MAKING MODERN LIVING POSSIBLE. Solenoid valves Type EVR 2 40 NC/ NO New EVR 6 with Steel cover design. Technical brochure



Σχετικά έγγραφα
4 Way Reversing Valve

4 Way Reversing Valve

Electrically operated valves for CO 2 Type CCM - Gas bypass & Expansion

Heat exchanger. Type WT. For the reheating of airflows in rectangular ducting PD WT 1. 03/2017 DE/en

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

ZLW Series. Single-stage Monoblock Centrifugal Pump ZL PUMP GROUP.,LTD

Model: MTZ22. Data. Cylinder count: 1 Displacement [m³/h]: 6,63 Cylinder capacity [cm³]: 38,1 RPM [min -1 ]: 2900 Weight [kg]: 21 Oil charge [dm³]: 1

Aluminum Electrolytic Capacitors (Large Can Type)

COPELAND SCROLL AIR COOLED CONDENSING UNITS

Aluminum Electrolytic Capacitors

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

DuPont Suva 95 Refrigerant

Lowara SPECIFICATIONS

DuPont Suva 95 Refrigerant

Vertical multistage centrifugal pumps in AISI 316 stainless steel

High hydraulic efficiency Motor designed to EN standards IDENTIFICATION NAME. F - in line ports with ROUND FLANGES (counterflanges on request)

MSN DESK TOP ENCLOSURE WITH STAND / CARRYING HANDLE

Type 441 DIN 442 DIN. Flanged Safety Relief Valves spring loaded

MS SERIES MS DESK TOP ENCLOSURE APPLICATION EXAMPLE FEATURE. Measuring instruments. Power supply equipments

Terminal Contact UL Insulation Designation (provided with) style form system approval Flux tight

Features. Terminal Contact Enclosure style style form Open type Dust cover Ears on cover Antirotation-tab Ears on top

RSDW08 & RDDW08 series

Type 441 DIN 442 DIN. Capacities. Flanged Safety Relief Valves spring loaded. The-Safety-Valve.com LWN E

Surface Mount Aluminum Electrolytic Capacitors

VERTICAL MULTI-CELL CENTRIFUGAL PUMPS IN AISI 316 STAINLESS STEEL

Applications Water distribution

Lowara APPLICATIONS MATERIALS. General Catalogue

Single-channel Safety Barriers Series 9001

Group 30. Contents.

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

BALL VALVE NP - LEVE 754. Range of application: Temperature range: Perform standard: Order information: Paint: Soft seal Ball valve.

Linear diffuser. Dimensions. Description

± 20% (rated cap. [µf] ) 1000 Leakage Current: For capacitance values > 33000µF, add the value of:

Siemens AG Rated current 1FK7 Compact synchronous motor Natural cooling. I rated 7.0 (15.4) 11.5 (25.4) (2.9) 3.3 (4.4)

Long 3000 hour life at 105 C with high ripple current capability 2 and 3 pin versions available Can vent construction

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

Digital motor protection relays

Ventilated Distribution Transformers

Type. Capacities. 441, 442 Full nozzle DIN. Flanged Safety Relief Valves spring loaded. The-Safety-Valve.com LWN E

the total number of electrons passing through the lamp.

1000 VDC 1250 VDC 125 VAC 250 VAC J K 125 VAC, 250 VAC

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

ΜΜ917-Σχεδιασμός Ενεργειακών Συστημάτων

38BXCS STANDARD RACK MODEL. DCS Input/Output Relay Card Series MODEL & SUFFIX CODE SELECTION 38BXCS INSTALLATION ORDERING INFORMATION RELATED PRODUCTS

Return Line Filters Type RTF10/25

High pressure centrifugal pumps

Operating Temperature Range ( C) ±1% (F) ± ~ 1M E-24 NRC /20 (0.05) W 25V 50V ±5% (J) Resistance Tolerance (Code)

RECIPROCATING COMPRESSOR CALCULATION SHEET

Type. Capacities. Flanged Safety Relief Valves spring loaded. The-Safety-Valve.com LWN E

SPBW06 & DPBW06 series

S /5000 BTU/Hr. 1000/1500 Watt

REFERENCE. Surge Absorber Unit. Contactor AS R 50Hz AC220V. Separate Mounting Unit. Mechanical Interlock Unit

DC-DC Constant Current Step-Down LED driver LDD-300L LDD-350L LDD-500L LDD-600L LDD-700L CURRENT RANGE

Specification. code ±1.0 ±1.0 ±1.0 ±1.0 ±0.5 approx (g)

Capacitors - Capacitance, Charge and Potential Difference

LS series ALUMINUM ELECTROLYTIC CAPACITORS CAT.8100D. Specifications. Drawing. Type numbering system ( Example : 200V 390µF)

Thin Film Chip Resistors

Second Order RLC Filters

MATRIX. EBARA PUMPS EUROPE S.p.A. HORIZONTAL MULTISTAGE PUMPS

FDL - FXDL FBDL SERIES

Instruction Execution Times

ΕΞΑΡΤΗΜΑΤΑ ΥΔΡΑΥΛΙΚΑ. Hydraulic Fittings. Threaded plastic accessories with both male, and female type thread for use in hydraulic networks.

DLG Series. Lowara SPECIFICATIONS APPLICATIONS ACCESSORIES MATERIALS. General Catalogue

RAC. Technical Data Book. RAC(Quantum) for North America (R410A, 60Hz, HP) Model : AR09/12/18/24KSFPDWQNCV AR09/12/18/24KSFPDWQXCV

BMA SERIES Subminiature Blind Mate Connectors

NTC Thermistor:TSM type

Safety Barriers. 6 Safety Barriers KP00 III en Preferred products in stock or available at short notice

V6000 Kombi-F-II, Kombi-F FLANGED BALANCING AND SHUTOFF VALVES

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

[1] P Q. Fig. 3.1

ACTORS IEC CONT Ex9C

Precision Metal Film Fixed Resistor Axial Leaded

0.635mm Pitch Board to Board Docking Connector. Lead-Free Compliance

Inverse trigonometric functions & General Solution of Trigonometric Equations

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

CENTRIFUGAL AIR COOLED CONDENSERS CONDENSADORES DE AIRE CENTRÍFUGOS. GPC, GMC and GSC Series. Series GPC, GMC y GSC

C4C-C4H-C4G-C4M MKP Series AXIAL CAPACITORS PCB APPLICATIONS

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

HORIZONTAL MULTISTAGE CENTRIFUGAL ELECTRIC PUMPS in AISI 304

Engineer Reference 1 / / A 35 7/16 X 7 7/8 X 23 5/8 31 1/8 X 21 7/8 X 11 1/4 14 T T 75 R410A oz/ft over 50' 265 / 318 / 388

Multilayer Ceramic Chip Capacitors

V5032 Kombi-2-plus BALANCING AND SHUTOFF VALVE

DC-DC Constant Current Step-Down LED driver LDD-300L LDD-350L LDD-500L LDD-600L LDD-700L CURRENT RANGE

65W PWM Output LED Driver. IDLV-65 series. File Name:IDLV-65-SPEC

NPI Unshielded Power Inductors

Series of Wafer Check Valves Design:API 594, API 6D

Homework 3 Solutions

WYECO. Automatic Control Valves. How to select control valve. 4. Valve Body Type D 0 2 GS FC O S0 P 1 50 FA. Valve Action.

E62-TAB AC Series Features

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Metal Oxide Varistors (MOV) Data Sheet

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

RECIPROCATING COMPRESSOR CALCULATION SHEET

NTC Thermistor:TTC3 Series

+85 C Snap-Mount Aluminum Electrolytic Capacitors. High Voltage Lead free Leads Rugged Design. -40 C to +85 C

PEH C High CV-value Long Life, > 10 years at 50 C Low ESR and ESL High stability, 10 years shelf life

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Transcript:

MAKING MODERN LIVING POSSIBLE Solenoid valves EVR 2 40 NC/ NO New with Steel cover design Technical brochure

2 DKRCC.PD.BB0.B02 / 520H892 Danfoss A/S (AC-AKS / frz), 0-2008

Contents Page Introduction... 4 Features... 4 Approvals... 4 Technical data... 4-5 Ordering... 6-8 Liquid capacity Q o kw, R22/ R4a/R404A/R507.... 9 Liquid capacity Q o kw, R407C... 0 Suction vapour capacity Q o kw, R22... 0 Suction vapour capacity Q o kw, R4a/R404A/R507.... Suction vapour capacity Q o kw, R407C... 2 Hot gas capacity Q h kw, R22.... Hot gas capacity Q h kw, R4a... 4 Hot gas capacity Q h kw, R404A/R507... 5 Hot gas capacity Q h kw, R407C.................................................................... 6 Hot gas capacity G h kg/s, R22/R4a.... 7 Hot gas capacity G h kg/s, R404A/R507/R407C... 8 Design/ Function... 9 Material specification............................................................................. 20 Dimensions and weight, EVR (NC) 2 5 and -> 5 (NO) with fl are connection... 2 Dimensions and weight, EVR (NC) 2 22 and -> 22 (NO) with solder connection... 22 Dimensions and weight, EVR (NC) 25, 2 og 40 with solder connection... 2 Danfoss A/S (AC-AKC / frz, 0-2009 DKRCC.PD.BB0.B.02 / 520H892

Introduction EVR is a direct or servo operated solenoid valve for liquid, suction, and hot gas lines with fluorinated refrigerants. EVR valves are supplied complete or as separate components, i.e. valve body, coil and flanges, if required, can be ordered separately. Features Approvals Technical data Complete range of solenoid valves for refrigeration, freezing and air conditioning plant Supplied both normally closed (NC) and normally open (NO) with de-energized coil Wide choice of coils for a.c. and d.c. Suitable for all fluorinated refrigerants Designed for media temperatures up to 05 C DnV, Det norske Veritas, Norge Pressure Equipment Directive (PED) 97/2/EC The Low Voltage Directive (LVD) 7/2/EC with amendments EN 6070-2-8 Refrigerants CFC, HCFC, HFC Temperature of medium 40 +05 C with 0 W or 2 W coil. Max. 0 C during defrosting. MOPD up to 25 bar with 2 W coil Flare connections up to 5/8 in. Solder connections up to 2 /8 in. Extended ends for soldering make installation easy It is not necessary to dismantle the valve when soldering in. EVR are also available with flange connections Polski Rejestr Statków, Polen MRS, Maritime Register of Shipping, Russia Versions with UL approval can be supplied to order. Ambient temperature and enclosure for coil See "Coils for solenoid valves", DKRCC.PD.BS0.A.02 4 DKRCC.PD.BB0.B02 / 520H892 Danfoss A/S (AC-AKS / frz), 0-2008

Technical data (continued) Min. Opening differential pressure with standard coil p bar Max. (= MOPD) liquid 2 ) 0 W a. c. 2 W a. c. 20 W d. c. Temperature of medium C Max. working pressure PB bar k v value ) EVR 2 0.0 25 8 40 05 45.2 6 EVR 0.0 2 25 8 40 05 45.2 7 0.05 2 25 8 40 05 45.2 NO 0.05 2 2 2 40 05 45.2 EVR 0 0.05 2 25 8 40 05 5.9 EVR 0 NO 0.05 2 2 2 40 05 5.9 0.05 2 25 8 40 05 2 2.6 NO 0.05 2 2 2 40 05 2 2.6 (a.c.) 0.05 2 25 40 05 2 5.0 (d.c.) 0.05 6 40 05 2 5.0 NO 0.05 9 9 9 40 05 2 5.0 EVR 22 0.05 2 25 40 05 2 6.0 EVR 22 NO 0.05 9 9 9 40 05 2 6.0 ) 0 2 25 8 40 05 2 0.0 ) 0 2 25 8 40 05 2 6.0 ) 0 2 25 8 40 05 2 25.0 ) The k v value is the water flow in m /h at a pressure drop across valve of bar, ρ = 000 kg/m. 2 ) MOPD for media in gas form is approx. bar greater. ) Min. diff. pressure 0.07 bar is needed to stay open. m /h Rated capacity kw Liquid Suction vapour Hot gas R22 R4a R404A/R507 R407C R22 R4a R404A/R 507 R407C R22 R4a R404A/R507 R407C EVR 2.20 2.90 2.20.0.50.20.20.46 EVR 5.40 5.00.80 5.08 2.50 2.00 2.00 2.4 6.0 4.80.20 5..80.0 0 6 7.40 5.90 6.00 7.8 EVR 0 8.20 5.0 26.70 5.9 4.0.0.90.96 7.50.90 4.0 6.98 52.0 48.0 6.50 49.6 5.90 4.20 5.0 5.4 24.00 9.00 9.60 2.28 0.00 92.80 70.0 94.94.40 8.0 0 9 46.20 6.60 7.70 44.8 EVR 22 2.00.00 84.0.74.70 9.70 2.20 2.60 55.40 4.90 45.20 5.74 20.00 86.00 4.00 88.94 22.80 6.0 20 20.98 92.0 7.20 75.0 89.5 22.00 297.00 225.00 02.68 6.50 26.0 2.60.58 48.00 7.00 20.00 4.56 50.00 464.00 5.00 472.82 57.00 40 5.00 52.44 2.00 8.00 88.00 224.07 Rated liquid and suction vapour capacity is based on evaporating temperature t e = -0 C, liquid temperature ahead of valve t l = C, pressure drop in valve p = 5 bar. Rated hot gas capacity is based on condensing temperature t c = +40 C, pressure drop across valve p = bar, hot gas temperature t h = +65 C, and subcooling of refrigerant t sub = 4 K. Danfoss A/S (AC-AKC / frz, 0-2009 DKRCC.PD.BB0.B.02 / 520H892 5

Ordering Complete valves Normally closed (NC) with a.c. coil ) Connection Code no. Valve body + 0 W a. c. coil with m cable Flare 2 ) Solder ODF in. mm in./mm in. mm EVR / 4 6 02F809 02F2042 02F2052 / 8 0 02F807 02F2082 02F2092 EVR 0 / 2 2 02F809 02F222 02F22 5 / 8 6 02F802 02F292 02F292 Connection Code no. Valve body + 0 W a. c. coil with terminal box Flare 2 ) Solder ODF in. mm in./mm in. mm EVR / 4 6 02F80 02F204 02F205 / 8 0 02F8074 02F208 02F209 EVR 0 / 2 2 02F8092 02F22 02F2 5 / 8 6 02F80 02F29 02F29 7 / 8 22 02F224 02F224 ) Please specify code no., voltage and frequency. Voltage and frequency can also be given in the form of an appendix number, see table "Appendix numbers". 2 ) Supplied without flare nuts. Separate flare nuts: / 4 in. or 6 mm, code no. 0L0 / 8 in. or 0 mm, code no. 0L5 / 2 in. or 2 mm, code no. 0L0 5 / 8 in. or 6 mm, code no. 0L67 ) Can only be used with DIN plug Appendix numbers Voltage V 2 24 42 48 5 220-20 240 80-400 420 24 5 220 240 0 220-20 Frequency Hz 50 50 50 50 50 50 50 50 50 60 60 60 60 50/60 50/60 Energy consumpt. W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Appendix no. 5 6 7 8 22 7 8 4 20 29 0 2 2 6 DKRCC.PD.BB0.B02 / 520H892 Danfoss A/S (AC-AKS / frz), 0-2008

Ordering (continued) Components Flare and solder connections Separate valve bodies, normally closed (NC) Required coil type Connection Flare ) in. mm in./mm in. mm Code no. EVR 2 a.c. / 4 6 02F8056 02F20 02F202 EVR / 4 6 02F807 02F206 02F207 / 8 0 02F86 02F204 02F208 / 8 0 02F8072 02F22 02F2 / 2 2 02F8079 02F209 02F26 Solder ODF Valve body without coil With manual operation Without manual operation EVR 0 a.c./d.c. / 2 2 02F8095 02F27 02F28 5 / 8 6 02F8098 02F24 02F24 5 / 8 6 02F80 02F228 02F228 5 / 8 6 02F800 2 ) 02F227 7 / 8 22 02F225 02F225 7 / 8 22 02F240 02F240 a.c. 7 / 8 22 02F254 / 8 28 02F244 02F245 d.c. 7 / 8 22 02F264 02F264 7 / 8 22 02F274 EVR 22 a.c. / 8 5 02F267 02F267 / 8 02F2200 02F220 28 02F2205 02F2206 / 8 5 02F2207 02F2208 / 8 5 042H05 042H06 a.c./d.c. 5 / 8 042H0 042H04 42 042H07 042H08 5 / 8 042H09 042H0 42 042H 042H4 2 / 8 54 042H 042H2 Separate valve bodies, normally open (NO) ) Required coil type a.c./d.c. Connection ) Valve bodies are supplied without flare nuts. Separate flare nuts: / 4 in. or 6 mm, code no. 0L0 / 8 in. or 0 mm, code no. 0L5 / 2 in. or 2 mm, code no. 0L0 5 / 8 in. or 6 mm, code no. 0L67 2 ) With manual operation. ) The normal range of coils can be used for the NO valves, with the exception of the double frequency versions of 0 V, 50/60 Hz and 220 V, 50/60 Hz. Coils See "Coils for solenoid valves", DKRCC.PD.BS0.A.02 Flare ) Code no. Valve body without coil ) Solder ODF in. mm in. mm in. mm / 8 0 02F8085 02F8085 02F290 02F295 EVR 0 / 2 2 02F8090 02F8090 02F29 02F296 5 / 8 6 02F8099 02F8099 02F299 02F299 7 / 8 22 02F270 02F270 7 / 8 22 02F260 02F260 / 8 28 02F269 02F279 EVR 22 a.c. / 8 5 02F268 02F268 Danfoss A/S (AC-AKC / frz, 0-2009 DKRCC.PD.BB0.B.02 / 520H892 7

Ordering (continued) Components Flare and solder connections Separate valve bodies, normally closed (NC) Require coil type Connection a.c./d.c. Code no. Valve body + gaskets +bolts; without coil and flanges Without manual operation 02F24 Without manual operation 02F224 a.c. Flanges 02F25 02F24 d.c. 02F27 02F26 Coils See "Coils for solenoid valves", RD.J.E2.02. Flange sets Valve type Connection Code no. Solder Weid in. mm in. mm in. / 2 027N5 5 / 8 6 027L7 027L6 / 4 027N20 7 / 8 22 027L2 027L22 / 4 027N220 7 / 8 22 027L22 027L222 027N225 / 8 28 027L229 027L228 Example without manual operation, code no. 02F224 + /2 in. weld flange set, code no. 027N5 + coil with termfnal box, 220 V, 50 Hz, code no. 08F670 (See "Coils for solenoid valves", DKRCC.PD.BS0.A.02 Accessories Description Mounting bracket for EVR 2,, 6 and 0 Strainer FA for direct mounting Code no. 02F097 See "FA" 8 DKRCC.PD.BB0.B02 / 520H892 Danfoss A/S (AC-AKS / frz), 0-2008

Capacity Liquid capacity Q e kw Liquid capacity Q e kw at pressure drop across valve p bar 0. 0.5 EVR 2 2.6.7 4.6 5. 5.9 EVR 4.5 6. 7.7 8.9 9.9. 8.6 22.8 26. 29.4 EVR 0.4 44. 54.2 62.5 69.9 42.7 60. 74. 85.5 95.7 82.2 6.0 4.0 65.0 84.0 EVR 22 99.0 9.0 7.0 97.0 220.0 65.0 22.0 285.0 29.0 68.0 26.0 72.0 455.0 526.0 588.0 4.0 58.0 72.0 822.0 99.0 R22 Liquid capacity Q e kw Capacities are based on liquid temperature t l = C ahead of valve, evaporating temperature t e = 0 C, superheat 0 K. Correction factors When sizing valves, the plant capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of valve/evaporator. When the corrected capacity is known, the selection can be made from the table. Liquid capacity Q e kw at pressure drop across valve p bar R4a 0. 0.5 EVR 2 2.4.4 4.2 4.9 5.4 EVR 4. 5.8 7. 8.2 9. 2. 7.2 2.0 24. 27. EVR 0 28.8 40.7 49.9 57.6 64.4 9.4 55.7 68. 78.8 88. 75.8 07.0.0 52.0 70.0 EVR 22 90.9 29.0 58.0 82.0 20.0 52.0 24.0 26.0 0.0 9.0 24.0 4.0 420.0 485.0 542.0 79.0 56.0 656.0 758.0 847.0 Liquid capacity Q e kw Liquid capacity Q e kw at pressure drop across valve p bar R404A/R507 0. 0.5 EVR 2.8 2.6.2.7 4. EVR. 4.4 5.4 6.2 6.9 9.2.0 5.9 8.4 20.5 EVR 0 2.8 7.8 4.6 48.8 29.8 42.2 5.7 59.6 66.8 57.4 8. 99.4 5.0 28.0 EVR 22 68.9 97.4 9.0 8.0 69.0 5.0 62.0 99.0 20.0 257.0 84.0 260.0 8.0 67.0 4.0 287.0 406.0 497.0 574.0 642.0 Correction factors for liquid temperature t l t l C 0 0 0 5 20 25 0 5 40 45 50 R22 0.76 2 8 0.92 0.96.0.05.0.6.22.0 R4a 0.7 0.79 6 0.90 0.95.0.06.2.9.27.7 R404A/R507 0.65 0.72 6 0.9.0.09.20..5.74 Danfoss A/S (AC-AKC / frz, 0-2009 DKRCC.PD.BB0.B.02 / 520H892 9

Capacity (continued) Liquid capacity Q e kw R407C Liquid capacity Q e kw at pressure drop across valve p bar 0. 0.5 EVR 2 2.4.4 4. 5.0 5. EVR 4.2 5.9 7.2 8.4 9. 2. 7.5 2.4 24.7 27.6 EVR 0 29.5 4.5 50.9 58.7 65.7 4 56.7 69.7 8 90.0 77.0 09.0 4.0 55.0 72.0 EVR 22 9. 0.0 6.0 85.2 207.0 55.0 28.0 268.0 09.0 46.0 247.0 50.0 428.0 494.0 55.0 86.0 546.0 669.0 77.0 864.0 Capacities are based on liquid temperature t l = C ahead of valve, evaporating temperature t e = 0 C, and superheat 0 K. Correction factors When sizing valves, the plant capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of valve/evaporator. When the corrected capacity is known, the selection can be made from the table. Correction factors based on liquid temperature t l t l C 0 0 0 5 20 25 0 5 40 45 50 R407C 0.7 0.78 5 9 0.94.0.06.4.2..46 Capacities are based on liquid temperature t l = C ahead of evaporator. The table values refer to the evaporator capacity and are given as a function of evaporating temperature t e and pressure drop p across valve. Capacities are based on dry, saturated vapour ahead of valve. During operation with superheated vapour ahead of valve, the capacities are reduced by 4% for each 0 K superheat. Suction vapour capacity Q e EVR 0 EVR 22 Pressure drop p bar 5 5 5 5 5 5 5 5 Suction vapour capacity Q e kw at evaporating temperature t e C 40 0 20 0 0 +0 0.7 7 0.98.7 2. 2. 2. 2.8.2 4.6 5.4 6. 5.5 6.5 7. 9. 0.9 2.2 4.6 7.4 9.6 22.8 27.2 0.5 Correction factors When sizing valves, the evaporator capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of expansion valve. When the corrected capacity is known, the selection can be made from the table. Correction factors for liquid temperature t l 0.94.. 2.2 2.7...7 4.2 5.9 7. 8. 7. 8.5 9.7.8 4.2 6. 8.9 22.7 25.7 29.5 5.4 4.2.4 2.9.4.9 4.0 4.7 5. 7.6 9. 0. 9. 0.7 2. 5.2 7.9 2 24. 28.8 2.6 8. 45.0 5.0.5.8 2.0.5 4. 4.8 4.8 5.9 6.6 9..4 2.7.2.7 5.2 8.6 22.8 25. 29.8 6.5 40.5 46.5 57.0 6..8 2.2 2.5 4. 5.2 6.0 5.8 7. 8.2.2.9 5.9.4 6.4 9.0 22.4 27.4.7 5.8 4.8 50.7 56.0 68.6 79.2 t l C 0 0 0 5 20 25 0 5 40 45 50 R22 2. 2.6.0 5. 6.2 7. 6.9 8.5 9.8. 6.7 8.8 6.0 20.0 22.6 26.6 2.6 7.6 42.6 52.2 6 66.5 8.5 94.0 R22 0.76 2 8 0.92 0.96.0.05.0.6.22.0 0 DKRCC.PD.BB0.B02 / 520H892 Danfoss A/S (AC-AKS / frz), 0-2008

Capacity (continued) Capacities are based on liquid temperature t l = C ahead of evaporator. The table values refer to the evaporator capacity and are given as a function of evaporating temperature t e and pressure drop p across valve. Capacities are based on dry, saturated vapour ahead of valve. During operation with superheated vapour ahead of valve, the capacities are reduced by 4% for each 0 K superheat. Suction vapour capacity Q e EVR 0 EVR 22 Pressure drop across valve p bar 5 5 5 5 5 5 5 5 Suction vapour capacity Q e kw EVR 0 EVR 22 Pressure drop across valve p bar 5 5 5 5 5 5 5 5 Suction vapour capacity Q e kw at evaporating temperature t e C R4a 40 0 20 0 0 +0 6 0.5 0.58...4.5.7.9 2.9..7.4 4.0 4.4 5.8 6.6 7. 9. 0.6.7 4.5 6.5 8. 0.7 7 0.98.7 2. 2. 2. 2.8.2 4.6 5.4 6. 5.5 6.5 7. 9. 0.9 2.2 4.6 7.4 9.6 22.8 27.2 0.5 4.0. 2.0 2.4 2.7 2.7..7 5. 6. 7. 6. 7.5 8.5 0.5 2.5 4. 6.8 20.0 22.6 26.. 5....5 2.6..5.6 4.2 4.8 7.0 8. 9. 8. 9.7..9 6. 8.5 22.2 26. 29.6 4.8 4 46..4.7.9. 4.0 4.5 4.5 5.5 6. 8.6 0.6.7 0. 2.7 4.0 7.2 2. 2.4 27.7.8 7.4 4. 52.8 58.5.7 2.0 2.4 4.0 4.9 5.7 5.5 6.7 7.8 0.6.0 5.0 2.7 5.5 7.9 2. 25.9 29.9.8 4.4 47.4 52.8 64.8 74.8 R404A/R507 Suction vapour capacity Q e kw at evaporating temperature t e C 40 0 20 0 0 +0 0.62 0.7 2.5.7 2.0 2.0 2.4 2.7.9 4.6 5.2 4.6 5.5 6.2 7.7 9. 0. 2. 4.6 6.5 9. 22.8 25.8 0.97..9 2. 2.6 2.6.2.6 5.0 6. 6.9 6.0 7. 8. 2..8 6.2 9.4 22.0 25. 0. 4.5...4 2.5.0.4.5 4. 4.7 6.7 7.9 9.0 8.0 9.5. 5.8 8.0 2. 25. 28.8. 9.5 45.0..8.2.9 4. 4. 5. 5.9 8..4 0.0 2.2.6 6.6 2 22.7 26.6 2.6 6. 4.5 5.0 56.8 2.0 2..9 4.8 5.5 5. 6.5 7.5 2.5 4.4 2.2 5.0 7. 2 25.0 28.8 2.6 40.0 46. 5.0 62.5 72. 2.0 2.4 2.8 4.7 5.8 6.7 6.4 7.9 9. 2. 5.2 7.5 4.8 8.2 2.0 24.6 0. 5.0 9.4 48.5 56.0 6.5 75.6 87.5 Correction factors When sizing valves, the plant capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of valve/evaporator. When the corrected capacity is known, the selection can be made from the table. Correction factors based on liquid temperature t l t l C 0 0 0 5 20 25 0 5 40 45 50 R4a 0.7 0.79 6 0.90 0.95.0.06.2.9.27.7 R404A/R507 0.65 0.72 6 0.9.0.09.20..5.74 Danfoss A/S (AC-AKC / frz, 0-2009 DKRCC.PD.BB0.B.02 / 520H892

Capacity (continued) Pressure drop across valve p bar Suction vapour capacity Q e kw at evaporating temperature t e C R407C 40 0 20 0 0 +0 5 0.6 0.72 0.95....4.4.7.8.7 2. 2.4 2.0 2.5 2.9 EVR 0 5.4.7.9.9 2. 2.7 2.6.0.5.2 4.0 4.4 4.0 4.9 5.6 4.9 6.0 6.9 5.9 2. 2.7 2.7.2.6.6 4.2 4.7 4.4 5.4 6. 5.5 6.7 7.7 6.7 8.2 9.5 Capacities are based on liquid temperature t l = C ahead of evaporator. The table values refer to the evaporator capacity and are given as a function of evaporating temperature t e and pressure drop p across valve. Capacities are based on dry, saturated vapour ahead of valve. During operation with superheated vapour ahead of valve, the capacities are reduced by 4% for each 0 K superheat. EVR 22 5 5 5 5 5.8 4.5 5. 4.6 5.4 6. 7.6 9. 2. 4.4 6. 8.9 22.6 25. 5. 6. 7.0 6. 7. 8. 2.2.9 6. 9.5 22. 25.4 4.6 6.8 8. 9.2 8. 9.5.0.5 5.9 8.2 2 25.6 29.0.9 4 45.4 8.6 0.5.7 0. 2.6 4.0 7. 2.0 2. 27.4.6 7. 42.8 52.4 58.2 0.5. 4.9 2.6 5.4 7.9 2. 25.8 29.8.7 4.2 47.7 52.6 64.5 74.4 2.9 6.2 8.2 5.5 9.4 2.9 25.8 6.5 4. 50.6 58.4 64.5 79. 9.2 Correction factors When sizing valves, the evaporator capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of expansion valve. When the corrected capacity is known, the selection can be made from the table. Correction factors based on liquid temperature t l t l C 0 0 0 5 20 25 0 5 40 45 50 R407C 0.7 0.78 5 9 0.94.0.06.4.2..46 Hot gas defrosting With hot gas defrosting it is not normally possible to select a valve from condensing temperature t c and evaporating temperature t e. This is because the pressure in the evaporator as a rule quickly rises to a value near that of the condensing pressure. It remains at this value until the defrosting is finished. In most cases therefore, the valve will be selected from condensing temperature t c and pressure drop p across the valve, as shown in the example for heat recovery. Heat recovery The following is given: Refrigerant = R22 Evaporating temperature t e = 0 C Condensing temperature t c = + 40 C Hot gas temperature ahead of valve t h = + 85 C Heat recovery condenser yield Q h = 8 kw The capacity table for 22 with t c = + 40 C gives the the capacity for an EVR 0 as 8.9 kw, when pressure drop p is bar. The correction factor for t e = 0 C is given in the table as 0.94. The correction for hot gas temperature t h = + 85 C has been calculated as 4% which corresponds to a factor of.04. Q h must be corrected with factors found: With p = bar is Q h = 8.9 x 0.94 x.04 = 8.7 kw. With p = bar, Q h becomes only 6. x 0.94 x.04 = 6.2 kw. An would also be able to give the required capacity, but with p at approx. bar. The is therefore too small. The EVR is so large that it is doubtful whether the necessary p of apprx. bar could be obtained. An would therefore be too large. Result: An EVR 0 is the correct valve for the given conditions. 2 DKRCC.PD.BB0.B02 / 520H892 Danfoss A/S (AC-AKS / frz), 0-2008

Capacity (continued) An increase in hot gas temperature t h of 0 K, based on t h = t c C, reduces valve capacity approx. 2% and vice versa. A change in evaporating temperature t e changes valve capacity; see correction factor table below. Hot gas capacity Q h kw EVR 2 EVR EVR 0 EVR 22 Pressure drop across valve p bar Hot gas capacity Q h kw Evaporating temp. t e =-0 C. Hot gas temp. t h =t c C. Subcooling t sub =4 K Condensing temperature t c C +20 +0 +40 +50 +60 7 0.67 0.96.2.87 0.4 2.2.5 2.4.4 4.8 6.6 9. 5.6 8.0.4 5.7 22.2 7.7.0 5.7 2.5 0. 4.8 2. 0.0 4. 58. 7.8 25. 6. 49.5 70.0 29.6 42. 6 82.5 7.0 47.4 67.4 96. 2.0 87.0 74.0 05.0 5.0 206.0 29.0 0.50 0.7.02.7.99 5.20.72 2..5 2.5.6 5. 6.8 9.9 6.0 8.5 2. 6.2 2.6 8.2 6.6 22.2 2. 5.7 22..9 42.7 62. 8.8 26.8 8. 5.2 74.5.4 44.6 6.8 87.9 24.0 5 7.4 02.0 40.0 99.0 78.5 2.0 59.0 222.0 0.0 0.5 0.75.07.48 2.08 9.26.80 2.49.52 2.6.7 5. 7.4 6. 8.9 2.7 7.5 24.8 8.6 2. 7. 24.0.9 6.5 2.4. 46.2 65.2 9.7 28.0 40.0 55.4 78.2 2.9 46.7 66.6 92. 0.0 52.6 74.7 07.0 48.0 209.0 82. 7.0 67.0 2.0 26.0 0.54 0.77.0.57 2.6 0.92.0.85 2.65.64 2.7.4 5.5 7.9 6.5 9.2.0 8.7 25.6 8.8 2.5 7.8 25.5 5.0 7.0 24. 4. 49. 67.4 2 28.9 4.2 58.9 8 4.0 48.2 68.6 98.2 5.0 54.4 77. 0.0 57.0 26.0 85.0 2.0 72.0 246.0 7.0 R22 0.55 0.78..59 2.9 0.9.2.87 2.68.69 2.8.9 5.6 7.9 0.9 6.5 9..2 8.9 26.0 8.9 2.7 8.0 25.9 5.5 7.2 24.4 4.7 49.6 68.4 20.6 29. 4 59.5 82.0 4.4 48.8 69.4 99.2 7.0 55.0 78..0 59.0 29.0 86.0 22.0 74.0 248.0 42.0 Correction factors When sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t e. Correction factors for evaporating temperatur t e t e C 40 0 20 0 0 +0 R22 0.90 0.94 0.97.0.0.05 Danfoss A/S (AC-AKC / frz, 0-2009 DKRCC.PD.BB0.B.02 / 520H892

Capacity (continued) An increase in hot gas temperature t h of 0 K, based on t h = t c C, reduces valve capacity approx. 2% and vice versa. A change in evaporating temperature t e changes valve capacity; see correction factor table below. Hot gas capacity Q h kw EVR 2 EVR EVR 0 EVR 22 Pressure drop across valve p bar Hot gas capacity Q h kw R4a Evaporating temp. t e =-0 C. Hot gas temp. t h =t c C. Subcooling t sub =4 Kv Condensing temperature t c C +20 +0 +40 +50 +60 0.8 0.54 0.74.06.50 0.64 0.9.26.79 2.57.88 2.69.7 5.29 7.6 4.5 6.4 8.9 2.6 8. 6. 8.7 2. 7.2 24.8.8 6.8 2.4. 47.6 4. 2 28.0 9.7 57. 2.6.6 46.6 66.2 95.2 7.6 5.8 74.7 06.0 52.0 58.8 84. 7.0 66.0 28.0 0 0.57 2. 0.67 0.96.8.90 2.72.99 2.84 4.08 5.62 8.05 4.7 6.8 9.7. 9. 6.5 9.2. 8. 26.2 2.5 7.8 25.5 5. 50. 5.0 2. 0.6 42.2 6 24.9 5.5 5.0 7 0.0 9.8 56.8 8 2.0 6.0 62. 88.8 27.0 76.0 252.0 0.59 4.7 7 0.70 0.99.42.98 2.82 2.07 2.95 4.22 5.86 8.7 4.9 7.0 0.0.9 9.9 6.7 9.6.7 9.0 27.2.0 8.4 26.4 6.6 52. 5.5 22. 4.9 62.8 25.9 6.8 52.7 7.2 05.0 4.4 58.9 84. 7.0 67.0 64.7 92. 2.0 8.0 262.0 2 0.60 6.2.70 0.7.0.44 2.08 2.88 2..00 4.28 6.6 8.52 5.0 7. 4.6 2 6.7 9.7.9 20.0 27.7.2 8.7 26.7 8.5 5. 5.8 22.6 2. 46.2 6.9 26.4 7.4 5.4 77.0 07.0 42. 59.8 85.4 2.0 70.0 65.8 9.5 4.0 92.0 266.0 2 0.59 5.22 9 0.7.00.4 2.05 2.86 2.09 2.97 4.2 6.08 8.46 5.0 7. 4.4 2 6.8 9.7.8 9.8 27.5. 8.6 26.5 8.0 52.9 5.7 22..7 45.6 6.5 26.2 7. 52.9 76.0 06.0 4.8 59.4 84.6 22.0 69.0 65. 92.8 2.0 90.0 265.0 Correction factors When sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t e. Correction factors for evaporating temperatur t e t e C 40 0 20 0 0 +0 R4A 8 0.92 0.98.0.04.08 4 DKRCC.PD.BB0.B02 / 520H892 Danfoss A/S (AC-AKS / frz), 0-2008

Capacity (continued) An increase in hot gas temperature t h of 0 K, based on t h = t c C, reduces valve capacity approx. 2% and vice versa. A change in evaporating temperature t e changes valve capacity; see correction factor table below. Hot gas capacity Q h kw EVR 2 EVR EVR 0 EVR 22 Pressure drop across valve p bar Hot gas capacity Q h kw R404A/R507 Evaporating temp. t e =-0 C. Hot gas temp. t h =t c C. Subcooling t sub =4 K Condensing temperature t c C +20 +0 +40 +50 +60 0.6 7.9 8 0.7.0.46 2.0 2.8 2.6.0 4.4 5.94 8.7 5. 7.2 0. 4. 9.9 7.0 9.9 4. 9. 27.2.4 8.9 27. 7. 52.4 6. 22.7 2.5 44.5 62.8 26.8 7.9 54.2 74.2 05.0 4.0 60.6 86.7 9.0 67.0 67.0 94.8 6.0 86.0 262.0 4 0.62 7.2.70 0.74.04.48 2.04 2.87 2.8.08 4.8 6.05 8.52 5.2 7. 4.4 20. 7. 0.0 4. 9.7 27.7.7 9.2 27.4 7.8 5. 6.4 2. 2.9 45.4 64.0 27.4 8.4 54.9 75.6 07.0 4.8 6.4 87.8 2.0 7.0 68.5 96.0 7.0 89.0 266.0 0.6 7.2 9 0.7.0.47 2.0 2.84 2.5.05 4.5 6.02 8.4 5. 7. 0. 4. 20.0 7.0 9.9 4.2 9.6 27.6.5 9. 27.2 7.7 52.6 6. 22.9 2.7 45.2 6.2 26.9 8.2 54.5 75. 05.0 4.0 6. 87.2 20.0 68.0 67. 95.5 6.0 88.0 26.0 0 0.58 2.9 2 0.69 0.98.9 2.00 2.74 2.05 2.90 4. 5.92 8.0 4.9 6.9 9.8 4. 9.2 6.7 9.4.4 9.2 26. 2.8 8.2 25.8 7.0 50.6 5.4 2.8.0 44.4 6 25.6 6. 5.7 74.0 0.0 40.9 58. 82.7 8.0 62.0 64.0 9 29.0 85.0 25.0 0.7 0.5 0.75.07.48 0.6 9.27.8 2.50.86 2.64.76 5.7 7.40 4.4 6. 8.9 2.8 7.6 6. 8.6 2.2 7.5 24. 6.5 2.5.6 46.2 4.0 9.8 28.2 40. 55.5 2..0 47.0 67.2 92.5 7. 52.8 75.2 07.0 48.0 58. 82.5 7.0 68.0 2.0 Correction factors When sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t e. Correction factors for evaporating temperatur t e t e C 40 0 20 0 0 +0 R440A/R507 6 8 0.9.0.0.07 Danfoss A/S (AC-AKC / frz, 0-2009 DKRCC.PD.BB0.B.02 / 520H892 5

Capacity (continued) An increase in hot gas temperature t h of 0 K, based on t h = t c C, reduces valve capacity approx. 2% and vice versa. A change in evaporating temperature t e changes valve capacity; see correction factor table below. Hot gas capacity Q h kw EVR 2 EVR EVR 0 EVR 22 Pressure drop across valve p bar Hot gas capacity Q h kw R407C Evaporating temp. t e =-0 C. Hot gas temp. t h =t c C. Subcooling t sub =4 K Condensing temperature t c C +20 +0 +40 +50 +60 0.5 0.75.08.48 2.09 0.9.28.8 2.50.5 2.7.8 5.4 7.4 6. 9.0 2.8 7.6 24.9 8.6 2. 7.6 24..9 6.6 2.6.6 46. 65. 9.9 28. 4 55.4 78.4.2 47.2 67.4 92.4.0 5. 75.5 07.9 47.8 209.4 82.9 7.6 69. 20.7 25.9 Correction factors When sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t e. 0.55 0.78.2.5 2.9 0.94.2.89 2.54.69 2.8 4.0 5.6 7.5 0.9 6.6 9.4. 7.8 26.0 9.0 2.8 8. 24.4 5.5 7. 24.5 5. 47 68. 20.7 29.5 42. 56. 82.0 4.5 49. 7 96.7 6.4 55.2 78.5 2.2 54.0 28.9 86.4 2.2 74.9 244.2 4.0 0.57 0.4.58 2.2 0.95.5.9 2.66.77 2.8 4.0 5.7 7.9. 6.7 9.5.6 8.7 26.5 9.2 2.9 8.5 25.7 6. 7.7 25.0 5.6 49.4 69.8 2. 0.0 42.8 59. 8.7 5.2 50.0 7. 98.8 9. 56. 79.9 4.5 58.4 22.6 88. 25.2 78.7 247.2 48.8 0.56 0.4 2.25 0.96.5.92 2.76.79 2.8.5 5.7 8.2.2 6.8 9.6.5 9.4 26.6 9.2 8.5 26.5 6.4 7.7 25. 5.7 5. 7 2.2 42.8 6. 84 5.4 5 7. 02. 4 56.6 8 4.4 6. 224.6 88.4 25.8 78.9 255.8 50.5 0.54 0.76.09.56 2.5 0.9.29.8 2.6.62 2.7.8 5.5 7.7 0.7 6.4 9. 2.9 8.5 25.5 8.7 2.4 7.6 25.4 4.8 6.9 2.9 4.0 48.6 67.0 2 28.7 4 58. 8.7 47.8 68.0 97.2 4. 5.9 76.5 08.8 55.8 24.6 84. 9.6 70.5 24.0 5.2 Correction factors for evaporating temperatur t e t e C 40 0 20 0 0 +0 R407C 0.90 0.94 0.97.0.0.05 6 DKRCC.PD.BB0.B02 / 520H892 Danfoss A/S (AC-AKS / frz), 0-2008

Capacity (continued) An increase in hot gas temperature t h of 0 K reduces valve capacity approx. 2% and vice versa. Hot gas capacity G h kg/s EVR 2 EVR EVR 0 EVR 22 EVR 2 EVR EVR 0 EVR 22 Hot gas temperature th C +90 Hot gas temperature th C +60 Condensing temperature tc C Condensing temperature tc C Hot gas capacity G h kg/s at pressure drop across valve p bar 0.5 2 4 5 6 7 8 0.005 0.006 0.007 0.009 0.0 0.02 0.027 0.0 0.05 0.064 0.074 0.084 0.084 0.097 69 94 2 0 79 64 0. 0.8 0.59 0.69 0.704 4 0.968. 0.007 0.009 0.0 0.02 0.04 0.06 0.07 0.04 0.049 0.088 02 6 6 4 5 67 0.05 77 0.2 0.66 5 0.524 0.598 0.79 56 0.978.55.8.528 0.0 0.0 0.0 0.06 0.09 0.022 0.049 0.057 0.066 6 7 58 5 8 08 0.05 0.59 5 0.66 98 0.599 0.704 4 0.976.5.29.525.798 2.078 0.0 0.0 0.06 0.09 0.022 0.026 0.055 0.067 0.078 58 85 7 08 44 0.46 6 88 5 99 0.586 0.677 6 0.956.06..562.728 2.08 2.44 0.02 0.04 0.07 0.02 0.024 0.029 0.058 0.072 0.086 9 72 05 82 26 69 0.65 52 0.59 8 0.542 0.647 0.75 86.056.68.446.72.825 2.26 2.69 0.02 0.05 0.08 0.02 0.025 0.0 0.059 0.075 0.092 4 79 8 84 6 87 0.68 72 0.574 42 0.566 0.689 0.722 0.925.25.79.509.87.84 2.58 2.87 0.02 0.05 0.09 0.02 0.026 0.02 0.059 0.077 0.095 4 82 27 84 9 98 0.68 78 0.597 42 0.574 0.76 0.722 0.98.69 Hot gas capacity G h kg/s at pressure drop across valve p bar 0.02 0.05 0.09 0.02 0.026 0.0 0.059 0.077 0.097 4 82 84 9 0.04 0.68 78 0.608 42 0.574 0.722 0.722 0.98.92 R 22 0.02 0.05 0.02 0.02 0.026 0.0 0.059 0.077 0.098 4 82 2 84 9 0.05 0.68 78 0.6 42 0.574 0.7 0.722 0.98.97.5.909.947.955 2.9 2.98.04.055 0.5 2 4 5 6 7 8 0.005 0.006 0.007 0.008 0.009 0.0 0.024 0.028 0.02 0.057 0.066 0.076 0.074 0.087 49 74 79 09 4 92 0.4 0.9 78 0.556 0.64 0.747 7.002 0.007 0.008 0.009 0.0 0.0 0.06 0.02 0.08 0.045 0.075 0.09 07 9 4 99 8 8 9 86 0.6 0.9 67 0.549 0.68 0.76 97 0.998.92.402 0.008 0.0 0.02 0.0 0.06 0.02 0.04 0.049 0.059 0.094 7 4 24 54 85 47 0.07 0.7 96 0.68 44 86 0.602 0.725 0.79 0.994.97.24.55.87 0.008 0.0 0.04 0.04 0.08 0.02 0.04 0.055 0.068 0.098 6 29 7 2 58 0.4 2 0. 09 0.508 0.506 0.668 26.09.54.29.704 2.7 0.008 0.02 0.05 0.04 0.08 0.025 0.04 0.056 0.072 0.098 2 7 29 67 2 58 0.47 47 0. 6 0.56 0.506 0.679 76 26.08.42.29.7 2.27 0.02 0.05 0.08 0.025 0.056 0.07 2 72 67 25 0.47 52 6 0.542 0.679 85.08.446.7 2.259 0.02 0.05 0.05 0.05 0.08 0.025 0.025 0.025 0.056 0.07 0.07 0.07 2 72 72 72 67 25 25 25 0.47 52 52 52 6 0.542 0.542 0.542 0.679 85 85 85.08.446.446.446.7 2.259 2.259 R4a Danfoss A/S (AC-AKC / frz, 0-2009 DKRCC.PD.BB0.B.02 / 520H892 7

Capacity (continued) Hot gas capacity G h kg/s EVR 2 EVR EVR 0 EVR 22 Hot gas temperature th C +60 Condensing temperature tc C Hot gas capacity G h kg/s at pressure drop across valve p bar 0.5 2 4 5 6 7 8 0.007 0.008 0.009 0.0 0.0 0.05 0.04 0.08 0.04 0.08 0.09 02 05 2 5 9 7 52 87 0.24 68 0.529 0.672 0.765 62.05.95.48 0.009 0.0 0.02 0.06 0.08 0.02 0.047 0.054 0.06 27 4 46 67 89 9 0. 0.75 0.48 5 0.57 0.65 0.74 0.9.069.98.454 57.87 0.02 0.04 0.06 0.02 0.024 0.028 0.062 0.072 0.082 48 7 94 95 24 25 0.9 5 0.5 68 0.54 0.62 0.76 8.0.245.46 2.946 2.245 2.55 0.04 0.07 0.09 0.024 0.029 0.02 0.072 0.085 0.097 7 24 5 0.0 48 0.526 0.606 0.58 0.6 0.727 78.02.88.42 86.99 2.28 2.65.0 0.06 0.09 0.02 0.026 0.0 0.07 0.077 0.09 08 8 2 57 4 89 0.9 8 0.58 0.677 0.576 0.696 2 0.942.6.26.59.854 2.6 2.406 2.897.84 0.06 0.02 0.024 0.026 0.0 0.09 0.079 0.098 6 88 77 47 0.07 0.65 95 0.64 0.729 0.594 0.77 75 0.969.20.4.58.964 2.4 2.47.068.65 R404A/R507 0.06 0.02 0.025 0.027 0.05 0.04 0.08 0 22 9 4 88 49 0.6 0.8 0.5 0.62 0.76 0.6 0.758 0.92 0.978.29.49.58 2.022 2.4 2.47.6.80 0.06 0.02 0.025 0.027 0.05 0.04 0.08 0 26 9 4 0. 49 0.7 0.9 0.5 0.6 0.785 0.6 0.76 0.942 0.978.24.59.58 2.025 2.5 2.47.66.926 0.06 0.02 0.025 0.027 0.05 0.04 0.08 02 28 9 4 0.0 49 0.2 0.99 0.5 0.69 0.799 0.6 0.767 0.959 0.978.25.566.58 2.025 2.557 2.47.66.995 R407C Hot gas temperature th C Condensing temperature tc C Hot gas capacity G h kg/s at pressure drop across valve p bar 0.5 2 4 5 6 7 8 EVR 2 0.0054 0.0065 0.0076 0.0076 0.0097 0.008 0.008 0.08 0.040 0.08 0.040 0.07 0.00 0.05 0.084 0.02 0.065 0.098 0.02 0.065 0.0209 0.02 0.065 0.0209 0.02 0.065 0.022 EVR 0.00 0.0 0.0 0.0 0.05 0.07 0.07 0.02 0.024 0.02 0.024 0.028 0.022 0.026 0.02 0.022 0.028 0.04 0.022 0.029 0.06 0.022 0.029 0.07 0.022 0.029 0.07 0.029 0.0 0.08 0.040 0.046 0.05 0.05 0.062 0.07 0.06 0.07 0.085 0.06 0.078 0.094 0.065 0.08 0 0.065 0.085 05 0.065 0.085 08 0.065 0.085 09 EVR 0 0.069 0.08 0.09 0.095 25 25 48 7 4 72 02 52 87 2 54 97 4 55 02 52 55 02 56 55 02 58 +90 0.09 05 9 8 8 25 45 65 49 88 0.29 65 94 25 0.29 0.88 48 89 27 66 0.77 5 0.52 98 46 9 0.98 9 0.588 02 6 0.6 05 0.59 0.6 04 65 0. 08 0.5 0.66 04 65 0.7 08 0.5 0.675 04 65 0.9 08 0.5 0.678 EVR 22 9 0.0 85 99 0.46 0.95 0.95 65 0.58 52 0.544 0.69 77 0.59 0.705 86 0.62 0.758 9 0.67 0.795 9 0.67 0 9 0.67 4 0.57 65 89 0.566 0.646 0.647 0.76 79 0.78 89.042 0.779 0.966.5 0.794.08.28 0.04.298 0.04.2 0.04.29 0.582 0.669 0.76 0.798 0.924.056.054.242.45.206.45.70.27.576.878.297 6 2.02 99 2.9 2.6 2.7 An increase in hot gas temperature t h of 0 K reduces valve capacity approx. 2% and vice versa. 0.9.045.88.247.445 5 47.942 2.244.884 2.267 2.66.989 2.46 2.95 2.027 2.594.57 2.656..78.9 8 DKRCC.PD.BB0.B02 / 520H892 Danfoss A/S (AC-AKS / frz), 0-2008

Design / Function EVR 2 (NC) EVR 0 (NC) EVR 0 (NO) (NC) and 40 (NC) 4. Coil 6. Armature 8. Valve plate / Pilot valve plate 20. Earth terminal 24. Connection for flexible steel hose 28. Gasket 29. Pilot orifice 0. O-ring. Piston ring 6. DIN plug 7. DIN socket (to DIN 4650) 40. Protective cap/terminal box 4. Valve cover 44. O-ring 45. Valve cover gasket 49. Valve body 50. Gasket 5. Threaded plug 5. Manual operation spindle 7. Equalization hole 74. Main channel 75. Pilot channel 76. Compression spring 80. Diaphragm/Servo piston 8. Valve seat 84. Main valve plate 90. Mounting hole EVR solenoid valves are designed on two different principles:. Direct operation 2. Servo operation. Direct operation EVR 2 and are direct operated. The valves open direct for full flow when the armature (6) moves up into the magnetic field of the coil. This means that the valves operate with a min. differential pressure of 0 bar. The teflon valve plate (8) is fitted direct on the armature (6). Inlet pressure acts from above on the armature and the valve plate. Thus, inlet pressure, spring force and the weight of the armature act to close the valve when the coil is currentless. 2. Servo operation 22 are servo operated with a "floating" diaphragm (80). The pilot orifice (29) of stainless steel is placed in the centre of the diaphragm. The teflon pilot valve plate (8) is fitted direct to the armature (6). When the coil is currentless, the main orifice and pilot orifice are closed. The pilot orifice and main orifice are held closed by the weight of the armature, the armature spring force and the differential pressure between inlet and outlet sides. When current is applied to the coil the armature is drawn up into the magnetic field and opens the pilot orifice. This relieves the pressure above the diaphragm, i.e. the space above the diaphragm becomes connected to the outlet side of the valve. The differential pressure between inlet and outlet sides then presses the diaphragm away from the main orifice and opens it for full flow. Therefore a certain minimum differential pressure is necessary to open the valve and keep it open. For 22 valves this differential pressure is 0.05 bar. When current is switched off, the pilot orifice closes. Via the equalization holes (7) in the diaphragm, the pressure above the diaphragm then rises to the same value as the inlet pressure and the diaphragm closes the main orifice., 2 and 40 are servo operated piston valves. The valves are closed with currentless coil. The servo piston (80) with main valve plate (84) closes against the valve seat (8) by means of the differential pressure between inlet and outlet side of the valve, the force of the compression spring (76) and possibly the piston weight. When current to the coil is switched on, the pilot orifice (29) opens. This relieves the pressure on the piston spring side of the valve. The differential pressure will then open the valve. The minimum differential pressure needed for full opening of the valves is bar. EVR (NO) has the opposite function to EVR (NC), i.e. it is open with de-energised coil. EVR (NO) is available with servo operation only. Danfoss A/S (AC-AKC / frz, 0-2009 DKRCC.PD.BB0.B.02 / 520H892 9

Material specifications EVR 2 to 25 Solenoid valves Standard No. Description Material Analysis Mat.no. W.no. DIN EN Valve body EVR 2 to 25 Brass CuZn40Pb2 CW67N 2.0402 7672-265 EVR 2 to 6 Stainless steel X5 CrNi8-0.40 0088 2 Cover EVR 0 to 22 Brass CuZn40Pb2 CW67N 2.0402 7672-265 Cast iron EN-GJS-400-8-LT EN-JS025 56 Armature tube EVR 2 to 25 Stainless steel X2 CrNi9-.406 0088 4 Armature tube nut Stainless steel X8 CrNiS 8-9.405 0088 5 Gasket EVR 2 to 25 Rubber Cr 6 Gasket Al. gasket Al 99.5.0255 020 7 Solder tube Copper SF-Cu CW024A 2.0090 787 2449 8 Screws EVR 2 to 25 Stainless steel A2-70 506 9 Spindle for man. operat. Stainless steel X8 CrNiS 8-9.405 0088 0 Gasket Rubber Cr to 40 Solenoid valves Standard No. Description Material Analysis Mat.no. W.no. DIN EN Valve body /40 Cast Iron EN-GJS-400-8-LT EN-JS025 56 2 Cover /40 Brass CuZn40Pb2 CW67N 2.0402 265 Armature tube /40 Stainless steel X2 CrNi9-.406 0088 4 Armature tube nut /40 Stainless steel X8 CrNiS 8-9.405 0088 5 Gasket /40 Rubber Cr 6 Gasket /40 Al. gasket Al 99.5.0255 020 7 Solder tube /40 Copper SF.Cu CW024A 2.0090 787 2449 8 Screws /40 Stainless steel A2-70 506 9 Spindle for. man. operation /40 Stainless steel X8 CrNiS 8-9.405 0088 20 DKRCC.PD.BB0.B02 / 520H892 Danfoss A/S (AC-AKS / frz), 0-2008

Dimensions and weights EVR (NC) 2 5 and 5 (NO), flare connection Weight of coil 0 W: approx. 0. kg 2 and 20 W: approx. 0.5 kg With cable connection coil With DIN plugs coil With terminal box coil Connection Flare H H 2 H H 4 L L 2 L L 4 NV L 5 max. 0 W 2/20 W in. mm mm mm mm mm mm mm mm mm mm mm mm mm mm kg EVR 2 / 4 6 4 7 9 75 45 54 75 85 68 0.5 EVR EVR 0 / 4 6 4 7 9 75 45 54 75 85 68 0.5 / 8 0 4 7 9 75 45 54 75 85 68 0.5 / 8 0 4 78 0 82 45 54 4 75 85 68 0.6 / 2 2 4 78 0 88 45 54 4 75 85 68 0.6 / 2 2 6 79 0 45 54 6 75 85 46 68 5 / 8 6 6 79 0 45 54 6 75 85 46 68 5 / 8 6 9 86 49 45 54 24 75 85 56 68.0 B B max. Weight with coil Danfoss A/S (AC-AKC / frz, 0-2009 DKRCC.PD.BB0.B.02 / 520H892 2

Dimensions and weights (continued) EVR (NC) 2 22 and 22 (NO), solder connection Weight of coil 0 W: approx. 0. kg 2 and 20 W: approx. 0.5 kg With cable connection coil With DIN plugs coil With terminal box coil Connection Solder H H 2 H H 4 L L 2 L L 4 L 5 max. 0 W 2/20 W in. mm mm mm mm mm mm mm mm mm mm mm mm mm kg EVR 2 / 4 6 4 7 9 02 7 45 54 75 85 68 0.5 EVR EVR 0 / 4 6 4 7 9 02 7 45 54 75 85 68 0.6 / 8 0 4 7 9 7 9 45 54 75 85 68 0.6 / 8 0 4 78 0 9 45 54 75 85 68 0.6 / 2 2 4 78 0 27 0 45 54 75 85 68 0.6 / 2 2 6 79 27 0 45 54 75 85 46 68 0.7 5 / 8 6 6 79 60 2 45 54 75 85 46 68 0.7 5 / 8 6 9 86 49 76 2 45 54 75 85 56 68.0 7 / 8 22 9 86 76 7 45 54 75 85 56 68.0 7 / 8 22 20 90 5 9 7 45 54 75 85 72 68.5 / 8 28 20 90 24 22 45 54 75 85 72 68.5 EVR 22 / 8 5 20 90 28 25 45 54 75 85 72 68.5 B B max. Weight with coil 22 DKRCC.PD.BB0.B02 / 520H892 Danfoss A/S (AC-AKS / frz), 0-2008

Dimensions and weights (continued) EVR (NC) 25, 2 og 40, solder connection and 40 terminal box and 40 with terminal box coil Weight of coil 0 W: approx. 0. kg 2 and 20 W: approx. 0.5 kg Coil with cable Coil with DIN plugs Connection Solder H H 2 H H 4 L L 2 cable connection Coil with L Coil with DIN connection L 4 Coil with terminal box L 5 max. 0 W 2/20 W in. mm mm mm mm mm mm mm mm mm mm mm mm mm kg / 8 28 8 8 72 256 22 45 54 75 85 95 68.0 / 8 5 8 8 72 28 25 45 54 75 85 95 68. / 8 5 47 5 28 25 45 54 75 85 80 68 4.5 5 / 8 42 47 5 28 29 45 54 75 85 80 68 4.6 5 / 8 42 47 5 28 29 45 54 75 85 80 68 4.6 2 / 8 54 47 5 28 4 45 54 75 85 80 68 4.6 B B max. Weight with coil EVR (NC) 5 and 20, flange connection Coil with cable Coil with DIN plugs Weight of coil 0 W: approx. 0. kg 2 and 20 W: approx. 0.5 kg With terminal box coil Weight of flange set For : 0.6 kg For : 0.9 kg H H 2 H H 4 L L L 2 connection Coil with cable L Coil with DIN connection L 4 Coil with terminal box L 5 max. B B max. 0 W 2/20 W mm mm mm mm mm mm mm mm mm mm mm mm mm kg 9 86 9 49 25 68 45 54 75 85 80 68.2 20 90 2 5 55 85 45 54 75 85 96 68.7 Weight with coil excl. flanges Danfoss A/S (AC-AKC / frz, 0-2009 DKRCC.PD.BB0.B.02 / 520H892 2

24 DKRCC.PD.BB0.B02 / 520H892 Danfoss A/S (AC-AKS / frz), 0-2008