22 5 2010 5 PROGRESS IN CHEMISTRY Vol. 22 No. 5 May 2010 * 450001 / O636. 1 A 1005-281X 2010 05-0938-10 Synthesis Characterization and Application of Phosphorus-Containing Derivatives of Chitosan Ma li Guo Jing Liu Pu Department of Chemistry Zhengzhou University Zhengzhou 450001 China Abstract Chitosan is a renewable and natural basic polysaccharide with a variety of excellent features. However since the dissolution of chitosan is poor it can only be dissolved in some dilute acids which restricts its further research and application. Therefore to exploit the unique properties and to realize the full potential of the versatile polysaccharides attempts are being made to chemically modify them. Phosphorylation or phosphoryl modification of chitosan is one of the methods. In this paper introducing phosphorus-containing groups into chitosan to form phosphorus-containing derivatives are reviewed. And their synthesis and purification methods characterization of the structure properties and applications are presented and discussed detailedly. Finally the opinions with respect to prospects of phosphorus-containing derivatives of chitosan are proposed. Key words chitosan phosphorus-containing derivatives characterization Contents 1 Introduction 2 Synthesis and purification of phosphorus-containing derivatives of chitosan 3 Characterization and properties of phosphoruscontaining derivatives of chitosan 3. 1 Characterization of chemical structure 3. 2 Physical properties and morphology 3. 3 Physical and anti-bacterial properties 4 Application of phosphorus-containing derivatives of chitosan 4. 1 Adsorption of metal ions and chelating capacity of phosphorus-containing derivatives of chitosan 4. 2 Application of phosphorus-containing of chitosan in drug delivery 2009 6 2009 8 * No. 20872134 Corresponding author e-mail liupu@ zzu. edu. cn
5 939 4. 3 Application of phosphorus-containing derivatives of chitosan in the field of biomedical 4. 4 Application of phosphorus-containing derivatives of chitosan in the fuel cells 5 Outlook 1 chitin 2- -2- β-1 4- Sakaguchi 6 150 chitosan 1 1 2 8 1 2 3 50% CH 3 SO 3 H 4 7 9 13 1 P 2 O 5 ClCH 2 CH 2 P O OH 2 ClP O OCH 2 CH 3 2 Sakaguchi 6 Nishi 7 -D- P 2 O 5 2 7 Scheme 1 Structure of chitosan 5 2 3 8 Jung 14 40 2-2 1h 50 6h
940 22 24h Cardenas 19 6h 3 4h 30min 24h 6 N- 4 15 17 70 1h 70 6h Jayakumar 20 21 48h C 2 -NH 2 ph 6. 8 4 4 N- NaOH ph 5. 5 2-2-carboxy-ethyl phosphonic acid 15 Lebouc 5 N- 1-3- -3-13 C NMR EDC CH 3 2 N 70 7h 4 3 70% 80% 90% 100% 3 7 20 Palma 18 C 3 C 6 KOH-CH 3 OH 22 4h 2- / 2h 12h 70 6h ph = 48h 5. 0 72h ph 6. 8 5 48h 8 Meng 23-15
5 941 2- -2- -1 3- COP 37 24h 3h 2h 70% COP- 1. 18 COP- 25 P 2 O 5 H 3 PO 4 Et 3 PO 4 65 48h 1 9 Kang 24 Michael ph ph MAEP 1% NaOH ph 3. 06 25 3 36 3h 3 3. 1 10 8 12 P 2 O 5 H 3 PO 4 Et 3 PO 4 35 72h 37 24h P 2 O 5 / CH 3 SO 3 H H 3 PO 4 / urea / DMF 3. 1. 1 FT-IR Jayakumar 2 C 3 C 6 C 2 11 P 2 O 5 H 3 PO 4 Et 3 PO 4 1h 75 72h
942 22 C 3 C 6 27 28 Ma 27 3 400cm - 1 / 3. 2 1 250cm - 1 945cm - 1 P O P O 26 X 3. 1. 2 NMR 3. 2. 1 H NMR 13 C NMR 31 P NMR C NMR 31 P NMR H NMR 2 1 H NMR 13 C NMR 1 H NMR DCl / D 2 O δ = 4. 82 H 1 δ = 3. 13 H 2 δ / = 3. 59-3. 84 H 3 H 4 H 5 H 6 δ = 1. 97 NCOCH 3 13 C NMR DCl / D 2 O δ = 100. 3 C 1 δ = 58. 8 C 2 δ = 73. 1 C 3 δ = 79. 9 C 4 δ = 77. 9 C 5 δ = 63. 3 C 6 XRD SEM 1 H NMR 13 C NMR NaOH 1% HCl 1% 1% 1 H NMR 13 C NMR C H Wan 28 swelling index SI 31 P NMR W d W w 0 9ppm H 3 PO 4 H 3 PO 3 2 5 19 22 24 SI = W w - W d / W d 100% 238ppm 3. 2. 2 C 6 235ppm 224ppm
5 943 2 22 28 Ma 27 C O C 29 30 Ca 2 + 3. 3. 2 3. 2. 3 SEM SEM ph 32 1 4 16 22 25 3. 2. 4 X XRD / XRD 32 2θ 10 20 Jung 14 2 90% 70% 2 8 3. 3 90% 70% 3. 3. 1 ph = 5. 75 95% 30 26 F 0. 5mg / L 3 31 100% Wan 28
944 22 4. 1 3. 3. 3 5% 34 97% q = c 0 - c V / m q mg Ca 2 + / g V L c 0 Ca 2 + mg / L c 27 Ramos 15 N- mg / L m g q Jayakumar 34 ph ph Ni 2 + Cu 2 + Zn 2 + Nishi 35 Nishi 35 ph ph Mg 2 + Ca 2 + Sr 2 + 33 Ba 2 + Mn 2 + Ni 2 + Cu 2 + Zn 2 + Cd 2 + 45% Ni 2 + Cu 2 + Zn 2 + 4. 2 4 Win 13 37 ph ATP 90% ph 36 ph 7. 4 ph 1. 4 ph 7. 4 Jayakumar 20 ph 7. 4 ph 1. 4
5 945 41 4. 3 Ma 27 1 P 2 O 5 Ca 2 + 15min 37 Ca OH 2 Ca 2 + 23 Amaral 38 42 N- Ca OH 2 NaOH / / Li 39 30 / 43 N- NH 2 44 40 45 N-
946 22 1 Jiang T D. Chitosan ed. 2. Beijing Chemical Industry Press 4. 4 1983 Uragami 46 Macromol. 2008 42 335 339 Wan 28 Macromol. 2008 43 221 225 2001 44 1 8 1981 45 2191 2195 60 3533 3536 NH 2 + H 2 O 幑幐帯 NH + 3 + OH - 330 /332 721 724 NH + 3 OH - 54 533 536 Wan 2003 53 305 310 OH - 1999 72 1713 1719 OH - 5 2006 2 3 30 Mater. 2002 51 711 720 50 719 724 19 Cardenas G Cabrera G Taboada E Soc. 2006 51 815 820 Polym. 2006 21 327 340 Forum 2006 514 /516 995 999 Appl. Chem. 2007 A44 271 275 70 82 88 2 Jayakumar R Nagahama H Tamura H et al. Int. J. Biol. 3 Jayakumar R Selvamurugan N Nair S V et al. Int. J. Biol. 4 Heras A Rodríguez N M Agullo E et al. Carbohydr. Polym. 5 Lebouc F Dez I Madec P. Polymer 2005 46 319 325 6 Sakaguchi T Hirokoshi T Nakajima A. Agric. Biol. Chem. 7 Nishi N Nishimura S Tokura S et al. Int. J. Biol. Macromol. 1984 6 53 54 8 Jayakumar R Egawa T Furuike T N et al. Polym. Eng. Sci. 2009 49 844 849 9 Li Q L Chen Z Q Darvell B W et al. Mater. Lett. 2006 10 Li Q L Chen Z Q Darvell B W et al. J. Biomed. Mater. Res. Part B Appl. Biomater. 2007 2 481 486 11 Li Q L Huang N Chen Z Q et al. Key Eng. Mater. 2007 12 Win P P Yoshitsune S Y Hong K J et al. Polym. Int. 2005 13 Win P P Shinya Y Hong K J et al. Carbohydr. Polym. 14 Jung B O Kim C H Choi K S et al. J. Appl. Polym. Sci. 15 Ramos V M Rodriguez N M Diaz M F et al. Carbohydr. Polym. 2003 52 39 46 16 Ramos V M Rodriguez N M Agullo E et al. Polym. 2003 51 425 429 Carbohydr. 17 Ramos V M Rodriguez M S Agullo E et al. Int. J. Polym. 18 Palma G Casals P Cardenas G. J. Chile Chem. Soc. 2005 et al. J. Chile Chem. 20 Jayakumar R Reis R L Mano J F. J. Bioact. Compat. 21 Baran E T Jayakumar R Mano J F Reis R L. Mater. Sci. 22 Jayakumar R Reis R L Mano J F. J. Macromol. Sci. Pure 23 Meng S Liu Z J Zhong W et al. Carbohydr. Polym. 2007 24 Kang H M Cai Y L Deng J J et al. Eur. Polym. J. 2006 42 2678 2685
5 947 25 Amaral I F Granja P L Barbosa M A. J. Biomater. Sci. Polym. Ed. 2005 16 1575 1593 26 Cao Z Y Xu H F Tang R R. Chemistry 2008 7 528 532 27 Wang X H Ma J B Wang Y N He B L. Biomaterials 2001 22 2247 2255 28 Wan Y Creber K A M Peppley B Tam B V. Chem. Phys. 2003 204 850 858 Macromol. 29 Kittur F S Prashanth K V H Sankar K U et al. Carbohydr. Polym. 2002 49 185 193 30 Fang S M Guo L Q Hu M. Engineering Plastics Application 2008 10 17 20 31 Zhang L N. Modified Journal of Jinan University Materials from Natural Polymers and Their Application. Beijing Chemical Industry Press 2006. 94 96 32 Hu X T. Master 98 Dissertation of Xi an University of Architecture and Technology 2006 33 Liu S. Master Medical University 2007 28 19 22 Thesis of Graduate School of Chinese Academy of Sciences 2004 34 Jayakumar R Rajkumar M Freitas H et al. Int. J. Biol. Macromol. 2009 44 107 111 35 Nishi N Maekita Y Nishimura S Hasegawa O Tokura S. Int. J. Biol. Macromol. 1987 9 109 114 36 Xu J. Zhengzhou University 2004 Master Thesis of 37 Tanahashi M Matsuda T. J. Biomed. Mater. Res. 1997 34 305 315 38 Amaral I F Granja P L Barbosa M A. Key Eng. Mater. 2004 254 /256 577 580 39 Li Q L Huang N Chen Z Q et al. Key Eng. Mater. 2007 330 /332 721 724 40 Jayakumar R Reis R L Mano J F. E-Polymer 2006 35 1 16 41 Cui J F. Master Thesis of Tianjin University 2004 42 Lu L Sang S S Zhou C R. Natural Science Edition 2008 2 80 84 43 Zhang C Ding Y Yang B. Chinese Journal of Natural Medicines 2004 2 94 44 Liu Z J Meng S Qin Y W. Academic Journal of Second Military 45 Du X H Geng K L Liu X F. Chemical Industry and 2008 27 1460 1464 Engineering Progress 46 Uragami T Yoshida F Sugihara M. Macromol. Chem. Rapid. Commun. 1983 4 99 102