21 9 2009 9 PROGRESS IN CHEMISTRY Vol. 21 No. 9 Sep., 2009 Π 3 3 3 ( 411105) Π,,,,,,,,,, : O646 ; TB332 : A : 10052281X(2009) 0921832207 Carbon and Conducting Polymer Composites for Supercapacitors An Hongf ang Wang Xianyou 3 3 Li Na Zheng Liping Chen Quanqi ( Key Laboratory of Materials Design and Preparation Technology of Hunan Province, School of Chemistry, Xiangtan University, Xiangtan 411105, China) Abstract CarbonΠconducting polymer composite is a novel electrode material which is recently used for the application of supercapacitors. The composites of carbon and metal oxide, or carbon and conducting polymers can fully combine advantages of double2layer capacitance of carbon materials and pseudo2capacitance of metal oxide or conducting polymer, and thus the materials can provide not only high specific capacitance and working voltage, but also excellent cycle stability. In this paper, we illustrate the recent research progress of the composites of carbon at home and abroad, such as active carbon, carbon nanotubes and conducting polymers, and believe that the composites of carbon and conducting polymers will be a promising electrode material for supercapacitors, especially carbon aerogels, mesoporous carbon prepared by template synthesis, and carbide derived carbon which is prepared by selective thermo2chemical etching from carbide in chlorine gas flow. Key words carbon ; conducting polymers ; composites ; supercapacitors Contents 1 Introduction 2 Energy storage mechanism of supercapacitors using carbonπconducting polymer 3 Carbon and conducting polymer composites 311 Carbon 312 Conducting polymer 313 CarbonΠconducting polymer composites 4 Conclusion 1 (supercapacitors), (electrochemical capacitors,ecs), : 2008 10, : 2008 12 3 (No. 20871101) (No. 08A067) 3 3 Corresponding author e2mail :wxianyou @yahoo. com
9 Π 1833,, ( - 20 60 ) ; ; ;, 1 [1] 1 [1 ] Fig. 1 Taxonomy of the supercapacitor materials [1 ] 1,,, [2 ], [3 ],, 10 100 [1 ] RuO 2,600 1 000FΠg, [4 ], ; MnO 2,Co 3 O 4,NiO,,20 200FΠg, RuO 2,, [5,6 ] ; [7 9 ] :(PANI),(PPy), 3,42( PEDOT), : PANI 775FΠg [10 ], PPy 480FΠg [11 ], PEDOT 210FΠg [12 ],,,, Π 2 Π Π, [13 ], 4,,, [3 ], p n, p2doping : n2doping : (polymer) + ya - [ (polymer) y + ya - ] + ye - (polymer) + yc + + ye - [ (polymer) y - yc + ], [1 ] 2 p [1 ],,, ( Cl - ) Π,,, Π,,,
1834 21 2 [1 ] Fig. 2 Schematic illustration of pseudo2capacitance in a conducting polymer [1 ] 3 Π 311, 1957 Beck [14 ], [15 ] [16 ] [17 ] [18 ] [19 ] [20 ] [21 ] [22 ] [23 ] ( IUPAC1972) ( W) : W > 50nm ;2nm < W < 50nm ; W < 2nm,,,,,,,, [24 ], Pekala [25 ], 1 2,,, ( 25 100SΠm),, 80 % 98 %, 50nm, 3 20nm Li [26 ],,, 6molΠL KOH, 11016FΠg (carbon nanotubes,cnts) 1991 [27 ],, 100 %, 312 1977, Heeger, MacDiarmid (Shirakawa), ( I, AsF 5 ) 9, 10-6 SΠcm 10 3 SΠcm [28 ] 2000 PANI,PPy,( PTh) PEDOT (32(42) ) (PFPT) PANI, [29 ], Mi [30 ] PANI,, 2mAΠcm 2, 428FΠg ;9mAΠcm 2, 31 %,PANI, PANI,PPy [31 ] Sharma [32 ], 400FΠg, 250WhΠkg, 100 10 %,5 000 10 %,, n, p,,,,311v, [3,33 ] Laforgue [34 ] PTh PFPT,,PTh PFPT 250FΠg 110FΠg PTh,PFPT, 3V 313 Π
9 Π 1835,,, 31311,,,,, [35 ] (APS),, PANIΠ APS 7 1 1, 95 %, 239FΠg409FΠg, 7111 % [36 ] Π (PANIΠC), PANI 4614 % 1molΠL H 2 SO 4, Nafion117,,, 0 1135V 310mAΠcm 2,8311FΠg, 82 %, 2110WhΠkg, 3 [37 ] PANI, PANIΠC, 1molΠL H 2 SO 4 PANIΠC, 82FΠg175FΠg ; PANIΠC 3017FΠg, ; PANIΠC, 016V1V Muthulakshmi [38 ] PPy,,1mVΠs, 354FΠg Kim [39 ] ( vapor grown carbon fibers, VGCF) PPy,, 6molΠL KOH, (PV) PPy 8 %, PPy 10nm,,30mVΠs, 588FΠg, 200mVΠs, 550FΠg PPy, 10nm,PPy Selvakumar [40 ] PEDOT,, 10mVΠs158FΠg, 1 1, PANI PPy 1 Table 1 The preparation technology and the specific capacitance of various composites electrode material preparation technology specific capacitance of electrode (FΠg) carbon polymer composite ref PANIΠC in2situ polymerization 239 409 35 PANIΠC cyclic voltammetry 82 175 37 PPyΠC in2situ electrochemical polymerization 354 38 PPyΠC in2situ polymerization 588 39 PEDOTΠC electrochemical deposition 12 78 158 40 31312,,,,, Wang [41 ],PANI, 3 015AΠg 900FΠg,3 000, 5 %, 100 %,
1836 21 3 [41 ] Fig. 3 Scheme of preparation process of whiskerlike PANI on the surface of mesoporous carbon [41 ] Xing [42 ] PANI,, PANI 60215FΠg, Chen [43 ] PANI,, 92FΠg180FΠg,1 000, 82 % PANI 31313 CNTs,,,,100 FΠg [20 ], Deng [44] CNTs,PANIΠCNTs 1molΠL NaNO 3,10mVΠs,, 5mAΠcm 2, CNTs PANIΠCNTs 47FΠg 183FΠg CNTs PANIΠCNTs 1165 6134Wh kg - 1, Zhou [45 ] PANIΠ CNTs, CNTs PANI,,, 1molΠL NaNO 3, 8, PANIΠ CNTs 19016FΠg, PANI (16915FΠg) Gupta [46] PANI CNTs,, PANI, PANI 73 %,CNTs PANI, 463FΠg,500, 5 %;1 000,, PANIΠCNTs Wang [47 ] CNTs,PPy,PPy CNTs, ECs 202FΠg, PPyΠCNTs, Kim [48 ] CNTs,PPy,, PPyΠCNTs 4 PPy 8314 %, 4 PPyΠCNTs : (a) CNTsΠ, (b) PPy2CNTsΠ, (c) PPyΠCNTs [48 ] Fig. 4 Schematic of preparation of ( a) as2deposited CNTsΠ nanosized silica thin film, (b) PPy2coated CNTsΠnanosilica thin film, and ( c) PPyΠCNTs thin film after removal of nanosize silica [48 ]
9 Π 1837 1molΠL KCl,5mVΠs, 250FΠg ; 500mVΠs, 211FΠg,, Lota [49 ] PEDOT CNTs,,, 60 160FΠg, 112V Wang [50 ] PEDOT, 10mVΠs, 210FΠg, (130FΠg [51 ] ) 200mVΠs, 180FΠg,1 000 318 %, 4,,,,,,, ;,,,, 50nm ;, ;,,, [ 1 ] Peng C, Zhang S W, Daniel J, et al. Prog. Nat. Sci., 2008, 18 (7) : 777 788 [ 2 ] (Miao X L), (Deng Z H). ( Chinese Journal of Synthetic Chemistry), 2002, 10 (2) : 106 109 [ 3 ] Conway B E. Electrochemical Supercapacitors : Scientific Fundamentals and Technological Applications. New York : Kluwer Academic, 1999. 183 220 [ 4 ] Sugimoto W, Yokoshima K, Murakami Y, et al. Electrochim. Acta, 2006, 52 (4) : 1742 1748 [ 5 ] (Zhang Q W), (Zhou X), (Tang X P). ( Electronic Components & Materials), 2002, 20 (5) : 21 26 [ 6 ] Marina M R, Catia A. Solid State Ionics, 2002, 148 (3Π4) : 493 498 [ 7 ] (Wang X F), ( Kong X H), ( Xie J Y). ( Electronic Components & Materials), 2001, 21 (5) : 24 29 [ 8 ] (Lu F), (Wu Z M), (Xu J H). ( Electronic Components & Materials), 2005, 24 (2) : 51 53 [ 9 ] (Cai Z J). (Chinese Journal of Power Sources), 2006, (1) : 71 88 [10 ] Gupta V, Miura N. Mater. Lett., 2006, 60 (12) : 1466 1469 [11 ] Fan L Z, Maier J. Electrochem. Commun., 2006, 8 (6) : 937 940 [12 ] Xu Y, Wang J, Sun W, et al. J. Power Sources, 2006, 159 (1) : 370 373 [13 ] (Wang X Y), ( Wang X Y), ( Huang W G). (Battery Bimonthly), 2004, 34 (3) : 192 193 [14 ] Becker H I. US 2800616, 1957 [15 ] Subramanian V, Luo C, Stephan A M, et al. J. Phys. Chem. C, 2007, 111 (20) : 7527 7531 [16 ] Babel K, Jurewicz K. J. Phys. Chem. Solids, 2004, 65 ( 2Π3) : 275 280 [17 ] (Zhang Z A), (Deng M G), (Wang B H). (Journal of Functional Materials), 2005, 36 (2) : 275 280 [18 ] Frank M, Mark L, Gerrard I M, et al. Electrochem. Commun., 2001, 3 (8) : 177 180 [19 ] Che G L, Lakshmi B B, Fisher E R, et al. Nature, 1998, 393 (6683) : 346 348 [20 ] Pekala R W, Farmer J C, Alviso C T, et al. J. Non2Cryst. Solids, 1998, 225 (1) : 74 80 [21 ] Sullivan M, Kgtz R, Haas O. Electrochemical Capacitors, Pennington : The Electrochemical Society, Inc., 1996. 198 209 [22 ] Nikitin A, Gogotsi Y. Nanostructured Carbide2Derived Carbon (CDC). American Scientific Pubilishers, 2003 [23 ] Denisa H, Junya Y, Yasushi S, et al. Chem. Mater., 2005, 17 (5) : 1241 1247 [24 ] (Li N), (Wang X Y), ( Yi S Y). (Progress in Chemistry), 2008, 20 (7Π8) : 1202 1207 [25 ] Pekala R W, Farmer J C, Alviso C T, et al. J. Non2Cryst. Solids, 1998, 225 (1) : 74 80 [26 ] Li J, Wang X Y, Huang Q H, et al. J. Power Sources, 2006, 158 (2) : 784 788 [27 ] Iijima S. Nature, 1991, 354 : 56 58
1838 21 [28 ] Shirakawa H, Louis E L, MacDiarmid A G, et al. J. Chem. Soc. Chem. Commun., 1977, 578 580 [29 ] Zhou C, Han J, Song G, Guo R. Macromolecules, 2007, 40 (20) : 7075 7078 [30 ] Mi H Y, Zhang X G, Yang S D, et al. Mater. Chem. Phys., 2008, 112 (1) : 127 131 [31 ] Zhou M, Pagels M, Geschke B, et al. J. Phys. Chem. B, 2002, 106 : 10065 10073 [32 ] Sharma R K, Rastogi A C, Desu S B. Electrochem. Commun., 2008, 10 (2) : 268 272 [33 ] ( Yuan G H ). ( Electrochemical Supercapacitors). : (Beijing : Chemical Industry Press), 1999. 150 153 [34 ] Laforgue A, Simon P, Sarrazin C, et al. J. Power Sources, 1999, 80 (1Π2) : 142 148 [35 ] (Mao D W), ( Tian Y H). ( Chinese Journal of Power Sources), 2007, 131 (8) : 614 616 [36 ] (Huang ZL), (Cong W B), (Zhang B H). ( Chinese Journal of Power Sources), 2007, 131 ( 8) : 605 608 [37 ] (Cong W B), (Zhang B H), ( Yu Y X). (Journal of Harbin Engineering University), 2004, 25 (6) : 809 813 [38 ] Muthulakshmi B, Kalpana D, Pitchumani S, et al. J. Power Sources, 2006, 158 (2) : 1533 1537 [39 ] Kim J H, Lee Y S, Sharma A K, et al. Electrochim. Acta, 2006, 52 (4) : 1727 1732 [40 ] Selvakumar M, Bhat D K. J. Appl. Polym. Sci., 2008, 107 (4) : 2165 2170 [41 ] Wang Y G, Li H Q, Xia Y Y. Adv. Mater., 2006, 18 ( 19) : 2619 2623 [42 ] Xing W, Zhuo S P, Cui H Y, et al. Mater. Lett., 2007, 61 (23Π 24) : 4627 4630 [43 ] Chen W C, Wen T C, Teng H. Electrochim. Acta, 2003, 48 (6) : 641 649 [44 ] Deng M G, Yang B C, Hu Y D. J. Mater. Sci., 2005, 40 (18) : 5021 5023 [45 ] Zhou Y K, He B L, Zhou WJ, et al. Electrochim. Acta, 2004, 49 (2) : 257 262 [46 ] Gupta V, Miura N. J. Power Sources, 2006, 157 (1) : 616 620 [47 ] Wang J, Xu YL, Chen X, Sun X F. Comp. Sci. Technol., 2007, 67 (14) : 2981 2985 [48 ] Kima J Y, Kima K H, Kim KB. J. Power Sources, 2008, 176 (1) : 396 402 [49 ] Lota K, Khomenko V, Frackowiak E. J. Phys. Chem. Solids, 2004, 65 (2Π3) : 295 301 [50 ] Wang J, Xu Y L, Sun X F, et al. J. Solid State Electrochem., 2008, 12 (7Π8) : 947 952 [51 ] Frackowiak E, Beguin F. Carbon, 2002, 40 (10) : 1775 1787