364 2004,18 (5) :364 367 Acta Agriculturae Nucleatae Sinica :100028551 (2004) 052364204 1 2 1 2 1,2 3 (1., 310029 ; 2., 310006) :, 2, : ; ; ADVANCES IN RICE BREEDING FOR THE FUNCTIONAL COMPONENTS HU Fan2rong 1 DUAN Zhi2ying 1 ZHANGLin2lin 1 HU Pei2song 2 WU Dian2xing 1,2 (1. Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, Zhejiang, 310029 ; 2. National Key Lab of Rice Biology, China National Rice research Institute, Hangzhou, Zhejiang, 310006) Abstract :In the current paper, the major functional components in grain of rice were briefly introduced and research progresses in rice breeding for high Iron, Zinc content, amino acids, LCG, and novel endosperms were briefly reviewed. The need and strategies for rice breeding with the functional components in China were discussed. Key words :rice ; functional components ; breeding,, :,, [1 ],,, 2 ( GABA) V E [3 ] [4 ],,, 1 1. 1,,,,, :2004202204 : 2002BA406B04 2004C406 ; 011102471 :,,, 3 :E2mail :dxwu @zju. edu. cn
5 365,,, 1992,, 1994,,,, 25mgΠkg 60 % IR164 Goto [5 ],, 3,,, 3 6 [6 ], GCN4 026, 2000 3,,, [7 ],,,,,,,,, [8 ], Raboy [9,10 ] (Low Phytic acid, LP) Veum [11 ],,,Larson [12 ] Kaybonnet LP 1 pa121 70 % 40 %,,,, 9311 B 110 906, 70 % 10 % 30 %, 1. 2 2, 2 ( Golden rice) Chair [13 ], GGPP, 4 Ye [14 ] (phytoene synthase, psy ) Erwinia uredovora (phytoene desaturase, crt ) Narcissus pseudonarcissus 2 (lcy ), 2,, A 1. 3 1980,,, LGC21 [6 ],,, 20 80 90, N2 2N [16 ] 2 3, 215 % 4 %,,GABA GABA,, 2 Masumura [17 ] 85KG24 13kDa,
366 18 1. 4, 011 10g, 1. 5,, [18 ] Ogawa [19 ],, 90, 10 Krishnan Hari B [20 ], 2 21 (PB ) 22 ( PB ) PB, 30 %,PB PB,, PB, 21 22 [21 ] 1. 6,,,, AGPP GBSS SBE DBE, RNA, 1 AGPP GBSS SBE DBE, [22 ] Okita (1996) AGPP, Shimada (1993) GBSS Wx 4 9 110 kb Nipponbare, RNA [23 ] Wx RNA,, 2 %, 20 3 (AC) AC, 8, du21 du5 du2035 (2120) du ( EM47), AC,, [24,25 ] AC, AC (amylose extender, ae), 3 ae21 ae22 (t) ae23 (t) ae AC,,, B, [26 ] AAC (Am(t) ) (lam(t) ) 20 30 %,,, (2002),, lsv21,,,, Yano Matsuo [28 ], 3, 3, Matsuo [29 ] Maekawa [30 ] 1 (flo21 fol22 fol23 (t) ),,,,
Acta Agriculturae Nucleatae Sinica 2004,18 (5) :364 367 367 2,, : (1) :, 48 % 42 % 40 % 36 % 26 %,,, (2) : 5000, 600, 4 % (3) A : A 4000,,,,,,,,,,,,,,,, ( ) : [ 1 ],.., 1995, 2 : 30 33 [ 2 ],.., 2001, 22 (12) : 81 84 [ 3 ],.., 2002, 5 : 17 19 [ 4 ],.., 1999, 8 : 8 9 [ 5 ] Goto F, et al. Iron fortification of rice seeds by the soybean ferritin gene. Nat Biotechnol. 1999, 17, 282 286 [ 6 ].., 1998, 1 : 36 38 [ 7 ] Mendoza C, Brown K H. Effect of genetically modified low phytic acid maize on absorption of iron from tortillas. Amer Clin Nutrit. 1998, 68 : 1123 1128 [ 8 ] Raboy V. Seed for a better future : Low phytate grains help to overcome malnutrition and reduce pollution. Plant Sci. 2001, 6 (10) : 458 462 [ 9 ] Raboy V, et al. Genetics and breeding of seed phosphorus and phytic acid. J Plant Physiol. 2001, 158 :149 497 [10 ] Larson S R, et al. Linkage mapping of maize and barley myo2inositol212phosphaye synthase DNA sequences : correspondence with a low phytic acid mutation. Theor Appl Genet. 1999, 99 : 27 36 [11 ] Veum T L, et al. Low2phytic acid corn improves nutrient utilization for growing pigs. J Animal Sci. 2001, 79 (11) : 2873 2880 [12 ] Larson S R, et al. Isolation and genetic mapping of a non2lethal rice (Oryza sativa L. ) low phytic acid 1 mutation. Crop Sci. 2000, 40 : 1397 1405 [13 ] Chair H. Selectable marker genes and transformation strategy as key factors of rice protoplast transformation efficiency. 1995, 114 [ 14 ] Ye X, et al. Engineering the pro2vitamin A (carotene) biosynthetic pathway into (carotene2free) rice endosperm. Science. 2000, 287 : 303 305 [15 ],,,. 3., 1996, 4 : 155 156 [16 ] Zheng Z, et al. The bean seed storage 2phaseolin is synthesized, processed and accumulated in vacuolar Type2II protein bodies of transgenic rice endosperm. Plant Physiol. 1995, 109 : 777 786 ( 389 )
Acta Agriculturae Nucleatae Sinica 2004,18 (5) :385 389 389,, 10 %,,Walling,,, Walling,,, Walling 137 Cs, : Y = 010109 X 110072 : [ 1 ] Zhang, X. Quine T A and Walling D E. Soil erosion rates on sloping cultivated land on the Loess Plateau near Ansai, Shaanxi Province, China : An investigation using 137 Cs and rill measurements. Hydrological Processes. 1998, Vol. 12 : 171 189 [ 2 ] Wilkin D C, Hebel SJ. Erosion, redeposition and delivery of sediment to Midwesternstreams. Water Resources Research. 1982, 18 : 1278 1282 [ 3 ] Loughran R J, Elliott GL, Campbell B L and Shelly D J. Estimation of soil erosion from caesium2137 measurements in a small cultivated catchment in Australia. Appl Radiat Isotopes, 1988, 39 (11) :1153 1187 [ 4 ] Loughran R J, Campbell B L. The identification of catchment sediment sources. In : Foster I L et al. Sediment and water quality in river catchments. Chichester, UK: John Wiley & Sons, 1995,189 205 [ 5 ] De Jong E, Begg C M and Kachanoski R G. Estimates of soil erosion and deposition from Saskatchewan soils. Can J Soil Sci, 1983,63 (3) : 607 617 [ 6 ] Fredericks D J, Perrens S J. Estimating erosion using caesium2137 :. Estimating rates of soil loss. IAHS Publ, 1988,174 :225 231 [ 7 ] Martz,L W, and de Jong E. Using caesium2137 to assess the variability of net soil erosion and its association with topography in a Canadian Prairie landscape. Catana. 1987,37 :5 20 [ 8 ] Brown R B, Kling G F and Cutshall N H. Agricultural erosion indicated by 137 Cs redistribution :. Estimating rates of erosion rates. Soil Sci Soc Am J. 1981,45 (6) :1191 1197 [ 9 ] Lowance R, McIntyre S and Lance C. Erosion and deposition in a fieldπforest system estimated using caesium2137 activity. J Soil Water Conserv, 1988,43 (2) :195 199 [10 ] Kachanoski R G. Estimating soil loss from changes in soil cesium21371 Can J Soil Sci, 1993,73 (4) :629 632 [11 ],,,. 137 Cs.,1989,3 :210 213 [12 ],137 Cs, 1996 [13 ] Walling D E, He Q. Improved models for estimating soil erosion rates from cesium2137 measurements. J Environ Qual, 1999, 28 : 611 622 [14 ],,,. 137 Cs., 2000, 37 (3) : 296 305 [15 ],,.,,, 300 309 ( 367 ) [17 ] Masumura T, et al. Cloning and characterization of a cdna encoding a rice 13 kda prolamin. Mol Gen Genet. 1990, 221 : 1 7 [18 ],,,.., 2001, 43 (5) : 506 511 [19 ] Ogawa M, et al. Purification of protein body2l of rice seed and its polypeptide composition. Plant Cell Physiol. 1987, 28 : 1517 1527. [20 ] Krishnan, et al. Characterization of high2lysine mutants of rice. Crop Sci, 1999, 39 : 825 831 [21 ],.., 1996, 22 (4) : 448 457 [22 ] Harrington S E, et al. Linkage mapping of starch branching enzyme III in rice (Oryza sativa L. ) and prediction of location of orthologous genes in other grasses. Theor Appl Genet. 1990, 94 (5) : 564 568 [23 ],,,. Wx., 2002, 47 (9) : 684 688 [24 ] Okuno K, et al. A new mutant gene lowering amylose content in endosperm starch of rice, Oryza sativa L. Japan J Breed. 1983, 33 : 387 394 [25 ] Yano M, et al. Gene analysis on the endosperm mutants induced by MNU treatment in rice. Japan J Breed. 1980, 30 : 260 261 [26 ] Satoh H. New endosperm mutation induced by chemical mutagens in rice, Oryza sativa L. Japan J Breed. 1981, 31 (3) : 316 326 [27 ],,,.., 2003, 17 (1) : 82 84 [28 ] Yano M, et al. Gene analysis of sugary and shrunken mutants of rice, Oryza sativa L. Japan J Breed. 1984, 34 : 43 49 [29 ] Matsuo T, et al. Newly obtained mutants of shrunken and sugary in rice. Japan J Breed. 1987, 37 : 204 205 [30 ] Maekawa M. Location of a floury endosperm gene in the second linkage group. Rice Genet Newslett. 1985, 2 : 57 58