A Non-Negative Sparse Neighbor Representation for Multi-Label Learning Algorithm

Σχετικά έγγραφα
IF(Ingerchange Format) [7] IF C-STAR(Consortium for speech translation advanced research ) [8] IF 2 IF

Kernel orthogonal and uncorrelated neighborhood preservation discriminant embedding algorithm

Discriminative Language Modeling Based on Risk Minimization Training

ER-Tree (Extended R*-Tree)

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

A Method for Determining Service Level of Road Network Based on Improved Capacity Model

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

Power allocation under per-antenna power constraints in multiuser MIMO systems

Quick algorithm f or computing core attribute

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Robust resource allocation algorithm for cognitive radio system

A Multi2commodity Flow Supply Chain Network Equilibrium Model with Stochastic Choice

CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital

Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment

Quantum annealing inversion and its implementation

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

High order interpolation function for surface contact problem

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

2002 Journal of Software /2002/13(08) Vol.13, No.8. , )

Θέμα : Retrieval Models. Ημερομηνία : 9 Μαρτίου 2006

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

Adaptive grouping difference variation wolf pack algorithm

Anomaly Detection with Neighborhood Preservation Principle

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

ΚΑΤΗΓΟΡΙΕΣ ΤΑΞΙΝΟΜΗΣΗΣ

Δυσκολίες που συναντούν οι μαθητές της Στ Δημοτικού στην κατανόηση της λειτουργίας του Συγκεντρωτικού Φακού

Supporting Information



A research on the influence of dummy activity on float in an AOA network and its amendments

A Sequential Experimental Design based on Bayesian Statistics for Online Automatic Tuning. Reiji SUDA,

Bayesian Discriminant Feature Selection

35 90% %


Evaluation of Expressing Uncertain Causalities as Conditional Causal Possibilities

OLS. University of New South Wales, Australia

The Research on Sampling Estimation of Seasonal Index Based on Stratified Random Sampling

Arbitrage Analysis of Futures Market with Frictions

Η ανάπτυξη της μορφολογικής επίγνωσης στα Ελληνικά: μία διερευνητική μελέτη

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities


ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

Research on real-time inverse kinematics algorithms for 6R robots

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

46 2. Coula Coula Coula [7], Coula. Coula C(u, v) = φ [ ] {φ(u) + φ(v)}, u, v [, ]. (2.) φ( ) (generator), : [, ], ; φ() = ;, φ ( ). φ [ ] ( ) φ( ) []

ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ

Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University

ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ

Ανάλυση Προτιμήσεων για τη Χρήση Συστήματος Κοινόχρηστων Ποδηλάτων στην Αθήνα

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

Prey-Taxis Holling-Tanner

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

Georgian Electronic Scientific Journal: Computer Sciences and Telecommunication #1-2002

Reading Order Detection for Text Layout Excluded by Image

Newman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3

ΠΕΡΙΛΗΨΗ. Λέξεις κλειδιά: Υγεία και συμπεριφορές υγείας, χρήση, ψυχότροπες ουσίες, κοινωνικό κεφάλαιο.

Motion analysis and simulation of a stratospheric airship

q norm regularizing least-square-support-vector-machine linear classifier algorithm via iterative reweighted conjugate gradient

Experimental Study of Dielectric Properties on Human Lung Tissue

Sparse Modeling and Model Selection

[5] F 16.1% MFCC NMF D-CASE 17 [5] NMF NMF 3. [5] 1 NMF Deep Neural Network(DNN) FUSION 3.1 NMF NMF [12] S W H 1 Fig. 1 Our aoustic event detect

Αλγοριθμική ασυμπτωτική ανάλυση πεπερασμένης αργής πολλαπλότητας: O ελκυστής Rössler

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Gemini, FastMap, Applications. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

Approximation Expressions for the Temperature Integral

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

Probabilistic Approach to Robust Optimization

ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:

Control Theory & Applications PID (, )

Conductivity Logging for Thermal Spring Well

EL ECTR IC MACH IN ES AND CON TROL. System s vulnerability assessment of a ircraft guarantee system based on improved FPN

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Buried Markov Model Pairwise

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

ΟΙ ΤΟΠΙΚΕΣ ΟΙΚΟΝΟΜΙΕΣ ΚΑΙ Η ΔΙΑΣΤΑΣΗ ΤΟΥ ΦΥΛΟΥ ΣΤΗΝ ΑΓΟΡΑ ΕΡΓΑΣΙΑΣ: Η ΠΕΡΙΠΤΩΣΗ ΤΟΥ ΝΟΜΟΥ ΜΕΣΣΗΝΙΑΣ

Antimicrobial Ability of Limonene, a Natural and Active Monoterpene

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

Nondeterministic Finite Automaton Event Detection in Focusing Region. Sequence Analysis. Sequence Analysis. Feature Extraction. Feature Extraction

A Formal Method for Analyzing Electronic Commerce Protocols

PACS: Pj, Gg

Aerodynamics & Aeroelasticity: Eigenvalue analysis

ΠΩΣ ΕΠΗΡΕΑΖΕΙ Η ΜΕΡΑ ΤΗΣ ΕΒΔΟΜΑΔΑΣ ΤΙΣ ΑΠΟΔΟΣΕΙΣ ΤΩΝ ΜΕΤΟΧΩΝ ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ

«ΧΩΡΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΑΝΟΜΗΣ ΤΟΥ ΠΛΗΘΥΣΜΟΥ ΤΗΣ ΠΕΡΔΙΚΑΣ (ALECTORIS GRAECA) ΣΤΗ ΣΤΕΡΕΑ ΕΛΛΑΔΑ»

Transcript:

44 6 Vo.44 No.6 05 Journa of Unversty of Eectronc Scence and Technoogy of Chna Nov. 05 ( 3060) k-lasso k(ml-knn)(ml-src) ; ; LASSO; TP39.4 A do:0.3969/.ssn.00-0548.05.06.08 A Non-Negatve Sparse Neghbor Representaton for Mut-Le Learnng Agorthm CHEN S-bao, XU Dan-yang, and LUO Bn (Schoo of Computer Scence and Technoogy, Anhu Unversty Hefe 3060) Abstract In order to avod the nfuence of the nonnear manfod structure n tranng data and preserve more dscrmnant nformaton n the sparse representaton based mut-e earnng, a new mut-e earnng agorthm based on non-negatve sparse neghbor representaton s proposed. Frst of a, the k-nearest neghbors among each cass are found for the test sampe. Secondy, based on non-negatve the east soute shrnkage and seectonator operator (LASSO)-type sparse mnmzaton, the test sampe s non-negatve neary reconstructed by the k-nearest neghbors. Then, the membershp of each cass for the test sampe s cacuated by usng the reconstructon errors. Fnay, the cassfcaton s performed by rankng these membershps. A fast teratve agorthm and ts correspondng anayss of convergng to goba mnmum are provded. Expermenta resuts of mut-e cassfcaton on severa pubc mut-e datases show that the proposed method acheves better performances than cassca ML-SRC and ML-KNN. Key words LASSO sparse mnmzaton; mut-e earnng; non-negatve reconstructon; sparse neghbor representaton [-] [3] ML-KNNk- [4] [5] Rank-SVM [6] [7] (SRC) [8] (non-negatve SRC, NSRC)[9] (sparse neghbor representaton dassfcaton, SNRC) 04 04 05 06 863(04AA0504)(60864700)(KJ0A004) (979 ).

900 44 [0]SRC, (ML-SRC) ML-SRC LASSO [] 0 00 00 (ML-NSNRC). n y R,,, n T {,,, L} D[ y, y,, yn ] d n R d n y b y b b 0 D L n B [ b, b,, bn ] R h : y L, y ML-SRC D y sˆ arg mn yds s () s s 0 ML-SRC [0] f ( y, ) : n f ( y, ) ( b sˆ ) sˆ,,, L () n s, s 0 sˆ,,,, n f ( y, ) 0, s 0 y h( y). (SNRC) [9] d k- k- k- SNRC s y s argmn yψ s s (3) s ψ y D k-,,, cc 0 SNRC, SNRC [8] (NSNRC). NSNRC NSNRCKNN y D k- ψ ψ y ψ sˆ arg mn yψs s s s.t.,,, c (4) k s s, s 0,,, k 0 D ψ. NSNRC NSNRC(4) [](4) : ( t) ( t) ψ y s s (5) ( ψ ψ s )

6 : 90 s s (5).3 NSNRC G( s, s ) F( s ) G( s, s ) F( s) G( s, s) F( s ) (6) ( K s ) T ( t) ( ψψs ) a K ( s ) (7) s F( s ) G( s, s ) F( s ) ( s s ) F( s ) ( ) ( )( s s K s s s ) (8) G( s, s) F( s) G( s, s ) F( s) F( s) F( s ) ( s s ) F( s ) ( ) ( )( s s ψψ s s ) (9) (8) () () () 0 ( s s t ) [ K( s t ) ψψ]( s s t ) (0) (0) () () () () M ( s t ) s t ( K( s t ) ψψ) s t () a b M K ψψ x Mx x M x s ( ψψ) s x x s ( ψψ) s x a b a a a b b ( ψψ) s s a b a b a b a a b x x x x ψψ s s x x () ( ) a b ( a b ) 0 ()M(0) G( s, s ) F( s) G F ( t) ( t) s arg mn G( s, s ) (3) s ( t) ( t) (3) G( s, s ) G( s, s ) G( s, s ) F() s ( t) ( t) ( s ) ( s, s ) ( s, s ) ( s ) F G G F (4) s G( s, s ) ( t ( ) ) ( ( t F s ) F s ) F( s ) s (3) ( t) ( t) 0 F( smn ) F( s ) F( s ) F( s ) (5) 0 G( s, s ) s ψ ( ψs y) K( s )( s s ) 0 (6) () () s ( t )( t s k s ψψs ψ y ) () () T () T () T s t ( t /( t ) )( t s ψψs ψψs ψ y ) s ( ψ y)/( ψψs ) (7) (5).4 NSNRC (5) ( ψ ) y ( ψ ) ψ ( kd) ( kd ) d k y ( k k k) NSNRC O( kd+k d+t(3 k+k )) t (fast teratve shrnkage-threshodng agorthm, FISTA)SRC [3] O( tn d) n D 3 ) ML-SRC 0 ) ML- SRC y D k-

90 44 0 0 0 d kl Ψ [ φ, φ, φ, φ,, φl, φl] R d kl φ KNNyD k- 0 φ y φ sˆ arg mn yφ s s s s. t. s 0,,,, k, 0,,,,, L (8) k s s 0 NSNRC ( t) ( t) () t s s (( φ ) y) (( φ ) φ s ) (9) t 0 y ( x) φ s y (0) 3. y g( y, ) y ( y) e g( y, ) 0 ( y) ( y) e e () y h( y) { g( y, )> p( y), T} p( y) 3. ML-NSNRC ML-NSNRC y k- y y d n ) D [ y, y,, yn ] R L n B R d y R ) y g( y, ) 3 ) D KNN y K-Ψ ) (0) y φ s s /n 3) (0) () y 4 4. ML-NSNRC 3 [3] Yeastscene [4] ) 000 %.4±0.44 94 ) Yeast Yeast YeastYeast Yeast4 [5] 474 03 4.4.57 3) scene scene [4] 407 6 94 4. ML-NSNRC ML-NSNRC /n N(0,) (0,) ML-NSNRC5

6 : 903 ML-NSNRC s /n 0 8 6 4 0 /n (0,) 4 6 8 0 ML-NSNRC 4.3 ML-NSNRCk k- k kml-nsnrck n,n n <<n k n k ML-NSNRCk5 scene ML-NSNRCML-KNN k ML-SRCML-NSRC k0ml-nsnrc k5ml-knn 0.88 0.87 0.86 0.85 0.84 0.83 ML-KNN ML-NSNRC ML-SRC ML-NSRC 0.8 5 0 5 0 5 30 k kml-nsnrcml-knn 4.4 [3] -5 4 ML-SRC (ML-NSRC) ML-NSNRC3 3k- ML-KNN ML-SRC ML-NSRCML-KNN ML-SRC ML-NSNRC 00k400Yeast k5scenek0 4-3 ML-KNN9.4%ML-KNN4.7% ML-KNN4.3% 4 - ML-KNN 0.96 0.3 0.986 0.80 0.790 ML-SRC 0.60 0.86 0.889 0.56 0.85 ML-NSRC 0.55 0.75 0.879 0.5 0.89 ML-NSNRC 0.58 0.7 0.84 0.43 0.84 4Yeast ML-SRCML-NSRC Yeast 4 3 ML-KNN8.5%ML-KNN 9%ML-KNNML-SRC.6% 4Yeast - ML-KNN 0.3 0.9 6.479 0.77 0.757 ML-SRC 0.94 0.35 6.44 0.70 0.757 ML-NSRC 0.90 0.46 6.078 0.65 0.758 ML-NSNRC 0.89 0.3 6.077 0.6 0.769

904 44 34scene 3 ML-KNN ML-SRC8.%.4%ML- KNN3.6%ML-KNNML-SRC 4.3%5.6% 3 4scene - ML-KNN 0.099 0.48 0.583 0.099 0.847 ML-SRC 0.03 0.75 0.566 0.096 0.836 ML-NSRC 0.097 0.56 0.543 0.09 0.846 ML-NSNRC 0.08 0.04 0.393 0.063 0.883 Yeast scene ML-NSNRCML-KNN ML-SRCML-NSRC4 k- 5 (NSNRC) ML-NSNRC k- Yeastscene3 [] SCHAPIRE R E, SINGER Y. Boostexter: a boostng-based system for text categorzaton[j]. Machne Learnng, 000, 39(-3): 35-68. [] UEDA N, SAITO K. Parametrc mxture modes for mut-e text[j]. Advances n Neura Informaton Processng, 003(5): 7-78. [3] ZHANG M L, ZHOU Z H. ML-KNN: a azy earnng approach to mut-e earnng[j]. Pattern Recognton, 007, 40(7): 038-048. [4] SANDEN C, ZHANG J Z. Enhancng mut-e musc genre cassfcaton through ensembe technques[c] //Proceedngs of the 34th nternatona ACM SIGIR Conference on Research and deveopment n Informaton Retreva. New York: ACM, 0: 705-74. [5] ELISSEEFF A, WESTON J. A kerne method for muteed cassfcaton[j]. Advances n Neura Informaton Processng, 00(4): 68-687. [6] CANDÈS E J, ROMBERG J, TAO T. Robust uncertanty prncpes: Exact sgna reconstructon from hghy ncompete frequency nformaton[j]. IEEE Transactons on Informaton Theory, 006, 5(): 489-509. [7] WRIGHT J, YANG A Y, GANESH A, et a. Robust face recognton va sparse representaton[j]. IEEE Transactons on Pattern Anayss and Machne Integence, 009, 3(): 0-7. [8] JI Y, LIN T, ZHA H. Mahaanobs dstance based nonnegatve sparse representaton for face recognton[c]// Internatona Conference on Machne Learnng and Appcatons. Mam, FL: IEEE, 009: 4-46. [9] HUI K, LI C, ZHANG L. Sparse neghbor representaton for cassfcaton[j]. Pattern Recognton Letters, 0, 33(5): 66-669. [0],. [J]., 0, 5(): 4-9. SONG Xang-fa, JIAO L-cheng. A mut-e earnng agorthm based on sparse representaton[j]. Pattern Recognton and Artfca Integence, 0, 5(): 4-9. [] TIBSHIRANI R. Regresson shrnkage and seecton va the asso[j]. Journa of the Roya Statstca Socety (Seres B, Methodoogca), 996, 58(): 67-88. [] LEE D D, SEUNG H S. Agorthms for non-negatve matrx factorzaton[j]. Advances n Neura Informaton Processng, 00(): 556-56. [3] BECK A, TEBOULLE M. A fast teratve shrnkagethreshodng agorthm for near nverse probems[j]. SIAM Journa on Imagng Scences, 009, (): 83-0. [4] BOUTELL M R, LUO J, SHEN X, et a. Learnng mut-e scene cassfcaton[j]. Pattern Recognton, 004, 37(9): 757-77.