαρσίων τομών και η κατανομή του κέντρου βάρους των εγκαρσίων τομών κατά μήκος του

ITU-R P ITU-R P (ITU-R 204/3 ( )

WiFi & Satcom FORUM 2009

Development of a basic motion analysis system using a sensor KINECT

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.


Μαθηματικά Προσανατολισμού Γ Λυκείου Κανιστράς Δημήτριος. Συναρτήσεις Όρια Συνέχεια Μια πρώτη επανάληψη Απαντήσεις των ασκήσεων

General theorems of Optical Imaging systems

IMPROVED CONVERTING PERMEABILITY COEFFICIENT METHOD AND VARIABLE PERMEABILITY COFFICIENT METHOD FOR SEEPAGE CALCULATION IN KARST REGION

6< 7 4) ==4>)? ) >) ) Α< = > 6< 7<)Β Χ< Α< = > ) = ) 6 >) 7<)Ε > 7 ) ) ) ; + ; # % & () & :,% 3 + ;; 7 8 )+, ( ! # % & % ( )! +, % & &.

, Snowdon. . Frahm.

ITU-R P (2012/02) &' (

«ΘΕΜΑΤΑ ΑΣΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ» ΔΙΔΑΣΚΟΥΣΕΣ: ΒΑΪΟΥ Ντ., ΜΑΝΤΟΥΒΑΛΟΥ Μ., ΜΑΥΡΙΔΟΥ Μ. «Gentrification Friendly» γειτονιές στο κέντρο της Αθήνας(;)

Uniform Convergence of Fourier Series Michael Taylor


EXPERIMENT RESEARCH OF INFLUENCE OF DYNAMIC LOADING ON PROCESS OF CRACK FORMATION AT BOOTY OF LITHOIDAL BLOCKS T.

measured by ALICE in pp, p-pb and Pb-Pb collisions at the LHC

! # % & ( ) & + #, +. ! # + / 0 / 1 ! 2 # ( # # !! ( # 5 6 ( 78 ( # ! /! / 0, /!) 4 0!.! ) 7 2 ## 9 3 # ## : + 5 ; )!

ΠΙΝΑΚΑΣ ΚΑΤΑΤΑΞΗΣ & ΒΑΘΜΟΛΟΓΙΑΣ (άρθρο 21 παρ.11 του Ν.2190/94) ΥΠΟΨΗΦΙΩΝ ΚΑΤΗΓΟΡΙΑΣ YΕ ΚΩΔΙΚΟΣ ΘΕΣΗΣ : 101. Ειδικότητα: ΥΕ ΚΑΘΑΡΙΟΤΗΤΑΣ ΚΡΙΤΗΡΙΑ

) 500 ΑΣΚΗΣΕΙΣ ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ

Probabilistic Approach to Robust Optimization


Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Motion analysis and simulation of a stratospheric airship

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

ΠΑΡΑΔΕΙΓΜΑΤΑ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΜΕ ΤΗ ΧΡΗΣΗ Η/Υ (2 ο Φυλλάδιο)

0.635mm Pitch Board to Board Docking Connector. Lead-Free Compliance

Nonlinear Fourier transform for the conductivity equation. Visibility and Invisibility in Impedance Tomography

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

Transcript:

208 5 [, 2, 3, 4, 5, 6, 7, 8] 2 () ϕ = λ θ () ϕ [W/m 2 ] θ [K] λ [W/(m K)] Schmatic rprsantation of Fourir s law (2) ρc θ = ϕ + f (2) ρ [kg/m 3 ] c [J/(kg K)] θ = t f [W/m3 ] () (2) (3) ρc θ = (λ θ) + f (3)

2 Schmatic rprsantation of th physical domain Numann N Diricht D (4) (5) = N D (4) N \ D = (5) Numann N q Diricht D θ (9) (7) q = λ θ on N (6) θ = θ 0 on D (7) 3 (3) (3) δθ (8) δθ ρc θ d = δθ (λ θ) + f} d (8) (8) (9) δθ ρc θ d = δθ (λ θ)d + δθ f d (9) (ϕa) = ( ϕ) A + ϕ A A = α ψ (0) (ϕ α ψ) = ( ϕ) α ψ + ϕ α ψ (0) (0) () ϕ α ψ = (ϕ α ψ) ( ϕ) α ψ () () (9) (2) δθ ρc θ d = (δθ λ θ) ( δθ) λ θ} d + δθ f d (2) (2) (3) δθ ρc θ d + ( δθ) λ θ d = (δθ λ θ) d + δθ f d (3) 2

(4) (ϕ ψ) d = (4) (3) (5) δθ ρc θ d + δθ λ θ d = n (δθ λ θ) d + n (ϕ ψ) d (4) δθ f d (5) (5) (6) n (δθ λ θ) d = δθ λ n d = δθ q d (6) (5) (6) (7) δθ ρc θ d + δθ λ θ d = (8) FEM = n δθ f d + δθ q d (7) () (8) (8) (9) (20) d d () (9) () d d () (20) () ϕ () ξ N ϕ (2) i ϕ () (ξ) = N(ξ) ϕ (7) (22) = N i (ξ) ϕ i (2) (N i δθ i ) t ρc N j θj d () + ( N i δθ i ) t λ N j θ j d () = () () (N i δθ i ) t f i d () + (N i δθ i ) t q i d () (22) () () (22) δθ i t (23) δθ t () N i t ρc N j θj d () + δθ t δθ t () N i t f i d () + δθ t 3 () ( N i ) t λ N j θ j d () = () N i t q i d () (23)

(23) δθ t (24) () N i t ρc N j θj d () + (24) (25) () N i t ρc N j d () θ + () N i t f i d () + () N i t f i d () + () ( N i ) t λ N j θ j d () = () N i t q i d () (24) () ( N i ) t λ N j d () θ = (26) (27) (28) () N i t q i d () (25) M = N t i ρc N j d () (26) () K = ( N i ) t λ N j d () (27) () f = N t i f i d () + N t i q i d () (28) () () (25) (26) (27) (28) (29) M θ + Kθ = f (29) 4 (29) Crank- Nicolson (30) t + t (29) M θ t+ t + Kθ t+ t = f t+ t (30) t + t θ t+ t (3) α 0 α θ t+ t = α θ t+ t + ( α) θ t (3) t + t f t+ t (32) f t+ t = α f t+ t + ( α) f t (32) t + t θ θ t+ t = t+ t t (33) θ t+ t = t+ t t = θ t+ t θ t t (33) 4

(3) (32) (33) (29) (34) M θ t+ t θ t t + K α θ t+ t + ( α) θ t } = α f t+ t + ( α) f t (34) (34) (35) M θ t+ t θ t t + Kθ t+α t = f t+α t (35) α = 0 Forward Eulr α = Crank-Nicolson α = Backward 2 Eulr Forward Eulr M Backward Eulr t Crank-Nicolson O( t 2 ) O( t) Crank-Nicolson α = (34) (36) 2 ( t M + 2 K) θ t+ t = 2 (f t+ t + f t ) + ( t M 2 K) θ t (36) 5 5. (35) FrontISTR (35) (37) t M(θ t+ t (i ) ) θ t+ t + K(θ t+α t (i ) ) θ t+α t = f(θ t+α t (i ) ) + t M(θ t) θ t (37) θ (i ) t+ t θ t+ t θ t+ t = G(θ(i ) t+ t ) (38) θ t+ t () = G(θ t+ t (0) ) θ t+ t (2) = G(θ t+ t () ) θ t+ t (3) = G(θ t+ t (2) ) (37). (38) 5

5.2 Nwton-Raphson (35) Nwton-Raphson φ(θ) (39) α = 2 φ(θ t+ t ) = t M(θ t+ t) + } 2 K(θ t+ t) θ t+ t + t M(θ t) + } 2 K(θ t) θ t 2 f(θ t+ t) + f(θ t )} = 0 (39) θ t+ t (40) θ t+ t (i+) = θ t+ t + (40) (40) (39) (4) φ(θ t+ t ) = t M(θ t+ t) + } 2 K(θ t+ t) θ t+ t + t M(θ t+ t) + } 2 K(θ t+ t) + t M(θ t) + } 2 K(θ t) θ t 2 f(θ t+ t) + f(θ t )} = 0 (4) M(θ t+ t ) K(θ t+ t ) f(θ t+ t ) (42) (43) (44) M(θ (i+) t+ t ) M(θ t+ t ) + M(θ t+ t ) (42) K(θ (i+) t+ t ) K(θ t+ t ) + K(θ t+ t ) (43) f(θ (i+) t+ t ) f(θ t+ t ) + f(θ t+ t ) (44) 6

(40) (42) (43) (44) (4) (45) } φ(θ t+ t ) = t M(θ t+ t ) + M(θ t+ t ) } + 2 K(θ t+ t ) + K(θ t+ t ) } + t M(θ t+ t ) + M(θ t+ t ) } + 2 K(θ t+ t ) + K(θ t+ t ) + t M(θ t) + } 2 K(θ t) θ t θ t+ t θ t+ t 2 f(θ t+ t ) + f(θ t+ t ) θ t+ t 2 f(θ t) = 0 (45) (46) φ(θ t+ t ) = t M(θ t+ t ) θ t+ t + M(θ t+ t ) θ t+ t + 2 K(θ t+ t ) θ t+ t + K(θ t+ t ) θ t+ t + t M(θ t+ t ) + 2 K(θ t+ t ) t M(θ t) θ t + 2 K(θ t) θ t 2 f(θ t+ t ) + f(θ t+ t ) θ t+ t 2 f(θ t) = 0 (46) (46) (47) (48) (49) M T (θ t+ t ) = M(θ t+ t ) θ t+ t K T (θ t+ t ) = K(θ t+ t ) θ t+ t F T (θ t+ t ) = f(θ t+ t ) (46) (47) (48) (49) (50) t M(θ t+ t ) + M T (θ t+ t ) + } 2 K(θ t+ t ) + K T (θ t+ t ) + F T (θ t+ t ) = t M(θ t+ t ) θ t+ t t M(θ t) θ t + 2 K(θ t+ t ) θ t+ t + 2 K(θ t) θ t 2 f(θ t+ t ) 2 f(θ t) (47) (48) (49) (50) = 0 (36) 7 (47) (48) (49) (50)

5.3 (5) (52) n M(θ) t ρ(θ k ) θ = N i c N j θ k d () () + N t i ρ c(θ k) N j θ k d () (5) () K(θ) n θ = ( N i ) t λ(θ k) () N j θ k d () (52) [] Klaus-JürgnBath, Mohammad R. Khoshgoftaar. Finit nt formulation and solution of nonlinar hat transfr. Nuclar Enginring and Dsign, Vol. 5, No. 3, pp. 389 40, 979. [2] E.L. Wilson, K.J. Bath, and F.E. Ptrson. Finit nt analysis of linar and nonlinar hat transfr. Nuclar Enginring and Dsign, Vol. 29, No., pp. 0 24, 974. Spcial Issu: Paprs Prsntd at th Confrnc Contnts. [3] G.AGUIRRE RAMIREZ, J. T. ODEN. Finit nt tchniqu applid to hat conduction in solids with tmpratur dpndnt thrmal conductivity. Intrnational Journal for Numrical Mthods in Enginring, Vol. 7, No. 3, pp. 345 355. [4] NN Kochina. On a solution of th nonlinar diffusion quation. Journal of Applid Mathmatics and Mchanics, Vol. 28, No. 4, pp. 857 866, 964. [5] A Srdar Slamt and B Murat Uzun. A novl and fficint finit nt softwar for hat transfr: Fhat. [6] Michal W Glass, Roy E Hogan Jr, and David K Gartling. Coyot: a finit nt computr program for nonlinar hat conduction problms. part i, thortical background. Tchnical rport, Sandia National Laboratoris, 200. [7] G Comini, S Dl Guidic, RW Lwis, and OC Zinkiwicz. Finit nt solution of non-linar hat conduction problms with spcial rfrnc to phas chang. Intrnational Journal for Numrical Mthods in Enginring, Vol. 8, No. 3, pp. 63 624, 974. [8] L d F Frnch. Transint nonlinar hat transfr analysis using th finit nt mthod in th contxt of th rquirmnts of thrmal analysis in a min. PhD thsis, Univrsity of Cap Town, 990. 8