17 2 2008 4 ( ) Journal of Yunnan Nationalities University(Natural Sciences Edition) Vol. 17 No. 2 Ap r. 2008 [ ] (, 100083).,,.,.,,,,,,. ; ; TP181 A 1672 8513 (2008) 02-0097 - 06 On a New Model for Solving B ilevel Leader2follower Decision2making Problem s Zheng Zheng ( School of Autom ation Science and Electrical Engineering, Beijing University of Aeronautics and A stronautics, Beijing 100083, China) Abstract: H ierarchical leader2follower decision is a common issue in organizational management. U sually or2 ganizational decisions involve entities at several levels and the decision entities have different p riorities. The hierar2 chical nature of organizational decisions often requires comp rom ised solutions between the entities but w ithin guide2 lines determ ined by decision entities at upper levels. Due to m any uncertain factors in real decision2making situa2 tions, it is rather difficult to formulate objective functions and constraints of the two entities to simp ly app ly bilevel p rogramm ing. In this paper, after analyzing some existent bilevel leader2follower decision2making models, a rule set based on the bilevel leader2follower decision2m aking model is p roposed. B esides, we develop a modeling ap2 p roach; thus a rule set based on the bilevel leader2follower decision2making model can be constructed from real p roblem s. Finally, some suggestions about the future work related to this research are p roposed. Key words: leader2follower decision; bilevel leader2follower decision; rule set 0,,,,, ( ) ( ), ( ), 3 : 2007-02 - 27. : (230-21 - 86). : (1980 ),,,,, :. 2003 7, 2006 7, 2006 7 Expert Systems with Applications Fundamenta Informaticae ( ) 20, SCI 7, EI 11 ; ; :. 97
( ) 17,.,,,,,,,,,,, [ 1 ].,, ( ).. ( ), : m in F ( x, y) x s. t. G ( x, y) Ε 0 m inf ( x, y) y s. t. g ( x, y) Ε 0, x y, F f, G g. x,, y,, y = (y 1,, y p ),, x,. Von Stackelberg 1952 [ 2 ]., [ 3-9 ],, Kth - Best [ 9 ] Kuhn - Tucker [ 9 ], [ 9 ] [ 1 ].,.,, 98, :, Sakawa Zhang [ 10-14 ] ;,,., [ 15-16 ]., 2 ;, 3 ;. 1,. 1 [ 17 ] : ( ) S = (U, A t, L, {V a a A t}, { I a a A t} } ), U, A t, L A t, V a a A, I a : U V a., U V a..,,. 2 [ 17 ] ( ), A t, C D, i. e. A t = C D, C D = <.,,., IF,,, ( in2 put, state) + (output, tape movement, state)
2 : ( ), ( input, state), (output, tape move2 ment, state)., [ 18 ].,,,,.,,.,., : 1), ; 2),,,,. 3 [ 19 ] ( ) L, a = v, a A t v V a. <, <, < <. 4 [ 19 ] ( ) x < ( x 5 S < x 5< ), S : 1) x 5a = v iff I a ( x) = v, 2) x 5 < iff not x 5<, 3) x 5< iff x 5< and x 5. 4) x 5< iff x 5< or x 5. S < m S ( <), m S ( < ) = { x U x 5< }., m ( <). A t}, 5 ( ) [ 15 ] S = (U, A t, L, { V a a { I a a A t} } ), r <], < S, x U x 5<] iff x 5 <. 6 ( ) [ 15 ] S = (U, C D, L, {V a a A t}, { I a a C D } } ), dr <], <, ( ), < c = v c C, d = v d D.., 5 ( a 1,, a 5 ) 1 d, ( a 1 = 1) ( a 3 = 1) ( a 4 = 1) ϖ d = 4 2. a 1, a 3, a 4 1, 1, 1, d 1. 7 ( ) [ 15 ] X Y rs X Y. X x, RS y, y Y, ( x, y) rs., x, y, X, Y., [15, 16 ]. 8 ( ) [ 15 ] x, RS, cf ( x, RS ) cf ( x, RS ) = True, if forπ r RS, x =m ( r). False, else cf ( x, RS ) : x RS. 2,,,.,.,. 2, [15 ]. 9 ( ) : m in x f L ( x, y) s. t. cf ( x, G L ) = True; m in y f F ( x, y) s. t. cf ( y, G F ) = True, x y. f L f F, 99
( ) 17 cf. G L G F,?. :, ; ; 1 ; 2 F L,, ; 3 F L, F L ; 4 G L,, ; 5 G L, F L ; 6 F F,, ; 7 F F, F F ; 8 G F,, ; 9 G F, G F ;. 1.. 100,, 2, 4, 6 8, 4.,,, [ 20 ]. 5, 7 9,. 3 : 1),. ; 2).,, ; 3),,, [ 17, 21 ]., ROSETTA [ 22 ], R I2 DAS [ 23 ], RSES [ 24 ],. [ 20 ]. 3,,,,,,..,.,.,. :,
2 : 1),,.,,. 9, S = { ( x, y) cf ( x, G L ) = True, cf ( x, G F ) = True}.,, :,.,,,,,.,,. K - T, [ 9 ]. 2) [ 24 ],.,,.,..,,,. 3),,..,, ;,., (,, ),,,, : [ 1 ]. [M ]. :, 1998. [ 2 ] STACKELBERG H V. The Theory ofmarket Economy[M ]. Oxford: Oxford University Press, 1952. [ 3 ] CHEN C I, GRUZ J B. Stackelberg Solution for Two Person Games with Based Information Patterns[ J ]. IEEE Transactions On Automatic Control, 1972, 17 ( 6) : 791-798. [ 4 ] CANDLER W, NORTON R. Multilevel Programm ing[ R ]. Technical Report 20, World Bank Development Research Center, W ashington D C, 1977. [ 5 ] B IALAS W F, KARWAN M H. On Two - level Op tim ization[ J ]. IEEE Transactions On Automatic Control, 1982, 27 (1) : 211-214. [ 6 ] BARD J F, FALK J E. An Exp licit Solution to the Multi - level Programm ing Problem [ J ]. Computers & Operations Research, 1982, 9 (1) : 77-100. 101
( ) 17 [ 7 ] BARD J F, MOORE J T. An A lgorithm for the D iscrete B ilevel Programm ing Problem [ J ]. Naval Research Logistics, 1992, 39 (3) : 419-435. [ 8 ] BARD J F. Practical B ilevel Op tim ization: A lgorithm s and App lications[m ]. Boston: Kluwer Academ ic Publishers, 1998. [ 9 ] DEMPE S. Foundations of B ilevel Programm ing[m ]. Boston: Kluwere Academ ic Publishers, 2002. [ 10 ] SAKAWA M, N ISH IZAKI I. Interactive Fuzzy Programm ing for Two - level linear Fractional Programm ing Problem s[ J ]. Fuzz2 y Sets and System s, 2001, 119 (1) : 31-40. [ 11 ] SAKAWA M, N ISH IZAKI I. Interactive Fuzzy Programm ing for Decentralized Two - level L inear Programm ing Problem s[ J ]. Fuzzy Sets and System s, 2002, 125 (3) : 301-315. [ 12 ] SAKAWA M, N ISH IZAKI I. Interactive Fuzzy Programm ing for Two - level Nonconvex Programm ing Problem s with Fuzzy Pa2 rameters Through Genetic A lgorithm s[ J ]. Fuzzy Sets and System s, 2002, 127 (2) : 185-197. [ 13 ] ZHANG G, LU J. The Definition of Op timal Solution and an Extended Kuhn - Tucker App roach for Fuzzy L inear B ilevel Pro2 gramm ing[ J ]. IEEE Computational Intelligence Bulletin, 2005, 2 ( 5) : 1-7. [ 14 ] ZHANG G, LU J. Model and App roach of Fuzzy B ilevel Decision Making for Logistics Planning Problem [ J ]. Journal of Enter2 p rise Information Management, 2006, 20 ( 2) : 178-197. [ 15 ] ZHENG Z, ZHANG G, HE Q, et al. Rule Sets Based B ilevel Decision Model[ C ]. Hobart: The Twenty - N inth Australasian Computer Science Conference, 2006. [ 16 ] PAWLAK Z. Rough Sets Theoretical A spects of Reasoning about Data[M ]. Boston: Kluwer Academ ic Publishers, 1991. [ 17 ] POOCH U W. Translation of Decision Tables[ J ]. ACM Computing Survey, 1974, 6 (2) : 125-151. [ 18 ] YAO Y Y, YAO J T. Granular Computing as a Basis for Consistent Classification Problem s[ C ]. Taibei: Proceedings of PAK2 DD 02 Workshop on Toward the Foundation of Data M ining, 2002. [ 19 ] HAN J, KAMBER M. Data M ining Concep ts and Techniques[M ]. New York: Morgan Kaufmann Publishers, 2001. [ 20 ]. Rough [M ]. :, 2001. [ 21 ] ROSETTA: The ROSETTA Homepage[ EB /OL ], http: / /www. rosettap roject. org/. [ 22 ] WANG G Y, ZHENG Z, ZHANG Y. R IDAS - A Rough Set Based Intelligent Data Analysis System [ C ]. Beijing: Proceedings of the First International Conference on M achine Learning and Cybernetics, 2002. [ 23 ] JAN G B, MARC IN S S, JAKUB W. A New Version of Rough Set Exp loration System [ C ]. Chongqing: Proceedings of the Third International Conference on Rough Sets and Current Trends in Computing, 2002. [ 24 ] ZHENG Z, HE Q, SH I Z Z. Granule Sets Based B ilevel Decision Model[ C ] / /Lecture Notes in Computer Science[M ]. Ber2 lin: Sp ringer, 2006. 530-537. ( ) 102