Quick algorithm f or computing core attribute

Σχετικά έγγραφα
ER-Tree (Extended R*-Tree)

Congruence Classes of Invertible Matrices of Order 3 over F 2

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

A research on the influence of dummy activity on float in an AOA network and its amendments

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Research on model of early2warning of enterprise crisis based on entropy

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

Approximation Expressions for the Temperature Integral

Research on real-time inverse kinematics algorithms for 6R robots

Probabilistic Approach to Robust Optimization

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

CAP A CAP

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

Π.Μ.. ΣΜΖΜΑΣΟ ΠΛΖΡΟΦΟΡΗΚΖ ΓΗΠΛΧΜΑΣΗΚΖ ΔΡΓΑΗΑ. Υπνινγηζηηθή ζύγθξηζε ησλ αιγνξίζκσλ Heap Sort θαη Weak Heap Sort. Βαζηιεία Φνξκόδε Α.Μ.

Reading Order Detection for Text Layout Excluded by Image

Adaptive grouping difference variation wolf pack algorithm

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Research of Han Character Internal Codes Recognition Algorithm in the Multi2lingual Environment

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

High order interpolation function for surface contact problem

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

Homomorphism in Intuitionistic Fuzzy Automata

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1


LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Partial Differential Equations in Biology The boundary element method. March 26, 2013

FX10 SIMD SIMD. [3] Dekker [4] IEEE754. a.lo. (SpMV Sparse matrix and vector product) IEEE754 IEEE754 [5] Double-Double Knuth FMA FMA FX10 FMA SIMD

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

A method of seeking eigen-rays in shallow water with an irregular seabed

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

Supporting Information. Enhanced energy storage density and high efficiency of lead-free

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

PACS: Pj, Gg

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

Test Data Management in Practice

, -.

Newman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Commutative Monoids in Intuitionistic Fuzzy Sets

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Control Theory & Applications PID (, )

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Matrices and Determinants


Numerical Analysis FMN011

CORDIC Background (4A)

Wavelet based matrix compression for boundary integral equations on complex geometries

Supporting Information

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

A System Dynamics Model on Multiple2Echelon Control

Automatic Domain2Specific Term Extraction and Its Application in Text Cla ssification

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Jordan Form of a Square Matrix

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

ΑΓΓΛΙΚΑ Ι. Ενότητα 7α: Impact of the Internet on Economic Education. Ζωή Κανταρίδου Τμήμα Εφαρμοσμένης Πληροφορικής

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Other Test Constructions: Likelihood Ratio & Bayes Tests

Gemini, FastMap, Applications. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών

Gain self-tuning of PI controller and parameter optimum for PMSM drives

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

Εκτεταμένη περίληψη Περίληψη

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Φαινομενολογία και γενετική ταξινόμηση της πρωτοπαθούς δυστονίας - Νεώτερα δεδομένα

Κβαντικη Θεωρια και Υπολογιστες

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

College of Life Science, Dalian Nationalities University, Dalian , PR China.

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

Application of a novel immune network learn ing algorithm to fault diagnosis

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

CORDIC Background (2A)

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Comparison of Evapotranspiration between Indigenous Vegetation and Invading Vegetation in a Bog

Reminders: linear functions

Studies on Synthesis and Biological Activities of 2( 1 H21,2,42 Triazol212yl)2 2Arylthioethyl Substituted Phenyl Ketones

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

Web 論 文. Performance Evaluation and Renewal of Department s Official Web Site. Akira TAKAHASHI and Kenji KAMIMURA

Prey-Taxis Holling-Tanner

Research on Economics and Management

Δυσκολίες που συναντούν οι μαθητές της Στ Δημοτικού στην κατανόηση της λειτουργίας του Συγκεντρωτικού Φακού

Inverse trigonometric functions & General Solution of Trigonometric Equations

ΑΠΟΔΟΤΙΚΗ ΑΠΟΤΙΜΗΣΗ ΕΡΩΤΗΣΕΩΝ OLAP Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ. Υποβάλλεται στην

Transcript:

24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute GE H ao 1a, L I L ong2shu 2, YA N G Chuan2j i an 1b (1a. Department of Electronic and Information Engineering, 1b. Department of Computer Science, Chuzhou University, Chuzhou 239012, China ; 2. School of Computer Science, Anhui University, Hefei 230039, China. Correspondent : GE Hao, E2mail : togehao @126. com) Abstract : The algorithms for computing the core have following shortcoming : The core acquired f rom these algorithms is not the core based on positive region, and the time complexity and space complexity are not good. Therefore, a new approach for computing core is provided and proved that the core is equivalent to the core based on positive region. The partition of the equivalence class is the key step for computing the core. An efficient algorithm for computing the equivalence class is designed with the approach based on radix sort by using distributing counting. On the foundation, the quick algorithm for computing the core is designed. The experimental result shows that the algorithm is correct and efficient. Key words : Rough set ; Equivalence class ; Positive region ; Core attribute 1 [ 1 ] Pawlak 1982.,,.. Hu [2 ] Skowron [3 ],, O( C U 2 ). [4 ] Hu,, O( C U 2 ). [5 ],,:,Hu. [6 ], O( C 2 U log U ), O( U ),,.,, [7210 ] : [7 ],, O( C U 2 ) ; [8 ], max{ O( C U log U ), O( C U POSC ( D) ) } O( C U POSC ( D) ) ; [9 ],, max{ O( C U/ C 2 ), O( C U ) } max{ O( U ), O( C U/ C 2 ) }. [7210 ] : 2008205212 ; : 2008207209. : (050420204) ; ( KJ2008B117). : (1976 ),,,,, ; (1956 ),,,,,.

5 : 739,,,,..,,., U/ C, U/ C O ( C U ).,O( C 2 U ), O( U ). 2 1 [11 ] S = (U, A,V, f ). :U,,U = { x1, x2,, x n} ; A, A = { a1, a2,, am, d}, A 2, A = C D C D =, C, D, D D = { d} ;V,V = { V a1,v a2,,v am, V d} ; f f :U A V, Πa A, x U, f ( x, a) V a. 2 [11 ] S = (U, A, V, f ), R Α A, ind ( R) = { ( x i, x j ) f ( x i, b) = f ( x j, b), Πb R} S.,, x [ x ]ind( R) [ x ] R. R U U/ ind ( R) U/ R. 3 [11 ] S = (U, A, V, f ), R Α A, R- X = { x U [ x ]ind( R) Α X} X R ; R - X = { x U [ x ]ind( R) X } X R ; POSR ( X) = R- X X R. 4 [11 ] S = (U, C D, V, f ), P Α C, D P POSP ( D), POS P ( D) = P - ( X). X U/ D D P U ind ( P) D. 5 [11 ] S = (U, C D, V, f ), a C, POSC ( D) = POSC- { a} ( D), a C D ;, a C D. C C D, Core ( C). 6 [11 ] S = (U, C D, V, f ),x i, x j U, i j, f ( x i, C) = f ( x j, C) f ( x i, D) f ( x j, D),, x i x j ( ) ;,. 3, Hu ;, Hu.,.. 7 S = (U, C D,V, f ), a C, GCore ( C) GCore ( C) = { a a C}, ConSet ( C - { a} ) > ConSet ( C) ; <, ot herwise. ConSet ( C) = { x i x i U, ϖ x j, f ( x i, C) = f ( x j, C) f ( x i, D) f ( x j, D) }., ConSet ( C), ConSet ( C) ConSet ( C). 7,ai,,ai ;, ai. 1 S = (U, C D, V, f ), Core ( C) = GCore ( C). U/ C = { X1, X2,, X n},u/ D = { Y1, Y2,, Y m}. 1) GCore ( C) Α Core ( C). Πa GCore ( C),7, a, ConSet. x ConSet ( C), x ConSet ( C - { a} ),y [ x ] C y [ x ] C- { a}, f ( x, D) f ( y, D). x Y q, y Y p, y Y q, y [ x ] C- { a} y Y q,x ( C - { a} ) - Y q, x POSC- { a} ( D). x S x Y q, x C- Y q, x POSC ( D), POSC ( D) POSC- { a} ( D). a Core ( C)., GCore ( C) Α Core ( C). 2) Core ( C) Α GCore ( C). Πa Core ( C), POSC ( D) POSC- { a} ( D),x [ x ] C Α Y k [ x ] C- { a} Y k. ϖ y, y [ x ] C- { a} y [ x ] C. f ( x, C - { a} ) = f ( y, C - { a} ) f ( x, D) f ( y, D)., a. x S.. z, z, x [ x ] C Α Y k f ( x, D) f ( z, D), x, z U/ D, z, x [ x ] C Α Y k, x S., a, ConSet ( C - { a} ) > ConSet ( C), a

740 24 GCore ( C). Core ( C) Α GCore ( C). 1) 2) Core ( C) 4 4. 1 = GCore ( C). 1,. U, C,., ;,. O( C U 2 ). 1 S = (U, A,V, f ), x i, x j U C Πa A, f ( x i, a) = f ( x j, a). 2, 1. 1,S C ; S,. [6 ], O( C U log U ) ; [9 ], O( C U )., C S. O( C U ), O( U ),. : S = (U, C D), C = { ai i = 1,, m}, D = { d},, S = { S i i = 1,, n}, S i m + 2, S i = ( x i, a1, a2,, am, d). : S i x i, S i a j i a j, S i d i. C S, ai S., ai, [1 e], 0 < e U ;, count Pos[0 e],count Pos ind ( ai), ind ( ai), count Po s S i., 2,count Pos, sorteds. 1 : S = (U, C D,V, f ),U = { x i i = 1,, n}, C = { ai i = 1,, m} ; :U/ C. Step1 : for i = 1 to C Do / / Step1. 1 : { count Pos : count Pos[0 e] = 0. Step1. 2 : ind ( ai),,count Pos. Step1. 3 : for j = U to 1 Do Step1. 3. 1 : { S j a i, count Pos S j pos; po s ; Step1. 3. 2 : S j sorteds Step1. 3. 3 : [ S j a i ]ind( a i ) () ; } ) Step2 : s = 1, E1 } / / end_for_ i Step3 : for i = 2 to U Do } = { x1 } ; / / s {if ( x i x i- 1 C t hen Es = Es { x i} ; else s = s + 1, Es = { x i} ; Step4 : E( U/ C) s. 1, Step1 O( e) + O( U ) + O( U ) = O( U ). O( C ), Step1 O( C U ), Step3 O( U ). Step1, count Pos U + 1, Step3 sorteds 2 U., 2 O( U ). 1 O( C U ) + O( U ) = O( C U ), O( U ). 4. 2 7 1, : 2 :S = (U, A,V, f ). : U ; A, A = C D C D = ; C ; D. E s. : Core ( C). Step1 : Core ( C) =, ConSet ( C) =. Step2 : 1,C S, Step3 : count Po s,, count Pos. Step4 : for j = 1 to s Do if ( ( Ej x t x k x t d

5 : 741 x k d) t hen ConSet ( C) = ConSet ( C) Ej. Step5 : for i = 1 to C Do Step5. 1 : { 1,C - { ai} S, E s ; Step5. 2 : count Pos,, count Pos ; x k d) Step5. 3 : ConSet ( C - { ai} ) Step5. 4 : for j = 1 to s Do - { ai} ) Ej ; = ; if ( Ej x t x k x t d t hen ConSet ( C - { ai} ) = ConSet ( C Step5. 5 : if ( ConSet ( C - { ai} ) > ConSet ( C) ) then Core ( C) = Core ( C) { ai} ; } / / end_for_ i. Step6 : Core ( C). Step7 :. 2, Step2 O( C U ), Step3 Step4 O( U ). Step5. 1 O( C U ), Step5. 2 Step5. 4 O( U ), Step5 O( C U ) + 2O( U ) = O( C U ), Step5 C, Step5 O( C 2 U )., 2 O( C U ) + 2O( U ) + O( C 2 U ) = O( C 2 U ), O( U ). 4. 3 Hu, O( C U 2 ),., O( C 2 U log U ) O( U ),. max{ O( C U log U ), O( C U POSC ( D) ) } O( C U POSC ( D) ) ; max{ O( C U/ C 2 ), O( C U ) } max{ O( U ), O( C U/ C 2 ) },, U, U/ C POSC ( D) C, UCI Car evaluation 1 728, C 6, U/ C = 972, POSC ( D) = 1 196, U, U/ C POSC ( D) C.,. 5 5. 1, [4 ] 2. 1 1, 5, C = { a, b, c}, D. 1 S1 U a b c D x1 1 0 1 1 x2 1 0 1 0 x3 0 0 1 1 x4 0 0 1 0 x5 1 1 1 1 2 1, x1 x2, x3 x4., ConSet ( C) = { x1, x2, x3, x4 } ; ConSet ( C - { a} ) = { x1, x2, x3, x4 }, ConSet ( C - { b} ) = { x1, x2, x3, x4, x5 }, ConSet ( C - { c} ) = { x1, x2, x3, x4 }., ConSet ( C - { b} ) > ConSet ( C), Core ( C) = { b}. 2 2 4, C = { a, b, c}, D. 2 S2 U a b c D x1 1 0 1 0 x2 0 0 1 1 x3 0 0 1 0 x4 1 1 1 1 2, ConSet ( C) = { x2, x3 } ; ConSet ( C - { a} ) = { x1, x2, x3 }, ConSet ( C - { b} ) = { x1, x2, x3, x4 }, ConSet ( C - { c} ) = { x2, x3 }., ConSet ( C - { a} ) > ConSet ( C) ConSet ( C - { b} ) > ConSet ( C), Core ( C) = { a, b}. 5. 2 [6 ]UCI 6, Petium 4 2. 8 GHz, RAM 512 M, EAB KF, 3. AL G1,AL G2 EAB KF, AL G3, AL G4,

742 24 3 5 U/ C POSC (D) / ms AL G1 AL G2 AL G3 AL G4 AL G5 [ 6 ] 4 14 14 14 0. 022 0. 018 0. 018 0. 019 0. 016 Patient data 8 90 66 66 0. 895 0. 831 0. 833 0. 834 0. 471 Flare data 12 323 174 289 11. 951 8. 437 9. 912 9. 657 5. 301 Balance data 4 625 248 625 32. 671 8. 516 26. 790 21. 046 0. 607 Monkey data 17 556 432 556 40. 316 24. 513 31. 819 19. 546 8. 962 Car evaluation data 6 1 728 972 1 196 292. 195 9. 650 19. 381 16. 054 2. 682 Led17 data 26 2 000 1 998 2 000 12595. 141 297. 028 943. 281 873. 651 57. 173 AL G5 ( 2). 3, AL G5 AL G1 AL G4,,AL G5,. 6, Hu.,,.,, U/ C, O ( C U ) O ( U )., O( C 2 U ) O ( U ).,. ( References) [ 1 ] Pawlak Z. Rough set s [ J ]. Int J of Computer and Information Science, 1982, 11 (5) : 3412356. [2 ] Hu X H, Cercone N. Learning in relational databases : A rough set approach [J ]. Computational Intelligence, 1995, 11 (2) : 3232337. [ 3 ] Skowron A, Rauszer C. The discernibility matrices and f unctions in information systems [ C ]. Intelligent Decision Support2handbook of Applications and Advances of the Rough Sets Theory. Dordrecht : Kluwer Academic Publisher, 1991 : 3312362. [4 ],. [J ]., 2002, 30 (7) : 108621088. ( Ye D Y, Chen Z J. A new discernibility matrix and the computation of a core [ J ]. Acta Electronica Sinica, 2002, 30 (7) : 108621088. ) [5 ]. [J ]., 2003, 26 (5) : 6112615. ( Wang G Y. Calculation methods for core attributes of decision table [ J ]. Chinese J of Computers, 2003, 26 (5) : 6112615. ) [6 ],,,. [J ]., 2003, 24 (11) : 19502 1953. ( Zhao J, Wang G Y, Wu Z F, et al. An efficient approach to computer feature core [ J ]. Mini2Micro Systems, 2003, 24 (11) : 159021593. ) [7 ],. [J ]., 2005, 26 (11) : 197521977. ( Yan D Q, Liu F F. Discernibility matrix and approximate quality in attribute reduction [ J ]. Mini2 Micro Systems, 2005, 26 (11) : 197521977. ) [ 8 ],. [J ]., 2004, 43 (5) : 8652868. ( Yang M, Sun Z H. Improvement of discernibility matrix and the computation of a core [ J ]. J of Fudan University, 2004, 43 (5) : 8652868. ) [9 ],,,. [J ]., 2006, 42 (6) : 426. (Xu Z Y, Yang B R, Song W, et al. Quick computing core algorithm based on discernibility matrix [ J ]. Computer Engineering and Applications, 2006, 42 ( 6) : 426. ) [10 ],. [J ]., 2007, 21 (8) : 8572862. ( Yang M, Yang P. Fast updating algorithm of computation of a core based on discernibility matrix [J ]. Control and Decision, 2007, 21 (8) : 8572862. ) [11 ],,,. [ M ]. :, 2001. (Zhang W X, Wu W Z, Liang J Y, et al. Theory and method of rough set [ M ]. Beijing : Science Press, 2001. )