SE C O N D E D ITI O N CONSTRUCTION, ANALYSIS, AND INTERPRETATION

Σχετικά έγγραφα
255 (log-normal distribution) 83, 106, 239 (malus) 26 - (Belgian BMS, Markovian presentation) 32 (median premium calculation principle) 186 À / Á (goo

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

Biostatistics for Health Sciences Review Sheet

Fundamentals of Probability: A First Course. Anirban DasGupta

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Fundamentals of Signals, Systems and Filtering

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Statistical Inference I Locally most powerful tests

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Other Test Constructions: Likelihood Ratio & Bayes Tests

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

5.4 The Poisson Distribution.

Supplementary Appendix

Démographie spatiale/spatial Demography

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Ηλεκτρονικοί Υπολογιστές IV

MOTORCAR INSURANCE I

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

The Jordan Form of Complex Tridiagonal Matrices

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

FORMULAS FOR STATISTICS 1

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Markov chains model reduction

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

Bayesian modeling of inseparable space-time variation in disease risk

Lecture 34 Bootstrap confidence intervals

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Βιογραφικό Σημείωμα. (τελευταία ενημέρωση 20 Ιουλίου 2015) 14 Ιουλίου 1973 Αθήνα Έγγαμος

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

A life-table metamodel to support management of data deficient species, exemplified in sturgeons and shads. Electronic Supplementary Material

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ΧΩΡΙΚΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΤΩΝ ΤΙΜΩΝ ΤΩΝ ΑΚΙΝΗΤΩΝ SPATIAL ECONOMETRIC MODELS FOR VALUATION OF THE PROPERTY PRICES

Jordan Form of a Square Matrix

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Section 8.3 Trigonometric Equations

The Simply Typed Lambda Calculus

Abstract Storage Devices

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis

ΤΟ ΜΟΝΤΕΛΟ Οι Υποθέσεις Η Απλή Περίπτωση για λi = μi 25 = Η Γενική Περίπτωση για λi μi..35

ΚΑΘΟΡΙΣΜΟΣ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥ ΣΕ Φ/Β ΠΑΡΚΟ 80KWp

Wavelet based matrix compression for boundary integral equations on complex geometries

Math 6 SL Probability Distributions Practice Test Mark Scheme

ST5224: Advanced Statistical Theory II

χ 2 test ανεξαρτησίας


ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ

Άσκηση 10, σελ Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

TMA4115 Matematikk 3

The ε-pseudospectrum of a Matrix

Discretization of Generalized Convection-Diffusion

Stationary Univariate Time Series Models 1

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Sampling Basics (1B) Young Won Lim 9/21/13

Lecture 12: Pseudo likelihood approach

6.3 Forecasting ARMA processes

ΜΟΝΤΕΛΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

4.6 Autoregressive Moving Average Model ARMA(1,1)

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Λέκτορας στο Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων, Πανεπιστήμιο Πειραιώς, Ιανουάριος 2012-Μάρτιος 2014.

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ

Thesis presentation. Turo Brunou

ΕΚΤΙΜΗΣΗ ΤΟΥ ΚΟΣΤΟΥΣ ΤΩΝ ΟΔΙΚΩΝ ΑΤΥΧΗΜΑΤΩΝ ΚΑΙ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΕΠΙΡΡΟΗΣ ΤΟΥ

Homework 3 Solutions

6. MAXIMUM LIKELIHOOD ESTIMATION

w o = R 1 p. (1) R = p =. = 1

Solution Series 9. i=1 x i and i=1 x i.

ΑΠΟΣΠΑΣΜΑ Π Ρ Α Κ Τ Ι Κ ΟΥ 3 ΤΟΥ ΣΥΜΒΟΥΛΙΟΥ ΣΧΟΛΗΣ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Multilevel models for analyzing people s daily moving behaviour

Repeated measures Επαναληπτικές μετρήσεις

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Partial Differential Equations in Biology The boundary element method. March 26, 2013

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

Models for Probabilistic Programs with an Adversary

Second Order RLC Filters

519.22(07.07) 78 : ( ) /.. ; c (07.07) , , 2008

Contents. 1 Introduction. 2 Shape of the Earth. 3 NAD 27 vs NAD 83

Lecture 21: Properties and robustness of LSE

TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics

Μηχανική Μάθηση Hypothesis Testing

Probability and Random Processes (Part II)

90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z

Solutions to Exercise Sheet 5

Problem Set 3: Solutions

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Transcript:

Matrix Population Models SE C O N D E D ITI O N CONSTRUCTION, ANALYSIS, AND INTERPRETATION HAL CASWELL

Contents Preface Preface to the First Edition xvii xxi 1 Introduction 1 1.1 The life cycle: Linking the individual and the population.............................. 1 1.2 Demography............................... 2 1.3 Overview of the book........................... 3 1.3.1 Examples............................. 4 1.3.2 Matlab programs........................ 5 1.4 Construction, analysis, and interpretation............... 5 1.5 Mathematical prerequisites....................... 5 1.6 Notation.................................. 6 2 Age-Classified Matrix Models 8 2.1 The Leslie matrix............................. 8 2.2 Projection: the simplest form of analysis................ 11 2.2.1 A set of questions........................ 18 2.3 The Leslie matrix and the life table................... 20 2.3.1 Survival.............................. 21 2.3.2 Reproduction........................... 22 2.4 Constructing age-classified matrices................... 22 2.4.1 Birth-flow populations...................... 23 2.4.2 Birth-pulse populations..................... 25 2.5 Assumptions: Projection vs. forecasting................ 29 2.6 History.................................. 31 3 Stage-Classified Life Cycles 35 3.1 State variables.............................. 35 3.1.1 Zadeh s theory of state...................... 36 3.1.2 State variables in population models.............. 37

viii CONTENTS 3.2 Age as a state variable: When does it fail?............... 38 3.2.1 Size-dependent vital rates and plastic growth......... 39 3.2.2 Multiple modes of reproduction................. 40 3.2.3 Population subdivision and multistate demography...... 41 3.3 Statistical evaluation of state variables................. 41 3.3.1 Continuous response, continuous or discrete state....... 41 3.3.2 Discrete state, discrete response................. 43 3.3.3 Continuous state, discrete response............... 54 3.4 Overview................................. 55 4 Stage-Classified Matrix Models 56 4.1 The life cycle graph........................... 56 4.2 The matrix model............................ 59 4.3 Metapopulation and multistate models................. 62 4.3.1 Modelling dispersal........................ 65 4.3.2 Integrodifference equation models................ 71 4.3.3 Other examples.......................... 72 4.4 Solution of the projection equation................... 72 4.4.1 Derivation 1............................ 74 4.4.2 Derivation 2............................ 75 4.4.3 Effects of the eigenvalues.................... 76 4.5 Ergodicity................................. 79 4.5.1 The Perron-Frobenius theorem................. 79 4.5.2 Population growth rate: The strong ergodic theorem..... 84 4.5.3 Imprimitive matrices....................... 87 4.5.4 Reducible matrices........................ 88 4.6 Reproductive value............................ 92 4.7 Transient dynamics and convergence.................. 94 4.7.1 The damping ratio and convergence.............. 95 4.7.2 The period of oscillation..................... 100 4.7.3 Measuring the distance to the stable stage distribution.... 101 4.7.4 Population momentum...................... 104 4.8 Computation of eigenvalues and eigenvectors............. 106 4.8.1 Eigenvalues and eigenvectors in Matlab... 107 4.8.2 The power method........................ 108 4.9 Assumptions revisited.......................... 109 5 Events in the Life Cycle 110 5.1 A = T + F... 110 5.1.1 The life cycle as a Markov chain................ 111 5.1.2 The analysis of absorbing chains................ 112 5.2 Lifetime event probabilities....................... 115 5.3 Age-specific traits............................. 116

CONTENTS ix 5.3.1 Age-specific survival....................... 118 5.3.2 Age-specific fertility....................... 120 5.3.3 Age at first reproduction.................... 124 5.3.4 Net reproductive rate...................... 126 5.3.5 Generation time......................... 128 5.3.6 Age-within-stage distributions.................. 130 6 Parameter Estimation 133 6.1 Identified individuals........................... 134 6.1.1 Observed transition frequencies................. 134 6.1.2 Mark-recapture methods..................... 136 6.2 Inverse methods for time series..................... 142 6.2.1 Regression methods....................... 142 6.2.2 Wood s quadratic programming method............ 144 6.2.3 A maximum likelihood approach................ 152 6.2.4 Stage-frequency methods.................... 154 6.3 Stable stage-distribution methods.................... 154 6.3.1 Age-classified models....................... 154 6.3.2 Size-classified models....................... 157 6.3.3 Death assemblages........................ 157 6.4 Stage-duration distributions....................... 159 6.4.1 The geometric distribution................... 160 6.4.2 Fixed stage durations...................... 160 6.4.3 Variable stage durations..................... 162 6.4.4 Iterative calculation....................... 164 6.4.5 Negative binomial stage durations............... 164 6.4.6 Duration distributions compared................ 165 6.5 Multiregional or age-size models.................... 166 6.6 The Vandermeer-Moloney algorithms.................. 169 6.7 Fertilities in stage-classified models................... 171 6.7.1 Birth-flow populations...................... 171 6.7.2 Birth-pulse populations..................... 172 6.7.3 Anonymous reproduction.................... 173 6.8 Overview................................. 174 7 Analysis of the Life Cycle Graph 176 7.1 The z-transform............................. 177 7.1.1 z-transform solution of difference equations.......... 177 7.1.2 The z-transformed life cycle graph............... 178 7.2 Reduction of the life cycle graph.................... 178 7.2.1 Multistep transitions....................... 181 7.3 The characteristic equation....................... 181 7.3.1 Derivation............................. 184

x CONTENTS 7.4 The stable stage distribution...................... 185 7.4.1 Derivation............................. 187 7.5 Reproductive value............................ 187 7.5.1 A second interpretation of reproductive value......... 189 7.5.2 A note on eigenvectors of reducible matrices.......... 190 7.6 Partial life cycle analysis......................... 190 7.7 Annual organisms............................. 192 8 Structured Population Models 194 8.1 Partial differential equation models................... 194 8.1.1 Lotka s renewal equation..................... 196 8.1.2 Discretizing Lotka s equation: Don t bother.......... 197 8.1.3 Diffusion models......................... 198 8.1.4 PDE models and matrix models................ 198 8.1.5 The escalator boxcar train.................... 199 8.2 Delay-differential equation models................... 201 8.3 Integrodifference equation models.................... 202 8.4 i-state configuration models....................... 202 8.5 Choosing a model............................. 204 9 Sensitivity Analysis 206 9.1 Eigenvalue sensitivity.......................... 208 9.1.1 Perturbations of matrix elements................ 208 9.1.2 Sensitivity and age........................ 211 9.1.3 Sensitivities in stage- and size-classified models........ 213 9.1.4 What about those zeros?.................... 215 9.1.5 Sensitivity to multistep transitions............... 217 9.1.6 Total derivatives and multiple perturbations.......... 218 9.1.7 Sensitivity to changes in development rate........... 220 9.1.8 Predictions from sensitivities.................. 224 9.1.9 An overall eigenvalue sensitivity index............. 224 9.1.10 A third interpretation of reproductive value.......... 225 9.2 Elasticity analysis............................ 226 9.2.1 Elasticity and age........................ 227 9.2.2 Elasticities as contributions to λ... 229 9.2.3 Elasticities of λ to lower-level parameters........... 232 9.2.4 Comparative analysis of elasticity patterns.......... 233 9.2.5 Predictions from elasticities................... 240 9.2.6 Sensitivity or elasticity?..................... 243 9.3 Sensitivity analysis of transient dynamics............... 244 9.3.1 Sensitivity of the damping ratio................. 244 9.3.2 Sensitivity of the period..................... 247 9.4 Sensitivities of eigenvectors....................... 247

CONTENTS xi 9.4.1 Sensitivities of scaled eigenvectors............... 250 9.5 Generalized inverses in sensitivity analysis............... 251 9.6 Sensitivity analysis of Markov chains.................. 251 9.7 Second Derivatives of Eigenvalues.................... 254 9.7.1 Perturbation analysis of elasticities............... 256 10 Life Table Response Experiments 258 10.1 Fixed designs............................... 260 10.1.1 One-way designs......................... 260 10.1.2 Factorial designs......................... 263 10.2 Random designs and variance decomposition............. 269 10.3 Regression designs............................ 273 10.4 Extensions................................. 274 10.4.1 Higher-order terms........................ 274 10.4.2 Other demographic statistics.................. 275 10.4.3 Other demographic models................... 275 10.4.4 More mechanisms........................ 276 10.4.5 Statistics............................. 277 10.5 Prospective and retrospective analyses................. 277 11 Evolutionary Demography 279 11.1 Fitness................................... 280 11.1.1 Population genetics........................ 281 11.1.2 Quantitative genetics....................... 282 11.1.3 Invasion and ESS analysis.................... 291 11.2 Sensitivity, elasticity, and selection................... 295 11.3 Lifetime reproductive success and individual fitness............................. 295 11.4 Fitness and reproductive value..................... 297 12 Statistical Inference 299 12.1 Confidence intervals and uncertainty.................. 300 12.1.1 Series approximations...................... 300 12.1.2 Bootstrap standard errors.................... 304 12.1.3 Bootstrap confidence intervals.................. 306 12.1.4 Complex data structures..................... 309 12.1.5 More on the bootstrap...................... 315 12.1.6 Monte Carlo uncertainty analysis................ 319 12.1.7 The precision of estimates of λ................. 322 12.2 Loglinear analysis of transition matrices................ 326 12.2.1 One factor............................. 327 12.2.2 Two factors............................ 330 12.2.3 Model selection and AIC.................... 332

xii CONTENTS 12.2.4 Presentation of loglinear analyses................ 334 12.3 Randomization tests........................... 335 12.3.1 The randomization test procedure............... 337 12.3.2 Types of data........................... 338 12.3.3 Examples of randomization tests................ 338 12.3.4 Advantages of randomization tests............... 343 12.3.5 Implementation.......................... 345 13 Periodic Environments 346 13.1 Periodic matrix products......................... 347 13.1.1 Notation.............................. 348 13.1.2 Eigenvalues and eigenvectors.................. 349 13.1.3 Matrices don t commute, and why that matters........ 354 13.1.4 Sensitivity analysis of periodic matrix models......... 356 13.2 Annual organisms............................. 361 13.2.1 Periodic matrix models for annuals............... 362 13.3 Other approaches to periodic environments.............. 368 13.3.1 Classification by season of birth................. 368 13.3.2 Discrete Fourier analysis..................... 368 13.4 Deterministic, aperiodic environments................. 369 13.4.1 Weak ergodicity......................... 369 14 Environmental Stochasticity 377 14.1 Formulation of stochastic models.................... 377 14.1.1 Models for the environment................... 378 14.1.2 Linking the environment and the vital rates.......... 381 14.1.3 Projecting the population.................... 382 14.2 Stochastic ergodic theorems....................... 382 14.2.1 Stage distributions........................ 382 14.2.2 Stochastic reproductive value.................. 384 14.2.3 Sufficient conditions for stochastic ergodicity......... 384 14.2.4 An overview of ergodic results.................. 386 14.3 Stochastic population growth...................... 387 14.3.1 The Lewontin-Cohen model................... 387 14.3.2 Beyond iid processes....................... 392 14.3.3 Ergodic properties of random matrix products........ 393 14.3.4 Growth of the mean....................... 394 14.3.5 Which growth rate is relevant?................. 395 14.3.6 Calculating the stochastic growth rate............. 396 14.3.7 Calculation of the variance σ 2... 399 14.3.8 Scalar and matrix models compared.............. 400 14.4 Sensitivity and elasticity analyses.................... 401 14.4.1 From numerical simulations................... 402

CONTENTS xiii 14.4.2 From Tuljapurkar s approximation............... 407 14.4.3 Sensitivity of log λ s to variability................ 408 14.5 Examples of stochastic models..................... 409 14.5.1 Striped bass: Variability in recruitment............ 409 14.5.2 Clams: Parametric distributions of recruitment........ 410 14.5.3 Stochastic models from sequence of matrices......... 415 14.5.4 Markov chain models for the environment........... 419 14.5.5 Random selection of matrix elements.............. 430 14.5.6 Applications of Tuljapurkar s approximation.......... 435 14.5.7 Some suggestions......................... 435 14.6 Evolution in stochastic environments.................. 436 14.6.1 Fitness and ESS in stochastic environments.......... 436 14.6.2 An example: Delayed reproduction............... 437 14.6.3 Life history studies........................ 440 14.7 Stochastic and deterministic sensitivity................. 443 14.8 Extinction in stochastic environments................. 443 14.8.1 A model for quasi-extinction.................. 444 14.8.2 Sensitivity analysis........................ 447 14.9 Short-term stochastic forecasts..................... 449 15 Demographic Stochasticity 452 15.1 Stochastic simulations.......................... 453 15.1.1 Assumptions, essential and otherwise.............. 456 15.1.2 Simulating individuals...................... 456 15.1.3 A computationally efficient alternative............. 458 15.1.4 Bad luck, or something worse?................. 462 15.1.5 Time-varying and density-dependent models.......... 464 15.2 The Galton-Watson branching process................. 464 15.2.1 Probability generating functions................ 466 15.2.2 Population projection...................... 467 15.2.3 Projection of moments...................... 470 15.2.4 Limit theorems and asymptotic dynamics........... 471 15.2.5 Extinction............................. 472 15.2.6 Quasi-stationary distributions.................. 475 15.2.7 Extinction, effective population size, and elasticity...... 475 15.3 Multitype branching processes...................... 478 15.3.1 From matrix models to branching processes.......... 479 15.3.2 Mean and covariance of offspring production......... 483 15.4 Analysis of multitype branching processes............... 486 15.4.1 Population projection...................... 486 15.4.2 Projection of moments...................... 486 15.4.3 Limit theorems and asymptotic dynamics........... 491 15.4.4 Extinction probability...................... 493

xiv CONTENTS 15.4.5 Extinction probability and reproductive value......... 497 15.4.6 Elasticities of extinction probability and of λ... 497 15.4.7 Subcritical multitype branching processes........... 499 15.5 Branching processes in random environments............. 501 15.6 Assumptions revisited.......................... 502 16 Density-Dependent Models 504 16.1 Model construction............................ 505 16.1.1 Types of density dependence.................. 505 16.1.2 Examples............................. 508 16.2 Asymptotic dynamics and invariant sets................ 513 16.2.1 Finding equilibria........................ 518 16.3 Stability and instability......................... 519 16.4 Local stability of equilibria....................... 519 16.4.1 The Jury criteria......................... 522 16.5 Bifurcation diagrams........................... 525 16.6 Bifurcations of equilibria: A field guide................. 526 16.6.1 +1 bifurcations.......................... 528 16.6.2 1 bifurcations:theflipbifurcation.............. 533 16.6.3 Complex conjugate pairs: The Hopf bifurcation........ 533 16.6.4 Supercritical and subcritical bifurcations............ 537 16.7 Chaos................................... 538 16.7.1 Lyapunov exponents and quantitative unpredictability.................. 542 16.7.2 Routes to chaos.......................... 543 16.7.3 Chaotic power spectra...................... 546 16.8 Transient dynamics............................ 548 16.8.1 Reactivity and resilience of stable equilibria.......... 548 16.8.2 Unstable equilibria........................ 550 16.8.3 Strange repellers and chaotic transients............ 551 16.8.4 Effects of random perturbations................ 551 16.9 Multiple attractors and qualitative unpredictability....................... 552 16.10Tribolium: Modelsandexperiments... 553 16.11Perturbation analysis and evolution................... 557 16.11.1Sensitivity analysis of equilibria................. 559 16.11.2Invasion and evolution...................... 560 16.12Stochasticity and density dependence.................. 565 17 Two-Sex Models 568 17.1 Sexual dimorphism in the vital rates.................. 568 17.2 Dominance, sex ratio, and the marriage squeeze........................... 570

CONTENTS xv 17.3 Two-sex models.............................. 571 17.3.1 A simple two-sex model..................... 572 17.3.2 The birth and fertility functions................ 574 17.3.3 Frequency and density dependence............... 576 17.3.4 The equilibrium population structure............. 576 17.3.5 Stability of population structure................ 578 17.3.6 Nussbaum s global stability theorem.............. 581 17.4 Competition for mates.......................... 581 17.4.1 Numerical results: Competition and instability........ 583 17.5 The birth matrix-mating rule model.................. 585 17.6 More detailed models of mating..................... 587 17.7 Frequency and density dependence combined............. 588 17.8 Extinction and the sex ratio....................... 589 18 Conservation and Management 591 18.1 Conservation............................... 592 18.1.1 Assessment............................ 592 18.1.2 Diagnosis............................. 601 18.1.3 Prescription............................ 604 18.1.4 Prognosis............................. 619 18.1.5 Conservation conclusions.................... 629 18.2 Pest control................................ 629 18.2.1 Reducing population size.................... 630 18.2.2 Extermination.......................... 631 18.2.3 Halting invasion......................... 632 18.2.4 Some examples of pest control................. 634 18.3 Harvesting................................. 640 18.3.1 Optimal harvesting........................ 642 18.4 Overview................................. 644 19 Concluding Remarks 646 19.1 The most important task........................ 646 19.2 Testing models.............................. 648 19.3 A complete demographic analysis.................... 649 19.4 Directions for research.......................... 651 A The Basics of Matrix Algebra 653 A.1 Motivation................................ 653 A.2 Definitions................................. 654 A.3 Operations................................ 655 A.3.1 Addition.............................. 655 A.3.2 Scalar multiplication....................... 655 A.3.3 The transpose and the adjoint................. 655

xvi CONTENTS A.3.4 The trace............................. 656 A.3.5 Scalar product.......................... 656 A.3.6 Matrix multiplication...................... 656 A.3.7 The Kronecker and Hadamard products............ 658 A.4 Matrix inversion............................. 659 A.4.1 The identity matrix....................... 659 A.4.2 Inversion and the solution of algebraic equations....... 659 A.4.3 A useful fact about homogeneous systems........... 660 A.5 Determinants............................... 660 A.5.1 Properties of determinants................... 662 A.6 Eigenvalues and eigenvectors...................... 662 A.6.1 Eigenvectors........................... 662 A.6.2 Left eigenvectors......................... 663 A.6.3 The characteristic equation................... 663 A.6.4 Finding the eigenvectors..................... 664 A.6.5 Complications.......................... 665 A.6.6 Linear independence of eigenvectors.............. 665 A.6.7 Left and right eigenvectors................... 666 A.6.8 Computation of eigenvalues and eigenvectors......... 666 A.7 Similarity................................. 666 A.7.1 Properties of similar matrices.................. 667 A.8 Norms of vectors and matrices..................... 667 A.9 Suggested reading............................ 668 Bibliography 669 Copyright Permissions 711 Index 713