Java Applets. Visual Simulation of Classical Mechanics in terms of Java Applets. Toshiaki Izumoto 1 and Yuki Irokawa 1. Java Graphics 1) 2) 6)



Σχετικά έγγραφα
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Math 6 SL Probability Distributions Practice Test Mark Scheme

Approximation of distance between locations on earth given by latitude and longitude

ΠΣΤΧΛΑΚΘ ΕΡΓΑΛΑ ΜΕΣΡΘΕΛ ΟΠΣΛΚΟΤ ΒΑΚΟΤ ΑΣΜΟΦΑΛΡΑ ΜΕ ΘΛΛΑΚΟ ΦΩΣΟΜΕΣΡΟ ΕΚΟ

Srednicki Chapter 55

Homework 3 Solutions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Inverse trigonometric functions & General Solution of Trigonometric Equations

Forced Pendulum Numerical approach

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Second Order RLC Filters

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Lifting Entry (continued)

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

Areas and Lengths in Polar Coordinates

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Section 8.3 Trigonometric Equations

Matrices and Determinants

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Higher Derivative Gravity Theories

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Διερεύνηση ακουστικών ιδιοτήτων Νεκρομαντείου Αχέροντα

Differentiation exercise show differential equation

1 String with massive end-points

D Alembert s Solution to the Wave Equation

Solution to Review Problems for Midterm III

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

( ) 2 and compare to M.

is like multiplying by the conversion factor of. Dividing by 2π gives you the

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ

( y) Partial Differential Equations

Lecture 26: Circular domains

High order interpolation function for surface contact problem

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)

ΠΕΡΙΓΡΑΦΗ ΚΥΜΑΤΙΚΟΥ ΚΛΙΜΑΤΟΣ ΣΤΟ ΘΡΑΚΙΚΟ ΠΕΛΑΓΟΣ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΜΑΘΗΜΑΤΙΚΟΥ ΟΜΟΙΩΜΑΤΟΣ SWAN

Section 8.2 Graphs of Polar Equations

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ (ΣΔΟ) ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Design Method of Ball Mill by Discrete Element Method

Buried Markov Model Pairwise

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

ΜΕΛΕΤΗ ΑΠΟΤΙΜΗΣΗΣ ΠΑΡΑΓΟΜΕΝΗΣ ΕΝΕΡΓΕΙΑΣ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΕΓΚΑΤΕΣΤΗΜΕΝΩΝ ΣΕ ΕΛΛΑ Α ΚΑΙ ΤΣΕΧΙΑ

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

5.4 The Poisson Distribution.

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Παραμύθια τησ Χαλιμϊσ, τομ. A Σελύδα 1

Αναερόβια Φυσική Κατάσταση


Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

DuPont Suva 95 Refrigerant

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing

Areas and Lengths in Polar Coordinates

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

Πειράµατα Ηλεκτρικών Ταλαντώσεων µε τη χρήση του Συστήµατος Συγχρονικής Λήψης και Απεικόνισης (Multilog) των Γενικών Λυκείων

2.1

Homework 8 Model Solution Section

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

[1] P Q. Fig. 3.1

Differential equations

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Math221: HW# 1 solutions

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

ΟΙ Υ ΡΟΓΕΩΛΟΓΙΚΕΣ ΣΥΝΘΗΚΕΣ ΣΤΗΝ ΛΕΚΑΝΗ ΠΟΤΑΜΙΑΣ ΚΑΙ Η ΑΛΛΗΛΟΕΠΙ ΡΑΣΗ ΤΟΥ Υ ΑΤΙΚΟΥ ΚΑΘΕΣΤΩΤΟΣ ΜΕ ΤΗ ΜΕΛΛΟΝΤΙΚΗ ΛΙΓΝΙΤΙΚΗ ΕΚΜΕΤΑΛΛΕΥΣΗ ΣΤΗΝ ΕΛΑΣΣΟΝΑ

Trigonometric Formula Sheet

Operational Programme Education and Lifelong Learning. Continuing Education Programme for updating Knowledge of University Graduates:

Derivation of Optical-Bloch Equations

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο

DuPont Suva 95 Refrigerant

Supporting Information

SPECIAL FUNCTIONS and POLYNOMIALS

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System

Distances in Sierpiński Triangle Graphs

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

ΚΕΡΚΙΔΙΚΗ ΚΑΙ ΜΗΡΙΑΙΑ ΠΡΟΣΠΕΛΑΣΗ ΣΕ ΣΤΕΦΑΝΙΟΓΡΑΦΙΕΣ ΚΑΙ ΑΓΓΕΙΟΠΛΑΣΤΙΚΕΣ. ΜΙΑ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ

Π Τ Υ Χ Ι Α Κ Η /ΔΙ Π Λ Ω Μ ΑΤ Ι Κ Η Ε Ρ ΓΑ Σ Ι Α


The Spiral of Theodorus, Numerical Analysis, and Special Functions

derivation of the Laplacian from rectangular to spherical coordinates

Numerical Analysis FMN011

Transcript:

Java Applets 1 1 2 Applets Runge-Kutta 3 Applet 3, Web Visual Simulation of Classical Mechanics in terms of Java Applets Toshiaki Izumoto 1 and Yuki Irokawa 1 In this paper, some Java applets are made of the visual simulation of the classical mechanics. The orbit of the Kepler motion is first visualized by numerically integrating the differential equation of the 2-body central force problem. The magnitudes of numerical errors are evaluated of the Euler, the Runge-Kutta and the Symplectic integration methods by comparing the numerical results of the orbit and the constants of motion with the eact solution. A visual 3-body simulation is then performed of the earth and the moon in the solar system by making use of the Symplectic 6th integration method, where the constants of motion are carefully observed. The virtual problems are discussed, for eample, of the moon spiraling away. The visual simulation may facilitate learning in a virtual class. 1. Java Graphics 1) 2) 6) Java Applets Kepler 4),5) 7) 10) Newton Euler Runge-Kutta (RK) Symplectic 4 (SI) 10) 12) Kepler Velocity-Verlet 5) RK 13). 3 Symplectic 10),11), 14),15) 1 Department of Physics, Rikkyo University 1 c 2011 Information Processing Society of Japan

Applets 2. 2.1 1 Hamiltonian m 1 U(q) H = K + U(q) = p 2 /2m + U(q), U(q) = k/ q (1) { dp/dt = {p, H} = H/ q, (2) dq/dt = {q, H} = H/ p K, U, E Newton 4 p md 2 q/dt 2 = kq/ q 3 (9) m 1 ( m 2 ) 2 m µ = m 1 m 2 /(m 1 + m 2 ), k = Gm 1 m 2 (1) 9 G (r, θ), (p r, p θ ) 16) r = C/{1 + ɛ cos(θ + θ 0 )}. (10) C ɛ C = l 2 /mk, ɛ = 1 + 2El 2 /mk 2. (11) {p, H}, {q, H} Poisson {p, K} = 0, {p, U} = U/ q = f(q), {q, K} = p/m, {q, U} = 0 { dp/dt = f(q) = kq/ q 3, dq/dt = p/m (3) (4) E l R = 1 m m 2 = 1 T = 1 ( 1 3). t = 0 (r, θ) = (1, 0) dr/dt = 0, r(dθ/dt) = RΩ = v 0 (Ω ) C = v0/(2π) 2 2, ɛ = 1 v0/(2π) 2 2 (12) r = v0/ [ 2 (2π) 2 + {v0 2 (2π) 2 } cos θ ] (13) E M E = p 2 /2m k/ q, M = [q p]. (5) 4 de/dt = 0, dm/dt = 0 (6) the virial theorem K = Ū/2. (7) K, Ū K, U Ē = Ū/2 (8) v 0 v 0 < 2 2π, E = v0/2 2 (2π) 2 < 0, v 0 = 2π, v 0 = 2 2π, E = v0/2 2 (2π) 2 = 0, v 0 > 2 2π, E = v0/2 2 (2π) 2 > 0. a, b a = C/(1 ɛ 2 ) = k/2e = 1/{2 v0/(2π) 2 2 } (14) b = a 1 ɛ 2 = l 2 /2µE = 1/ 2(2π) 2 /v0 2 1 (15) l/2m πab 1 T 2 c 2011 Information Processing Society of Japan

T = 2πab/(l/m) = 4π 2 a 3 /GM = 1/{2 v 2 0/(2π) 2 } 3/2 (16) 2.2 3 Hamiltonian m i, q i, p i (i = 1, 2, 3) H = K + U = p 2 i /2m i Gm i m j / q i q j, (17) i i<j M = [q i p i ] (18) i { dp i /dt = H/ q i, dq i/dt = H/ p i, (i = 1, 2, 3) 1 q 1 q 2 q 3 {q 1, q 2, q 3 } {p 1, p 2, p 3 } {R G, R, r} {P G, P, p} q 1 = R G (m 2 + m 3 )R/M G, q 2 = R G + m 1R/M G m 3r/(m 2 + m 3), q 3 = R G + m 1 R/M G + m 2 r/(m 2 + m 3 ), p 1 = m 1 P G /M G P, p 2 = m 2P G/M G + m 2P/(m 2 + m 3) p, p 3 = m 3 P G /M G + m 3 P/(m 2 + m 3 ) + p. Hamiltonian H = P 2 G/2M G + P 2 /2m + p 2 /2µ { Gm 1 m 2 / R m 3 r/(m 2 + m 3 ) (19) (20) +Gm 1 m 3 / R m 2 r/(m 2 + m 3 ) + Gm 2 m 3 / r }, (21) M = [R G P G] + [R P] + [r p] (22) M G = m 1 + m 2 + m 3, m = m 1 (m 2 + m 3 )/M G, µ = m 2 m 3 /(m 2 + m 3 ) (23) Ẽ M Ẽ = E P 2 /2M G, M = M [R G P G] (24) r R m 2, m 3 m 1 21 Newton r M Gd 2 R G /dt 2 = 0, m d 2 R/dt 2 Gm 1(m 2 + m 3)R/ R 3, µ d 2 r/dt 2 Gm 2 m 3 r/ r 3 +Gm 1 m 2 m 3 /(m 2 + m 3 ){3(R r)r/ R 2 r}/ R 3 r, R Java Applets. R G = (0, 0, 0), R = (R, 0, 0), r = (r cos θ, 0, r sin θ), (26) P G = (0, 0, 0), P = (0, mrω, 0), p = (µrω cos θ, 0, µrω sin θ). (27) M G, m, µ R, r Ω, ω 20, {q 1, q 2, q 3 } {p 1, p 2, p 3 }, θ = 5.15. 2.3 2.3.1 Euler Runge-Kutta p, q z = {q, p} 4 t dz/dt ż ż = g(t, z) (28) (25) 3 c 2011 Information Processing Society of Japan

1 Table 1 Masses and mass ratios of stars 3 T Table 3 Angular velocities of bounded motion m 1 1.9891 10 30 kg 333,400 m 2 5.974 10 24 kg 1. m 3 7.34767 10 22 kg 0.0123000 Ω 2π[T 1 ] 1. ω 2π/(27.32/365.24)[T 1 ] 13.369 Table 2 2 Average distances of two stars - R 1.496 10 8 km 1. - r 3.844 10 5 km 0.0025696 Euler t n = n t Taylor z n+1 z n + tg(t n, z n) (29) Euler t 1. Runge-Kutta t z n+1 = z n + k 2, (30) k 1 = t g(t n, z n), k 2 = t g(t n + t/2, z n + k 1/2) 2 1 Kepler. t z n+1 = z n + (k 1 + 2k 2 + 2k 3 + k 4 )/6, (31) k 1 = t g(t n, z n ), k 2 = t g(t n + t/2, z n + k 1 /2), k 3 = t g(t n + t/2, z n + k 2/2), k 4 = t g(t n + t, z n + k 3) 2.3.2 Symplectic z = (q, p), ż = {z, H} (32) {z, H} Poisson H = K(p) + U(q) D H D H = {z, H} (33) z( t) = exp[ td H]z(0) (34) D H = {z, K} + {z, U} = D K + D U (35) z( t) = exp[ t(d K + D U )]z(0) (36) Symplectic 10),11) Symplectic O( t 2 ) exp[ t(d K + D U )] exp[ td K] exp[ td U ] + O( t 2 ) (37) Symplectic O( t 3 ) exp[ t(d K + D U )] exp[( t/2)d K ] exp[ td U ] exp[( t/2)d K ] (38) Symplectic O( t 4 ) exp[ t(d K + D U )] L 2 [s 1 (D K + D U )] L 2 [s 2 (D K + D U )] L 2 [s 1 (D K + D U )] (39) L 2[A + B] = exp[(1/2)a] exp[b] exp[(1/2)a] s 1 = 1/(2 2 1/3 ), s 2 = 1 2s 1 Symplectic O( t 6 ) exp[ t(d K + D U )] L 4 [s 3 (D K + D U )] L 4 [s 4 (D K + D U )] L 4 [s 3 (D K + D U )] (40) L 4[A + B] = L 2[s 1(A + B)]L 2[s 2(A + B)]L 2[s 1(A + B)] s 3 = 1/(2 2 1/5 ), s 4 = 1 2s 3 5) Velocity Verlet 4 c 2011 Information Processing Society of Japan

1., r 0 = 1, v 0 = 2π, ɛ = 0 Euler 1 Fig. 1 Orbits of the Earth, calculated by using numerical integration methods for the initial values of r 0 = 1 and v 0 = 2π. A circle is the exact solution in this case. 1 Symplectic 2. 3. Java Applets 3.1 Java Applet Kepler Applet r m 2.1 9 k (2π) 2 2. r 0 = 1, v 0 = 2π 0.70 ɛ = 0.51 0.538 Euler Runge-Kutta Fig. 2 Orbits of the Earth, calculated by using numerical integration methods for the case of the initial values of r 0 = 1 and v 0 = (2π) 0.70. An ellipse with the eccentricity ɛ = 0.51 is the exact solution in this case. Applet Euler Runge-Kutta (RK) Symplectic SI ) t Newton i r 0 v 0 ii t t 1 2 (13) 3 4 Kepler 6 5 c 2011 Information Processing Society of Japan

3 Runge-Kutta (RK2nd) Simplectic (SI2nd) r 0 = 1, v 0 = 2π 0.70 RK2nd Fig. 3 Time variation of the energy and the angular momentum, which are calculated with the 2nd-order RK (RK2nd) and the SI2nd methods for the initial values of r 0 = 1 and v 0 = (2π) 0.70. Note that the numerical deviation in the case of the RK2nd method grows monotonically as time elapses. r 0 = 1, v 0 = 2π 2π 0.70, ɛ = 0.0 0.51 t = T/200, (T ) Euler. Euler 29 Runge-Kutta RK2nd 30 Symplectic SI2nd 38 Euler RK2nd SI2nd ɛ = 0.51 r 0 = 1, v 0 = 2π 0.70 4 Runge-Kutta 4 (RK4th) Simplectic 4 (SI4th) r 0 = 1, v 0 = 2π 0.70 RK4th. 3 100 Fig. 4 Time variation of numerical deviations from the constants of motion, which are predicted with the 4th-order Runge-Kutta(RK) and the Symplectic Integrator(SI) methods for the initial values of r 0 = 1 and v 0 = (2π) 0.70. In the case of the RK4th method, the numerical deviation grows monotonically as time elapses. Note that the scale of the vertical axis is magnified by a factor of 100. ɛ = 0.51 RK2nd SI2nd. RK4th SI4th RK2nd 4 RK4th SI4th RK4th SI4th 6 c 2011 Information Processing Society of Japan

5.. R r α 4α. Fig. 5 The binary system of the earth and the moon moving around the sun. Note that the relative distance between the earth and the moon is apparently multiplied by α (, and 4α within an inset) after the numerical integration. 3.2 Java Applet 3 3 Applet Symplectic 6 2.2 17) RK 2 13) 2.3 Symplectic 2 Velocity Verlet 5) Kepler 3 6. r α 4α. Fig. 6 The binary system of the earth and the moon which is set to circle in the opposite direction, is traveling around the sun. Note that relative the distance between the earth and the moon is apparently multiplied byα (, and 4α within an inset) in the drawing. Symplectic 6 t. 3 Ẽ M 24 5 R r α =10 ( 4α =40 ). 13),15). Applet α 1 12 13 7 c 2011 Information Processing Society of Japan

7 r 1.50 v 1/ 1.5. r α 4α. Fig. 7 The binary system of the earth and the moon moving around the sun. Note that the relative distance between the earth and the moon is apparently multiplied by α (, and 4α within an inset) after the numerical integration. 8 r 2.0 v 1/ 2.0 r α 4α. Fig. 8 The binary system of the earth and the moon is moving around the sun. Note that the relative distance between the earth and the moon is apparently multiplied by α (, and 4α within an inset) after the numerical integration. 3 6 19 80 1 18) 1 80 ±1 14),15) 1 3.8cm 7 8 0 < (1 + β) r (1 + β) r, v v / 1 + β (41) - 1 + β 15) 1/(1 + β) (1 + β) 3/2 50 r 1.5 1.8 2 8 8 c 2011 Information Processing Society of Japan

25 4. 1 2 Runge-Kutta Euler Runge-Kutta t Symplectic. 3 Java Applet 3 1.8 2, Java Applets Applets / 19) Web page 1) Oracle Corporation, Java T M Platform, Standard Edition 6 JDK. 2),,,,, JAVA 2009 28pYE-3. 3),, Java Graphics Vol.2009-CE-99,No.2,1-8,2009. 4) W. Fendt, http://www.walter-fendt.de/ph14e/ 5) PhET, Interactive Simulations, univ. of Colorado at Boulder, http://phet.colorado.edu/ 6) PheET, 16 2010 34-37 7) 3 2010, 8) (2007, ), http://www.a-phys.eng.osaka-cu.ac.jp/terai/comp phys/comp.pdf 9) 2008), http://www-solid.eps.s.u-tokyo.ac.jp/ataru/edu/ensyu08.pdf 10) :Symplectic http://cms.phys.s.u-tokyo.ac.jp/ naoki/cipintro/symp/symp1.html 11) H. Yoshida, Construction of higher order symplectic integrators, Physics Letters A150 (1990) pp.262-268. 12) : 2008, Kyoto-University Open Courseware http://ocw.kyoto-u.ac.jp/faculty-of-integrated-human-studies-jp/introductionto-simulation 13), 3 Fortran Pascal 1991,. 14) Wikipedia Lunar distance(astronomy), http://en.wikipedia.org/wiki/lunar distance (astronomy) 15) Newton (2009, ) 16) H. Goldstein, Classical Mechanics, (1964, Addison-Wesley Pub. Company). 17) Java 2003,. 18) /. 19), http://www2.rikkyo.ac.jp/web/izumoto/multimediaworks.html 9 c 2011 Information Processing Society of Japan