q norm regularizing least-square-support-vector-machine linear classifier algorithm via iterative reweighted conjugate gradient
|
|
- Μελαινη Σπυρόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 DOI: /CTA Control Theory & Applcatons Vol. 31 No. 3 Mar q,,,, (, ) : L 2 (square support vector machne algorthm, LS SVM),, q = 2. q LS SVM, 0 < q <, q. cq, c q,,,.,, L 2LS SVM. : q ; (LS SVM); : TP181 : A q norm regularzng least-square-support-vector-machne lnear classfer algorthm va teratve reweghted conjugate gradent LIU Jan-we, LI Ha-en, LIU Yuan, FU Je, LUO Xong-ln (Research Insttute of Automaton, Chna Unversty of Petroleum, Bejng , Chna) Abstract: The L 2 norm penalty least-square-support-vector-machne algorthm (LS SVM) has been extensvely studed and s probably the most wdely used machne learnng algorthm. The regularzaton parameter n LS SVM s predetered wth default value q = 2. Based on the teratve reweghted conjugate gradent algorthm, the q norm regularzng LS-SVM s proposed wth 0 < q < 1, a ratonal number. We desgn a grd method to change the value of two adjustable parameters, the regularzaton parameter c and the order q of regularzaton, by performance ndcators of predcton error rate. On the selected values of c and q, usng the teratve reweghted conjugate gradent algorthm for solvng classfcaton object functon and fndng the mum predcton error, we can mprove the feature selecton and predct the error rate. The expermental results on real datasets n dfferent felds ndcate that the predcton performance s more accurate than L 2 norm LS-SVM, and can carry out feature selecton. Key words: q-norm regularzaton; LS SVM; Iteratve reweghted conjugate gradent method 1 (Introducton) Vapnk (support vector machne, SVM), L 2 (L 2 norm support vector machne, L 2 SVM [1] ). (x, y ),,, m, x R n, y { 1, +1}, SVM J(w) = pen(w) + C m L(y, wx ), w f(x)=sgn( w, x +b), J(w) pen(w), L(y, wx). L 2 SVM w J(w) = 1 2 wt w + C m max(1 y, w T x, 0). (1) L 2 (L 2 -norm least square support vector machne, L 2 LS SVM) SVM, SVM C m ξ wξ 2 2 w 2 2, (2) s.t. y [ x, w + b] = 1 ξ, = 1,, m, [2 3] : ; : E-mal: lujw@cup.edu.cn; Tel.: : 973 (2012CB720500); ( ); ( ) (JCXK ).
2 3 : q 335 [ ] [ ] [ ] 0 y T b 0 w 1 SVM, =, (3) y Ω + I/C a 1 v [16], Lu Yufeng L 0 L 1 pen(w) : a = [a 1 a n ], Ω = z T = λ w z, 0 + (1 λ) w 1 SVM [17], z T, L 0 SVM = [x 1 y 1 x m y m ], y = [y 1 y m ], 1 v = L 1 SVM, [1 1]. Lu Yufeng L 1, L 2 L 2 LS SVM pen(w) = w q (q {1, 2}) SVM [18]., L 2 SVM. L 1, Hu,,., Zou : pen(w) = λ w 1 + (1 λ) w 2,, [19]. ; 2 L 1, L 2.,. Su-In Lee L 1., Lopez 1 Norm SVM [4] [20], Zhenqu Lu, L q [21],,, LopezL 0, (recever-operatng characterstc, ROC) (2) wa [5] C m ξ (area under the curve, AUC) n λ j a 2 w,ξ,a 2 2 j, q. [22 24], s.t. y [( m a k x k )x + b] = 1 ξ, = 1,, m. L q, 0 < q < 1. k=1 q SVM, [6]q SVM, (1) L 2 L q w q = ( m w j q ) 1/q, 0 < q < 1, (1) w v, v < w < v,, [7]. [8 12], [13] L q LS SVM, LS SVM s = m a y x x j + b, ξ 2 s s k k=1,,m µ = max s k s, k k=1,,m k=1,,m (2) C m ξ 2 2 C m µ ξ 2 2 (3), Ω (Cµ ) 1, β q, β [ ] [ ] 0 y T 0 s.t. β =, y Ω + I/C 1 v β = [b a] T, 1 q 2,, Enrque BrtoIRMS [14]. Kloft L q SVM [15], q > 1., L 1, L 2 SVM,. Zhu J L 1 pen(w) =,, LS SVM,,, L q q, 0 < q <. LS SVM, q,, : q,,, q q LS SVM, q. q LS SVM(L q LS SVM) : w,ξ 1 2 m ξ 2 + c q w q q, (4) s.t. y (x T w + b) = 1 ξ, = 1, 2,, m, 0 < q <. (4), q = 2, L 2 LS SVM, q =1, L 1 LS SVM. 0<q <1, q =1, q = 2,? [25 27], L q LS SVM., Tany Zhou[28] Nesterov (Nesterov s method)svm, SVM, SVM Perf [29], Pegasos [30], SVM Lght [31] LIBSVM [32],
3 336 31,.,, q c, q , 14 ; c , 18. q c (4),,,, q. k, w (k) + λ (k) d (k) q 2 w (k 1) + λ (k 1) d (k 1) q 2, k, w (k) +λ (k) d (k) q 2 k 1 w (k 1) + λ (k 1) d (k 1) q 2, n n w (k) w (k 1) + λ (k) d (k) q + λ (k 1) d (k 1) q 2 w (k) + λ (k) d (k) 2, q,,.,, :,,, ;,, w,, [33 34].,, [35 36],,.,,,.,,,,,,,. 5: 1) q LS SVM, 0 < q,, q,. 2) L q LS SVM, q c, q cl q LS SVM. 3),,, q,. 4) w, w, w,,. 5) L q LS SVM Tr11 Arcene Sylva PIE Yaleb 32 32,cq, LS SVM. 2 L q LS SVM(L q LS SVM classfer) 2.1 (Objectve functon) X m n, m n. m, n, X m n x R m, y {±1}, w R m, L q LS SVM w,b f (w, b) = 1 N m L(y, x T w + b) + η w q q, (5) : w q = ( n w j q ) 1/q, 0 < q <, w j w j, L( ), η. L q LS SVM f 1 m 1(w, ξ) = ξ 2 + c w,ξ w,ξ 2 q w q q, (6) s.t. y (x T w + b) = 1 ξ, = 1, 2,, m, c (5) η [37]., w T :=[w 1 w n b] T, x T :=[x 1 x n 1], : f 1 m 2(w, ξ) = ξ 2 + c w,ξ w,ξ 2 q w q q, (7) s.t. y (x T w) = 1 ξ, = 1, 2,, m., ξ f 2(w) = 1 m (1 y (x T w)) 2 + c w 2 q w q q. (8) 2.2 λ (k) (Soluton for conjugate gradent step-sze) h(w) = w q = ( n w j q ) 1/q, k(w) = h q (w), sgn w j = w j w j,
4 3 : q < q <, 1 m (y 2 (x T ) 2 (λ (k) d (k) ) 2 + k(w) 2 = q w q 2 j w j. (9) w j f(w) w j, f = m y x,j (y (x T ) 1) + w j c w j q 2 w j, j = 1, 2,, n. (10) g (k) := f g k, w w (k) k, λ (k) k. : w (k+1) = w (k) λ (k) g (k), g (k) = m y () x (,j) (y (x T w (k) 1) + c w (k) j q 2 w (k) j., w w 0, d (1), d (1) = g (1). k, (8) w (k+1) = w (k) + λ (k) d (k), (11) f 2 (w) = 1 m (1 y (x T (w (k) + λ (k) d (k) ))) c q w(k) + λ (k) d (k) q q. (12) w (k) + λ (k) d (k) q 2 w (k 1) + λ (k 1) d (k 1) q 2, k w (k) + λ (k) d (k) q 2 k 1 w (k 1) + λ (k 1) d (k 1) q 2, f 2 (w) 1 m (1 y (x T (w (k) + λ (k) d (k) ))) c n w (k 1) +λ (k 1) d (k 1) q 2 w (k) +λ (k) d (k) 2. q (13) k w (k) d (k), (13) λ (k) : f 2 (λ) λ (k) 1 m (y 2 (x T ) 2 (w (k) + λ (k) d (k) ) 2 2 2y (x T (w (k) + λ (k) d (k) ))) + c q w(k 1) + λ (k 1) d (k 1) q 2 w (k) + λ (k) d (k) 2 = 2y 2 (x T ) 2 w (k) λ (k) d (k) 2y (x T λ (k) d (k) ))+ c q w(k 1) + λ (k 1) d (k 1) q 2 (2w (k) λ (k) d (k) + (λ (k) d (k) ) 2 ). (14), λ (k),. c 1 = c q w(k 1) + λ (k 1) d (k 1) q 2, (14) f 2 (λ (k) ) λ (k) m (y (x T ) 2 λ (k) (d (k) ) 2 + 2y 2 (x T ) 2 w (k) d (k) 2y (x T d (k) )) + c 1 (2w (k) d (k) + 2λ (k) (d (k) ) 2 ). (15) f 2(λ (k) ) = 0, λ (k) λ (k) m y (x T d (k) ) y 2 (x T ) 2 w (k) d (k) (k) c 1 w (k) d y 2 (x T ) 2 (d. (k) ) 2 + c 1 (d (k) ) 2 (16) 2.3 (Soluton for teratve reweghted conjugate gradent model) (8) c 1 = c q w(k 1) + λ (k 1) d (k 1) q 2, w f 2(w)= 1 2 (1 Y Xw)T (1 Y Xw)+c 1 w T w, (17) : Y =dag{y 1, y 2,, y m }, X =(x T 1, x T 2,, x T m) T, w =(w (1), w (2),, w (m) ) T. (17): w f 2(w) = 1 2 wt Gw + b T w + a, (18) : G = (Y X) T (Y X) + c 1 I, b = 2Y X, a = 1. [38]β k : β k = gt k+1(gk+1 T gk T ) d T k (gt k+1 gt k ) = gt k+1g k+1 gk Tg. (19) k d (1) = g (1), d (k+1) = g (k+1) + β k+1 d (k), β k+1 = g(k+1), g (k+1). g (k), g (k) w (k+1) = w (k) + λd (k), (20) : d (k) k,,
5 338 31, λ., g (k), d (k) 0, g (k) d (k),. f (k) k, τ 1 : f (k) f (k 1) > τ 2 ; τ 2, (g (k), d (k) ) < τ 2, d (k),, (g (k), d (k) ) τ 2,, g (k)., τ 1 = 1e 5, τ 2 = 4 9 π. 2.4 (Iteratve algorthm of reweghted conjugate gradent) L q LS SVM: 1), (x 1, y 1 ),, (x n, y n ),, c q. 2) L q LS SVM. w = [1 1], t = 1, τ 1 = 1e 5, τ 2 = 4 9 π, τ 3 = 1e 5; : rw: w 0, rw()=0; w 0, rw() = c w q 2, tmp1 = y. X = [ m y x,1 m y x,2 tmp2 = tmp1 w 1. m y x,n ] T, 3) c, q,, 500, t = 1g (1), d (1) = g (1). t > 1 k, f (k) f (k 1) < τ 1 τ 1, g (k) = tmp1 T tmp2 + rw T w (k), d (k) d (k) = g (k) + β k d (k 1), β k = g(k), g (k) g (k 1), g (k 1)., τ 2, (g (k), d (k) ) < τ 2, d (k), (g (k), d (k) τ 2, d (k) = g (k) ; 4) w (k+1) = w (k) + λd (k), w (k). w w j w w, 0. 5), L q LS SVM Procedure Iter-Reweg-ConjG Input: pars of samples(x 1, y 1 ),, (x n, y n ) Output: w Intalzaton: setc = (ones(1, 18) 2). ( 4:13), q = 0.2 : 0.2 : 4 w = [1,, 1], t = 1, τ 1 = 1e 5, τ 2 = 4 9 π, τ 3 = 1e 5 for to length(c) do for to length(q) do for t=1 to 500 do f t=1 then g (k) = tmp1 T tmp2 + rw T w (k) d (1) = g (1) else f f (t) f (t 1) > τ 1 then g (t) (t) = tmp1t tmp2+rwt w d (t) = g (t) + β t d (t 1) β t = g(t), g (t) g (t 1), g (t 1) computaton: (g (t), d (t) ) f (g (t), d (t) ) τ 2 then d (t) = g (t) end f end f end f update: w t+1 := w t + λ (t) d (t) select features: f w (t) < τ 3 w (t) then w (t) = 0 end f end for end for end for return w end Iter-Reweg-ConjG 3 (Complexty analyss) O(m 2 ), m.,. c, q,, L q LS SVM O(m 2 s t), s t c, q,,,,
6 3 : q L p SVM, c, q, s t, L 2 LS SVM s L p SVM Table 1 The runnng tme results of L p SVM on 10 datasets c q L q LS SVM /s PIE Yaleb Yaleb Tr Arcene Gsette (Experments) 4.1 (Pretreatment), L q LS SVM 3. 3 (bladder) (colon) (lymphoma). znovyev/prncmanf2006/, data/rawdata/, telecom-parstech.fr/ gfort/glm/programs.html. (bladder) 2215; (colon) 2000; (lymphoma) 4026.,. (bladder) 57, 42, 15; (colon) 62, 46, 16 ; (lymphoma) 96, 72, 24. L q LS SVM L 2 LS SVM,, : Tr11 (http: // glaros. dtc. umn. edu/ gkhome/cluto/cluto)arcene Sylva(http: // PIE Yaleb ( dengca/ Data/data.html)., [ 1,1], x, {1, 2,, m}, : 1, x < 1, f(x) = x, 1 < x < 1, 1, x 1.. : g(x) = f(x) ,. 4.2 L 2 LS SVM(Concluson and comparson to L 2 LS SVM) q 0<q < (bladder) (colon) (lymphoma), q. q > 4, 0 < q < 4, q q. cq,, q, qc. q, c., (c, q). 2, c, q. 2, L 2, L 1, L Table 2 Predcton error rates of the three cancel datasets c q /% (bladder) (colon) (lymphoma) ,. q = 1, q (0, 2], q c, (c, q), 10, q, c,,.,. (c, q), 10,. :
7 cq,. 3(a),,, 3(b),. 3(a) Table 3(a) Select features numbers on best classfcaton error /% (bladder) (colon) (lymphoma) (b) Table 3(b) Classfcaton error on best feature selecton /% (bladder) (colon) (lymphoma) L 2 LS SVM, LS SVMlab v1.7 (http: //www. esat. kuleuven.be/ssta/ lssvmlab/) L q LS SVM. LS SVM, 10, C, 3 10 sg C 4(a). 4(b) L q LS SVMqL 2 LS SVM sgc, 3. 4L 2 LS SVM, q, q L 2 LS SVM. 4(a) 3 C sg Table 4(a) The values of regularzaton parameter C and kernel wdth sg on the three real datasets C sg (bladder) (colon) (lymphoma) (b) 3 Table 4(b) Comparson of test error rates on the three cancel datasets LS SVM/% q /% (bladder) (colon) (lymphoma) , L q LS SVM L 2 LS SVM. 10 : 3 Tr11 Arcene Sylva PIE Yaleb Yaleb 32 32,, , 59 64, , 128, 1 64, , 2 Yaleb 0102 ; 26 27, 128, Yaleb 2627 ; PIE L q LS SVM, C, q. L 2 LS SVM 10, Table 5 Predcton error rates of the ten datasets and compare wth L 2 LS SVM C q L q LS SVM / % L 2 LS SVM / % PIE Yaleb Yaleb Tr Arcene Gsette
8 3 : q , L q LS SVM LS SVM, PIE 0102 Yaleb 2627 L q LS SVM L 2 LS SVM. L q LS SVM. 5 (Concluson and prospect) L q LS SVM, L 2, L 1, L 0, q, q, 0 < q <, c, q,.,.,, Tr11 Arcene Sylva PIE Yaleb 32 32,,, L 2 LS SVM.,, LS SVM,. (References): [1],,. p [J]., 2012, 38(1): (LIU Janwe, LI Shuangcheng, LUO Xongln. Classfcaton algorthm of support vector machne va p-norm regularzaton [J]. Acta Automatca Snca, 2012, 38(1): ) [2] SUYKENS J A K, VAN GESTEL T, DE BRABANTER K, et al. Least Squares Support Vector Machnes [M]. Sngapore: World Scentfc, [3] SUYKENS J A K, VANDEWALLE J. Least squares support vector machne classfers [J]. Neural Processng Letters, 1999, 9(3): [4] LOPEZ J, DORRONSORO J R. Least 1 norm SVMs: a new SVM varant between standard and LS SVMs [C] //Proceedngs of the 18th European Symposum on Artfcal Neural Networks. Bruges, Belgum, 2010, [5] LOPEZ J, DE BRABANTER J, SUYKENS J A K, et al. Sparse L s- SVMs wth L 0-norm mzaton [C] //Proceedngs of the 19th European Symposum on Artfcal Neural Networks. Bruges, Belgum: Elsever, 2011, [6] TAN J Y, ZHANG C H, DENG N Y. Cancer related gene dentfcaton va p-norm support vector machne [C] //Proceedngs of the Fourth Internatonal Conference on Computatonal Systems Bology. Suzhou, Chna: World Publshng Corporaton, 2010: [7] BRADLEY P S, MANGASARIAN O L, STREET W N. Feature selecton va mathematcal programg [J]. INFORMS Journal on Computng, 1998, 10(2): [8] SUYKENS J A K, DE BRABANTER J, LUKAS L, et al. Weghted least squares support vector machnes: robustness and sparse approxmaton [J]. Neurocomputng, 2002, 48(1): [9] VALYON J, HORVATH G. A weghted generalzed LS SVM [J]. Electrcal Engneerng and Computer Scence, 2003, 47(3/4): [10] ZHOU L, LAI K K, YEN J. Credt scorng models wth AUC maxmzaton based on weghted SVM [J]. Internatonal Journal of Informaton Technology & Decson Makng, 2009, 8(4): [11] LESKI J M. Iteratvely reweghted least squares classfer and ts L 2-and L 1-regularzed Kernel versons [J]. Bulletn of The Polsh Academy of Scences: Techncal Scences, 2010, 58(1): [12] SUN D, LI J, WEI L. Credt rsk evaluaton: Support vector machnes wth adaptve L q penalty [J]. Journal of Southeast Unversty (Englsh Edton), 2008, 24(S): 3 6. [13] LIU J, LI J, XU W, et al. Weghted L q adaptve least squares support vector machne classfers-robust and sparse approxmaton [J]. Expert Systems wth Applcatons, 2011, 38(3): [14] BRITO A E. Iteratve adaptve extrapolaton appled to SAR mage formaton and snusodal recovery [D]. EI Paso: The Unversty of Texas, [15] KLOFT M, BREFELD U, SONNENBURG S, et al. Effcent and accurate L p-norm multple kernel learnng [J]. Advances n Neural Informaton Processng Systems, 2009, 22(22): [16] ZHU J, ROSSET S, HASTIE T, et al. 1-norm support vector machnes [J]. Advances n Neural Informaton Processng Systems, 2004, 16(1): [17] LIU Y, WU Y. Varable selecton va a combnaton of the L 0 and L 1 penaltes [J]. Journal of Computatonal and Graphcal Statstcs, 2007, 16(4): [18] LIU Y, HELEN ZHANG H, PARK C, et al. Support vector machnes wth adaptve L q penaltes [J]. Computatonal Statstcs & Data Analyss, 2007, 51(12): [19] MARTIN S. Tranng support vector machnes usng Glbert s algorthm [C] //Proceedngs of the Ffth IEEE Internatonal Conference on Data Mnng. Houston, USA: IEEE, 2005: [20] LEE S I, LEE H, ABBEEL P, et al. Effcent L 1 regularzed logstc regresson [C] //Proceedngs of the 21st Natonal Conference on Artfcal Intellgence. Menlo Park, CA: AAAI Press, 2006: [21] LIU Z, JIANG F, TIAN G, et al. Sparse logstc regresson wth Lp penalty for bomarker dentfcaton [J]. Statstcal Applcatons n Genetcs and molecular Bology, 2007, 6(1): [22] BRADLEY P S, MANGASARIAN O L. Feature selecton va concave mzaton and support vector machnes [C] //Proceedngs of the 15th Internatonal Conference on Machne Learnng. Madson, USA: Morgan Kaufmann, 1998, [23] FOUCART S, LAI M J. Sparsest solutons of underdetered lnear system va L q-mzaton for 0 < q < 1 [J]. Appled and Computatonal Harmonc Analyss, 2009, 26(3): [24] FAN J, LI R. Varable selecton va nonconcave penalzed lkelhood and ts oracle propertes [J]. Journal of the Amercan Statstcal Assocaton, 2001, 96(456): [25] PYTLAK R. Conjugate Gradent Algorthms n Nonconvex Optmzaton [M]. New York: Sprnger, 2009.
9 [26] SCHIROTZEK W. Nonsmooth Analyss [M]. New York: Sprnger, [27] MISHRA S K, GIORGI G. Invexty and Optmzaton [M]. New York: Sprnger, [28] ZHOU T, TAO D, WU X. NESVM: a fast gradent method for support vector machnes [C] //Proceedngs of the Tenth IEEE Internatonal Conference on Data Mnng. Sydney, Australa: IEEE, 2010: [29] JOACHIMS T. Tranng lnear svms n lnear tme [C] //Proceedngs of the 12th ACM SIGKDD Internatonal Conference on KnowledgeDscovery and Data Mnng. Phladelpha, USA: ACM, 2006: [30] SHALEV-SHWARTZ S, SINGER Y, SREBRO N, et al. Pegasos: prmal estmated sub-gradent solver for svm [J]. Mathematcal Programg, 2011, 127(1): [31] JOACHIMS T. Makng large-scale SVM learnng practcal [C] //Proceedngs of Advances n Kernel Methods-Support Vector Machnes. Cambrdge, USA: MIT Press, 1999: [32] CHANG C C, LIN C J. LIBSVM: a Lbrary for support vector machnes [J]. ACM Transactons on Intellgent Systems and Technology (TIST), 2011, 2(3): 27. [33] SINDHWANI V, KEERTHI S S. Large scale sem supervsed lnear SVMs [C] //Proceedngs of the 29th annual nternatonal ACM SIGIR conference on Research and development n nformaton retreval. New York: ACM, 2006: [34] SONNENBURG S, FRANC V. COFFIN: a computatonal framework for lnear SVMs [C] //Proceedngs of the 27nd Internatonal Conference on Machne Learnng. Hafa, Israel: Omnpress, 2010: [35] LIU J, LI S C, LUO X. Iteratve reweghted nonnteger norm regularzng SVM for gene expresson data classfcaton [J/DB]. Computatonal and Mathematcal Methods n Medcne, ID [36] CHEN P C, HUANG S Y, CHEN W J, et al. A new regularzed least squares support vector regresson for gene selecton [J]. BMC Bonformatcs, 2009, 10(1): [37] BERTSEKAS D P. Nonlnear Programg (Second edton) [M]. Belmont, England: Athena Scentfc, [38],. [M]. :, (YUAN Yaxang, SUN Wenyu. Optmzaton Theory and Method [M]. Bejng: Scence Press, : (1966 ),,,,, E-mal: lujw@ cup.edu.cn; (1988 ),,,, E-mal: lhaen1988@163.com; (1989 ),,,, E-mal: ysht 25@sna.com; (1988 ),,,, E-mal: luylujw@sna.com; (1963 ),,,,, E-mal: luoxl@cup.edu.cn.
IF(Ingerchange Format) [7] IF C-STAR(Consortium for speech translation advanced research ) [8] IF 2 IF
100080 e-mal:{gdxe, cqzong, xubo}@nlpr.a.ac.cn tel:(010)82614468 IF 1 1 1 IF(Ingerchange Format) [7] IF C-STAR(Consortum for speech translaton advanced research ) [8] IF 2 IF 2 IF 69835003 60175012 [6][12]
5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,
4 Chnese Journal of Appled Probablty and Statstcs Vol.6 No. Apr. Haar,, 6,, 34 E-,,, 34 Haar.., D-, A- Q-,. :, Haar,. : O.6..,..,.. Herzberg & Traves 994, Oyet & Wens, Oyet Tan & Herzberg 6, 7. Haar Haar.,
Kernel orthogonal and uncorrelated neighborhood preservation discriminant embedding algorithm
32 7 Vol 32 7 2011 7 Journal of Harbn Engneerng Unversty Jul 2011 do 10 3969 /j ssn 1006-7043 2011 07 018 150001 2 Yale PIE TE2 TP391 4 1006-7043 2011 07-0938-05 Kernel orthogonal and uncorrelated neghborhood
Quantum annealing inversion and its implementation
49 2 2006 3 CHINESE JOURNAL OF GEOPHYSICS Vol. 49, No. 2 Mar., 2006,,..,2006,49 (2) :577 583 We C, Zhu P M, Wang J Y. Quantum annealng nverson and ts mplementaton. Chnese J. Geophys. (n Chnese), 2006,49
Discriminative Language Modeling Based on Risk Minimization Training
1,a) 1 1 1 2 Bayes Dscrmnatve Language Modelng Based on Rsk Mnmzaton Tranng Kobayash Ako 1,a) Oku Takahro 1 Fujta Yuya 1 Sato Shoe 1 Nakagawa Sech 2 Abstract: Ths paper descrbes dscrmnatve language models
A Method for Determining Service Level of Road Network Based on Improved Capacity Model
30 4 2013 4 Journal of Hghway and Transportaton Research and Development Vol. 30 No. 4 Apr. 2013 do10. 3969 /j. ssn. 1002-0268. 2013. 04. 018 1 1 2 1. 4000742. 201804 2 U491. 1 + 3 A 1002-0268 201304-0101
Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).
Vol. 4 ( 214 ) No. 4 J. of Math. (PRC) 1,2, 1 (1., 472) (2., 714) :.,.,,,..,. : ; ; ; MR(21) : 9B2 : : A : 255-7797(214)4-759-7 1,,,,, [1 ].,, [4 6],, Frank-Wolfe, Frank-Wolfe [7],.,,.,,,., UE,, UE. O-D,,,,,
ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΚΛΑ ΕΜΑ ΟΜΑ ΑΣ ΚΑΤΑ ΠΕΡΙΠΤΩΣΗ ΜΕΣΩ ΤΑΞΙΝΟΜΗΣΗΣ ΠΟΛΛΑΠΛΩΝ ΕΤΙΚΕΤΩΝ» (Instance-Based Ensemble
A Sequential Experimental Design based on Bayesian Statistics for Online Automatic Tuning. Reiji SUDA,
Bayes, Bayes mult-armed bandt problem Bayes A Sequental Expermental Desgn based on Bayesan Statstcs for Onlne Automatc Tunng Re SUDA, Ths paper proposes to use Bayesan statstcs for software automatc tunng
Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University
A Study on Predctve Control Usng a Short-Term Predcton Method Based on Chaos Theory (Predctve Control of Nonlnear Systems Usng Plural Predcted Dsturbance Values) Noryasu MASUMOTO, Waseda Unversty, 3-4-1
2002 Journal of Software /2002/13(08) Vol.13, No.8. , )
000-985/00/3(08)55-06 00 Journal of Software Vol3, No8, (,00084) E-mal: yong98@malstsnghuaeducn http://netlabcstsnghuaeducn :,,, (proportonal farness schedulng, PFS), QoS, : ; ;QoS; : TP393 : A,,,,, (
Evaluation of Expressing Uncertain Causalities as Conditional Causal Possibilities
Evaluaton of Expressng Uncertan Causaltes as Condtonal Causal ossbltes Koch Yamada Department of lannng & Management Scence, agaoa Unversty of Technology eng & Regga (v u u u v v u (v u ) 0 u v V [1] [1]
Aerodynamic Design Optimization of Aeroengine Compressor Rotor
17 < > Aerodynamc Desgn Optmzaton of Aeroengne Compressor Rotor, NASA JAXA, Brook Park, Oho, U.S.A., oyama@flab.eng.sas.jaxa.jp Meng-Sng LIOU, NASA Glenn Research Center, Brook Park, Oho, U.S.A. meng-sng.lou-1@nasa.gov,,
Nonparametric Bayesian T-Process Algorithm for Heterogeneous Gene Regulatory Network
IPSJ SIG Tecncal Report Vol.-MPS-9 No.5 Vol.-BIO-3 No.5 //6 T,a,b,c,d,e T Drosopla melanogaster RJMCMC Nonparametrc Bayesan T-Process Algortm for Heterogeneous Gene Regulatory Network HIROKI MIYASHITA,a
Stochastic Finite Element Analysis for Composite Pressure Vessel
* ** ** Stochastc Fnte Element Analyss for Composte Pressure Vessel Tae Kyung Hwang Young Dae Doh and Soon Il Moon Key Words : Relablty Progressve Falure Pressure Vessel Webull Functon Abstract ABAQUS
CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital
C RAM 3002 C RAROC Rsk-Adjusted Return on Captal C C RAM Rsk-Adjusted erformance Measure C RAM RAM Bootstrap RAM C RAROC RAM Bootstrap F830.9 A CAM 2 CAM 3 Value at Rsk RAROC Rsk-Adjusted Return on Captal
Power allocation under per-antenna power constraints in multiuser MIMO systems
33 0 Vol.33 No. 0 0 0 Journal on Councatons October 0 do:0.3969/.ssn.000-436x.0.0.009 IO 009 IO IO N94 A 000-436X(0)0-007-06 Power allocaton under er-antenna ower constrants n ultuser IO systes HAN Sheng-qan,
ER-Tree (Extended R*-Tree)
1-9825/22/13(4)768-6 22 Journal of Software Vol13, No4 1, 1, 2, 1 1, 1 (, 2327) 2 (, 3127) E-mail xhzhou@ustceducn,,,,,,, 1, TP311 A,,,, Elias s Rivest,Cleary Arya Mount [1] O(2 d ) Arya Mount [1] Friedman,Bentley
9 /393 / Downloaded from energy.kashanu.ac.r at 5:3 0330 on Saturday October 0th 08 * hajakbar@grad.kashanu.ac.r mohammad@kashanu.ac.r. (shunt-apf) :... PSIM. : * 3... Downloaded from energy.kashanu.ac.r
ΘΑΛΗΣ Πανεπιστήμιο Πειραιά Μεθοδολογικές προσεγγίσεις για τη μελέτη της ευστάθειας σε προβλήματα λήψης αποφάσεων με πολλαπλά κριτήρια
Robust MCDA ΘΑΛΗΣ Πανεπιστήμιο Πειραιά Μεθοδολογικές προσεγγίσεις για τη μελέτη της ευστάθειας σε προβλήματα λήψης αποφάσεων με πολλαπλά κριτήρια Δ5 Βιβλιογραφική ανασκόπηση προσεγγίσεων τεχνικής νοημοσύνης
Quick algorithm f or computing core attribute
24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute
Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet
Duals of the QCQP and SDP Sparse SVM Anton B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckret SVCL-TR 007-0 v Aprl 007 Duals of the QCQP and SDP Sparse SVM Anton B. Chan, Nuno Vasconcelos, and Gert R.
Generalized Linear Model [GLM]
Generalzed Lnear Model [GLM]. ก. ก Emal: nkom@kku.ac.th A Lttle Hstory Multple lnear regresson normal dstrbuton & dentty lnk (Legendre, Guass: early 19th century). ANOVA normal dstrbuton & dentty lnk (Fsher:
EL ECTR IC MACH IN ES AND CON TROL. System s vulnerability assessment of a ircraft guarantee system based on improved FPN
13 3 20095 EL ECTR ICMACH IN ESANDCON TROL Vol113 No13 May 2009 FPN,, (, 150001) :,,Petr( FPN ), BP, FPN,,,, : ; ; Petr; : U661 : A : 1007-449X (2009) 03-0464- 07 System s vulnerablty assessment of a rcraft
Nondeterministic Finite Automaton Event Detection in Focusing Region. Sequence Analysis. Sequence Analysis. Feature Extraction. Feature Extraction
y yy y Mult-Object Behavor Recognton by Selectve Attenton Toshkazu WADA y, Masayuk SATO yy,andtakash MATSUYAMA y ( ) (NFA) ( ), ( ) NFA,,. ( ) ( ),, ( ) ( ) ( ) y Department of Intellgence Scence and Technology,
No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A
7 2016 7 No. 7 Modular Machine Tool & Automatic Manufacturing Technique Jul. 2016 1001-2265 2016 07-0122 - 05 DOI 10. 13462 /j. cnki. mmtamt. 2016. 07. 035 * 100124 TH166 TG659 A Precision Modeling and
Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan
3 2015 12 GLOBAL GEOLOGY Vol. 3 No. Dec. 2015 100 5589 2015 0 1106 07 L BFGS Q 130026 Q 2D L BFGS Marmousi Q L BFGS P631. 3 A doi 10. 3969 /j. issn. 1005589. 2015. 0. 02 Method of Q through full waveform
8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.
8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure
Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment
1 2 2 GPS (SOM) Proposal of Termnal Self Locaton Estmaton Method to Consder Wreless Sensor Network Envronment Shohe OHNO, 1 Naotosh ADACHI 2 and Yasuhsa TAKIZAWA 2 Recently, large scale wreless sensor
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Μηχανική Μάθηση. Ενότητα 10: Support Vector Machines. Ιωάννης Τσαμαρδίνος Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Ενότητα 10: Support Vector Machnes Ιωάννης Τσαμαρδίνος Τμήμα Επιστήμης Υπολογιστών Support Vector Machnes Decson surface s a hyperplane (lne n 2D)
ΑΚΡΙΒΕΙΑ ΕΝΟΣ ΔΙΤΙΜΟΥ ΔΙΑΓΝΩΣΤΙΚΟΥ ΕΛΕΓΧΟΥ ΠΟΥ ΕΞΑΡΤΑΤΑΙ ΑΠΟ ΤΟ ΧΡΟΝΟ
Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά ου Πανελληνίου Συνεδρίου Στατιστικής (8), σελ 3-4 ΑΚΡΙΒΕΙΑ ΕΝΟΣ ΔΙΤΙΜΟΥ ΔΙΑΓΝΩΣΤΙΚΟΥ ΕΛΕΓΧΟΥ ΠΟΥ ΕΞΑΡΤΑΤΑΙ ΑΠΟ ΤΟ ΧΡΟΝΟ Μπαντής Λεωνίδας, Τσιμήκας Γιάννης, Γεωργίου
Gradient Domain Metropolis Light Transport
08 Gradent Doman Metropols Lght Transport..:..:.... dspavlov_@edu.hse.ru vfrolov@graphcs.cs.msu.ru - -. - -.. - -.. : ( ϕr θr = L( ϕ θ R( ϕ θ ϕr θr cos( n lϕ θ ϕ θ dϕ dθ L R -. - - - - -. [Kaa 986]. (Path
Novel Ensemble Analytic Discrete Framelet Expansion for Machinery Fault Diagnosis 1
50 17 2014 9 OURNAL OF MECHANICAL ENGINEERING Vol.50 No.17 Sep. 2014 DOI10.3901/ME.2014.17.077 * 1 2 2 2, 3 (1. 361005 2. 710049 3. 710049) -- () - TH17 Novel Ensemble Analytc Dscrete Framelet Expanson
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ Εξαγωγή χαρακτηριστικών μαστογραφικών μαζών και σύγκριση
Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology
2012 34 2 382-387 http / /xuebao. jxau. edu. cn Acta Agriculturae Universitatis Jiangxiensis E - mail ndxb7775@ sina. com 212018 105 W 42 2 min 0. 631 TS202. 3 A 1000-2286 2012 02-0382 - 06 Optimizing
Vol. 15 No. 6 Jun JOURNAL OF MANAGEMENT SCIENCES IN CHINA CAPM F J xmu. edu.
5 6 202 6 JOURNAL OF MANAGEMENT SCIENCES IN CHINA Vol 5 No 6 Jun 202 36005 CAPM F830 9 A 007 9807 202 06 0040 09 0 4 5 6 2 7 8 9 5 2 20 03 24 20 0 0 70974 702 2009J036 966 Emal zlzheng@ xmu edu cn NYSE
Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, XXXX XXXX Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation
8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές
8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ ICA: συναρτήσεις κόστους & εφαρμογές ΚΎΡΤΩΣΗ (KUROSIS) Αθροιστικό (cumulant) 4 ης τάξεως μίας τ.μ. x με μέσο όρο 0: kurt 4 [ x] = E[ x ] 3( E[ y ]) Υποθέτουμε διασπορά=: kurt[ x]
FENXI HUAXUE Chinese Journal of Analytical Chemistry. Savitzky-Golay. n = SG SG. Savitzky-Golay mmol /L 5700.
38 2010 3 FENXI HUAXUE Chinese Journal of Analytical Chemistry 3 342 ~ 346 DOI 10. 3724 /SP. J. 1096. 2010. 00342 Savitzky-Golay 1 * 1 2 1 3 1 1 510632 2 510632 3 200444 PLS Savitzky-Golay SG 10000 ~ 5300
Vol. 37 No. 6 JOURNAL OF BEIJING UNIVERSITY OF TECHNOLOGY. Jun. 2011 70% . 2009-10-25.
37 6 2011 6 Vol 37 No 6 JOURNAL OF BEIJING UNIVERSITY OF TECHNOLOGY Jun 2011 100124 2 BP BP BP U 491 A 0254-0037 2011 06-0882 - 06 1 70% BP 1 2 2 2 2009-10-25 50578003 2006BAG01A01 1984 6 883 2 1 3 3 5
Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb
Ξ 31 Vol 31,No 1 2 0 0 1 2 JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb 2 0 0 1 :025322778 (2001) 0120016205 (, 230026) : Q ( m 1, m 2,, m n ) k = m 1 + m 2 + + m n - n : Q ( m 1, m 2,, m
1530 ( ) 2014,54(12),, E (, 1, X ) [4],,, α, T α, β,, T β, c, P(T β 1 T α,α, β,c) 1 1,,X X F, X E F X E X F X F E X E 1 [1-2] , 2 : X X 1 X 2 ;
ISSN1000-0054 CN11-2223/N ( ) 2014 54 12 JTsinghuaUniv(Sci& Technol), 2014,Vol.54, No.12 4/20 1529-1533,, (,, (), 100084) [1-2] :,,,,,,,, :, 0.3~ [3] 0.8BLEU,, : ; ; [4], ; :TP391.2 :A, :1000-0054(2014)12-1529-05,
CorV CVAC. CorV TU317. 1
30 8 JOURNAL OF VIBRATION AND SHOCK Vol. 30 No. 8 2011 1 2 1 2 2 1. 100044 2. 361005 TU317. 1 A Structural damage detection method based on correlation function analysis of vibration measurement data LEI
Intelligent Prediction Method for Small2Batch Producing Quality based on Fuzzy Least Square SVM
2007 3 3 :100026788 (2007) 0320098207 1,2, 1, 3 (11, 230009 ;21, 475001 ; 31, 332005) :,,. (FLS - SVM),,.,,,.,,,,,. : ;;; ; : O213 : A Intelligent Prediction Method for Small2Batch Producing Quality based
Research on fault detection for Markovian jump systems with time-varying delays and randomly occurring nonlinearities
33 9 2016 9 DOI: 10.7641/CTA.2016.60012 Control Theory & Applcatons Vol. 33 No. 9 Sep. 2016 1 1 2 (1. 163318; 2. 163318) (RONs)... H. Lyapunov H.. ; ; ; TP273 A Research on fault detecton for Markovan
Transfer Learning. keywords: transfer learning, inductive transfer, domain adaptation, multitask learning, semi-supervised learning
1 Transfer Learnng Toshhro Kamshma Natonal Insttute of Advanced Industral Scence and Technology (AIST) mal@kamshma.net, http://www.kamshma.net/ keywords: transfer learnng, nductve transfer, doman adaptaton,
Generalized Fibonacci-Like Polynomial and its. Determinantal Identities
Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,
Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)
( ) 1 ( ) : : (Differential Evolution, DE) (Particle Swarm Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] 2 2.1 (P) (P ) minimize f(x) subject to g j (x) 0, j = 1,..., q h j (x) = 0, j
(8) 017 У У θβ1.771...... ю E-mal: avk7777@mal.ru....... Р х х.. 93 % 6 % 166 %. М х х хх. : х х. ю. ю ( ). ю ю. ю. ю ю. - ю ю. ю [1 8] ю. [9 11] ю. [1]. 58 (8) 017 У ю μ (У) юю (. 1). u u+1 ЭС - ЭС (+1)-
Control Theory & Applications PID (, )
26 12 2009 12 : 1000 8152(2009)12 1317 08 Control Theory & Applications Vol. 26 No. 12 Dec. 2009 PID,, (, 200240) : PID (PIDNN), PID,, (BP).,, PIDNN PIDNN (MPIDNN), (CPSO) BP, MPIDNN CPSO MPIDNN CRPSO
DEIM Forum 2 D3-6 819 39 744 66 8 E-mail: kawamoto@inf.kyushu-u.ac.jp, tawara@db.soc.i.kyoto-u.ac.jp, {asano,yoshikawa}@i.kyoto-u.ac.jp 1.,, Amazon.com The Internet Movie Database (IMDb) 1 Social spammers
A research on the influence of dummy activity on float in an AOA network and its amendments
2008 6 6 :100026788 (2008) 0620106209,, (, 102206) : NP2hard,,..,.,,.,.,. :,,,, : TB11411 : A A research on the influence of dummy activity on float in an AOA network and its amendments WANG Qiang, LI
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2
2002 Journal of Software, );
1000-9825/2002/13(09)1813-10 2002 Journal of Software Vol13, No9 1, 1, 2, 2, 2 2, 1 (, 710049); 2 (,100080) E-mal: {hchen,nnzheng}@aarxjtueducn; {-llang,yl,yxu,hshum}@mcrosoftcom http://wwwaarxjtueducn;
Sydney 2052, Australia.
ΕΛΕΓΧΟΣ ΚΑΤΑΣΤΑΣΗΣ ΤΩΝ ΜΗΧΑΝΙΚΩΝ ΥΠΟΣΥΣΤΗΜΑΤΩΝ ΣΤΑ ΓΕΩΡΓΙΚΑ ΟΧΗΜΑΤΑ, ΒΑΣΙΣΜΕΝΟΣ ΣΤΗΝ ΣΥΝΤΗΞΗ ΤΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΤΩΝ ΟΝΗΣΕΩΝ. Κατέρης,. Μόσχου, Ι. Γράβαλος 2, Ν. Sawalh 3, Θ. Γιαλαµάς 2, Π. Ξυραδάκης 2,
Ανάλυση ευαισθησίας σε αναδρομικό νευρωνικό δίκτυο εκπαιδευμένο για αναγνώριση συναισθήματος
Ανάλυση ευαισθησίας σε αναδρομικό νευρωνικό δίκτυο εκπαιδευμένο για αναγνώριση συναισθήματος Σαρλίν Χονδρού, Μηνάς Περτσελάκης, Γιώργος Καρυδάκης, Κώστας Καρπούζης, Στέφανος Κόλλιας Εργαστήριο Επεξεργασίας
Estimating Time of a Simple Step Change in Nonconforming Items in High-Yield Processes
Internatonal Journal of Industral Engneerng & Producton Management (22) March 22, Volume 22, Number 4 pp. 39-33 http://ijiepm.ust.ac.r/ Estmatng Tme of a Smple Step Change n Nonconformng Items n Hgh-Yeld
Research on real-time inverse kinematics algorithms for 6R robots
25 6 2008 2 Control Theory & Applications Vol. 25 No. 6 Dec. 2008 : 000 852(2008)06 037 05 6R,,, (, 30027) : 6R. 6 6R6.., -, 6R., 2.03 ms, 6R. : 6R; ; ; : TP242.2 : A Research on real-time inverse kinematics
DEIM Forum 2018 F3-5 657 8501 1-1 657 8501 1-1 E-mail: yuta@cs25.scitec.kobe-u.ac.jp, eguchi@port.kobe-u.ac.jp, ( ) ( )..,,,.,.,.,,..,.,,, 2..., 1.,., (Autoencoder: AE) [1] (Generative Stochastic Networks:
Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention
33 2 2011 4 Vol. 33 No. 2 Apr. 2011 1002-8412 2011 02-0096-08 1 1 1 2 3 1. 361005 3. 361004 361005 2. 30 TU746. 3 A Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention
Research on Economics and Management
36 5 2015 5 Research on Economics and Management Vol. 36 No. 5 May 2015 490 490 F323. 9 A DOI:10.13502/j.cnki.issn1000-7636.2015.05.007 1000-7636 2015 05-0052 - 10 2008 836 70% 1. 2 2010 1 2 3 2015-03
Newman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3
DEWS2007 D3-6 y yy y y y y yy / DC 7313194 341 E-mail: yfktamura,mori,kuroki,kitakamig@its.hiroshima-cu.ac.jp, yymakoto@db.its.hiroshima-cu.ac.jp Newman Newman Newman Newman Newman A Clustering Algorithm
A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks
P2P 1,a) 1 1 1 P2P P2P P2P P2P A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks NARISHIGE Yuki 1,a) ABE Kota 1 ISHIBASHI Hayato 1 MATSUURA Toshio 1
Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn
2015 11 Nov 2015 36 6 Journal of Zhengzhou University Engineering Science Vol 36 No 6 1671-6833 2015 06-0056 - 05 C 1 1 2 2 1 450001 2 461000 C FCM FCM MIA MDC MDC MIA I FCM c FCM m FCM C TP18 A doi 10
b,% SIR 2 MOTDPC (CDMA 6 ) Aein CDMA Journal of Nonlinear Systems in Elect. Eng., Vol. 1, No 2, Fall 2013
CDMA t< c&4 ;*E D&/ * 3 \ ^ K [ F 39 + @ M N 8 < - F" @ ' E J D K L H5 I CDMA ; A 5 b,% m_rezae_5@yahoocom 3 )* EQ / G* * /!" D" - hfarrokh@brjandacr 3 )* EQ / G* A*B C &* - (39/5/7 :H9 [ ge 39/3/ :H9
HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA
DEIM Forum 2010 D1-4 HOSVD 191-0065 6-6 E-mail: j.morigaki@gmail.com, katayama@tmu.ac.jp Lathauwer (HOSVD) (Tensor) HOSVD Savas HOSVD Sun HOSVD,, Higher Order Data Classification Method with Autocorrelation
ΧΩΡΙΚΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΤΩΝ ΤΙΜΩΝ ΤΩΝ ΑΚΙΝΗΤΩΝ SPATIAL ECONOMETRIC MODELS FOR VALUATION OF THE PROPERTY PRICES
1 ο Συνέδριο Χωρικής Ανάλυσης: Πρακτικά, Αθήνα, 013, Σ. Καλογήρου (Επ.) ISBN: 978-960-86818-6-6 ΧΩΡΙΚΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΤΩΝ ΤΙΜΩΝ ΤΩΝ ΑΚΙΝΗΤΩΝ Μαριάνθη Στάμου 1*, Άγγελος Μιμής και
Robust Robot Monte Carlo Localization
XX X Vol. XX, No. X 200X X ACTA AUTOMATICA SINICA Month, 200X 1 1 1.,,, ; (MCMC, ;, MCMC, ;.,,, TP242.6 Robut Robot Monte Carlo Localzaton WU Er-Yong 1 XIANG Zh-Yu 1 LIU J-Ln 1 Abtract A robot localzaton
Η Μέθοδος Kriging από τη Σκοπιά της Θεωρίας Πρόγνωσης Τυχαίων Πεδίων
Η Μέθοδος Krgng από τη Σκοπιά της Θεωρίας Πρόγνωσης Τυχαίων Πεδίων Α. Δερμάνης Τομέας Γεωδαισίας και Τοπογραφίας, Α.Π.Θ. Πανεπιστημιακή Θυρίδα 503, 544 Θεσσαλονίκη Τηλ. 30-996, emal: dermans@topo.auth.gr,
ΥΨΗΛΟΥ ΣΗΜΕΙΟΥ ΚΑΤΑΡΡΕΥΣΗΣ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΜΕ PENALIZED TRIMMED SQUARES
Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 0 ου Πανελληνίου Συνεδρίου Στατιστικής (007), σελ 69-78 ΥΨΗΛΟΥ ΣΗΜΕΙΟΥ ΚΑΤΑΡΡΕΥΣΗΣ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΜΕ PENALIZED TRIMMED SQUARES Αντώνης Αβραμίδης
Schedulability Analysis Algorithm for Timing Constraint Workflow Models
CIMS Vol.8No.72002pp.527-532 ( 100084) Petri Petri F270.7 A Schedulability Analysis Algorithm for Timing Constraint Workflow Models Li Huifang and Fan Yushun (Department of Automation, Tsinghua University,
ΚΑΤΗΓΟΡΙΕΣ ΤΑΞΙΝΟΜΗΣΗΣ
ΚΑΤΗΓΟΡΙΕΣ ΤΑΞΙΝΟΜΗΣΗΣ Κατευθυνόμενη ταξινόμηση (supervsed cassfcaton) Μη-κατευθυνόμενη ταξινόμηση (unsupervsed cassfcaton) Γραμμική: Lnear Dscrmnant Anayss Μη- Γραμμική: Νευρωνικά δίκτυα κλπ. Ιεραρχική
α + α+ α! (=+9 [1] ι «Analyze-Regression-Linear». «Dependent» ι η η η!ηη ι «Independent(s)» η!ηη. # ι ι ι!η " ι ιηη, ι!" ι ηιι. 1 SPSS ι η η ι ιηη ι η
# η &, ε ε 007, ιη Pearson r "η η ι ι ι η ι!ι ι ι η ι η!ηη ι ι!ηη. η ι ιηη ι" η ι!"ι 0 ι η ( α ι ι α η 9 ( ι ι / + -predctor varable). * ι ι ι ι η ι ι ι!ηη η "ι ι ι ι!ηη η ι ι η η ι 'ι ι ι (η ) ι η ( "
Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water
31 1 2010 1 ENVIRONMENTAL SCIENCE Vol. 31,No. 1 Jan.,2010, 3, (,, 100084) :,.,, ( Microcystis aeruginosa),3 (A 2 O ) 10 6 ml - 1,> 0139 d - 1. A 2 O222,. TP ( K max ) ( R max ), Monod. :; ; ; ; :X173 :A
Area Location and Recognition of Video Text Based on Depth Learning Method
21 6 2016 12 Vol 21 No 6 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Dec 2016 1 1 1 2 1 150080 2 130300 Gabor RBM OCR DOI 10 15938 /j jhust 2016 06 012 TP391 43 A 1007-2683 2016 06-0061- 06
( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;
28 1 2006 1 RESOURCES SCIENCE Vol. 28 No. 1 Jan. 2006 :1007-7588(2006) 01-0002 - 07 20 1 1 2 (11 100101 ; 21 101149) : 1978 1978 2001 ; 2010 ; ; ; : ; ; 24718kg 1) 1990 26211kg 260kg 1995 2001 238kg( 1)
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme
Adaptive grouping difference variation wolf pack algorithm
3 2017 5 ( ) Journal of East China Normal University (Natural Science) No. 3 May 2017 : 1000-5641(2017)03-0078-09, (, 163318) :,,.,,,,.,,. : ; ; ; : TP301.6 : A DOI: 10.3969/j.issn.1000-5641.2017.03.008
Robust resource allocation algorithm for cognitive radio system
35 4 Vol.35 No. 4 2014 4 Journal on Communcatons Arl 2014 o:10.3969/j.ssn.1000-436x.2014.04.014 ( 130012) SINR QoS SOCP QoS N929 A 1000-436X(2014)04-0124-06 Robust resource allocaton algorm for cogntve
(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)
(Υπογραϕή) (Υπογραϕή) (Υπογραϕή) (Υπογραϕή) F 1 F 1 RGB ECR RGB ECR δ w a d λ σ δ δ λ w λ w λ λ λ σ σ + F 1 ( ) V 1 V 2 V 3 V 4 V 5 V 6 V 7 V 8 V 9 V 10 M 1 M 2 M 3 F 1 F 1 F 1 10 M 1
ΜΙΑ ΜΕΘΟΔΟΣ ΤΙΜΩΡΙΑΣ ΓΙΑ ΤΗΝ ΑΠΟΡΡΙΨΗ ΑΚΡΑΙΩΝ ΤΙΜΩΝ ΣΤΗΝ ΑΝΘΕΚΤΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ
Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 8 ου Πανελληνίου Συνεδρίου Στατιστικής (005) σελ.39-48 ΜΙΑ ΜΕΘΟΔΟΣ ΤΙΜΩΡΙΑΣ ΓΙΑ ΤΗΝ ΑΠΟΡΡΙΨΗ ΑΚΡΑΙΩΝ ΤΙΜΩΝ ΣΤΗΝ ΑΝΘΕΚΤΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Αντώνης Αβραμίδης και Γιώργος
Θέμα : Retrieval Models. Ημερομηνία : 9 Μαρτίου 2006
ΗΥ-464: Συστήματα Ανάκτησης Πληροφορίας Informaton Retreval Systems Πανεπιστήμιο Κρήτης Άνοιξη 2006 Φροντιστήριο 2 Θέμα : Retreval Models Ημερομηνία : 9 Μαρτίου 2006 Outlne Prevous Semester Exercses Set
ΙΑΧΕΙΡΙΣΗ ΠΟΡΩΝ. Συμεών Παπαβασιλείου Επίκ. Καθηγητής ΕΜΠ
ΙΑΧΕΙΡΙΣΗ ΠΟΡΩΝ ΑΣΥΡΜΑΤΩΝ ΚΥΨΕΛΩΤΩΝ ΙΚΤΥΩΝ Συμεών Παπαβασιλείου Επίκ. Καθηγητής ΕΜΠ 1 Εισαγωγή Η ολοένα αυξανόμενη χρήση των ασύρματων δικτύων και η ταυτόχρονη αύξηση των απαιτήσεων των υπηρεσιών των χρηστών,
Journal of East China Normal University (Natural Science) : ramp Amijo-Newton
2 2016 3 ( ) Journal of East Cina Normal University (Natural Science) No. 2 Mar. 2016 : 1000-5641(2016)02-0020-10 ramp 1, 2 (1., 163319; 2. 163319) : ramp Amijo-Newton... : ; ; ; : TP181; TP391 : A DOI:
Error ana lysis of P2wave non2hyperbolic m oveout veloc ity in layered media
28 1 2009 3 Vol128 No11 GLOBAL GEOLOGY Mar1 2009 : 1004 5589 (2009) 01 0098 05 P 1, 1, 2, 1 1., 130026; 2., 100027 :,,,, 1%,,, 12187%,, : ; ; ; : P63114 : A Abstract: Error ana lysis of P2wave non2hyperbolic
ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ ΜΕ ΜΗΧΑΝΕΣ ΔΙΑΝΥΣΜΑΤΩΝ ΥΠΟΣΤΗΡΙΞΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΚΑΤΗΓΟΡΙΟΠΟΙΗΣΗ ΜΕ ΜΗΧΑΝΕΣ
Stabilization of stock price prediction by cross entropy optimization
,,,,,,,, Stabilization of stock prediction by cross entropy optimization Kazuki Miura, Hideitsu Hino and Noboru Murata Prediction of series data is a long standing important problem Especially, prediction
Motion analysis and simulation of a stratospheric airship
32 11 Vol 32 11 2011 11 Journal of Harbin Engineering University Nov 2011 doi 10 3969 /j issn 1006-7043 2011 11 019 410073 3 2 V274 A 1006-7043 2011 11-1501-08 Motion analysis and simulation of a stratospheric
Probabilistic Approach to Robust Optimization
Probabilistic Approach to Robust Optimization Akiko Takeda Department of Mathematical & Computing Sciences Graduate School of Information Science and Engineering Tokyo Institute of Technology Tokyo 52-8552,
35 90% 30 35 85% 2000 2008 + 2 2008 22-37 1997 26 1953- 2000 556 888 0.63 2001 0.58 2002 0.60 0.55 2004 0.51 2005 0.47 0.45 0.43 2009 0.
184 C913.7 A 1672-616221 2-21- 7 Vol.7 No.2 Apr., 21 1 26 1997 26 25 38 35 9% 8% 3 35 85% 2% 3 8% 21 1 2 28 + 2 1% + + 2 556 888.63 21 572 986.58 22 657 1 97 23 674 1 229.55 24 711 1 48.51 25 771 1 649.47
SVM. Research on ERPs feature extraction and classification
39 1 2011 2 Journal of Fuzhou University Natural Science Edition Vol 39 No 1 Feb 2011 DOI CNKI 35-1117 /N 20110121 1723 008 1000-2243 2011 01-0054 - 06 ERPs 350108 - ERPs SVM ERPs SVM 90% ERPs SVM TP391
Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University
Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of
Suppose Mr. Bump observes the selling price and sales volume of milk gallons for 10 randomly selected weeks as follows
Albert Ludwgs Unverst Freburg Department of Emprcal Research and Econometrcs Appled Econometrcs Dr Kestel ummer 9 EXAMPLE IMPLE LINEAR REGREION ANALYI uppose Mr Bump observes the sellng prce and sales
ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,
ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα Βασίλειος Σύρης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Εαρινό εξάμηνο 2008 Economcs Contents The contet The basc model user utlty, rces and
SHUILI XUEBAO km. Honolulu Weatcart Contractor Giggs. Home J. M. U. Jucson
2010 5 SHUILI XUEBAO 41 5 0559-9350 2010 05-0560-07 400041 Vsual Modflow 600mg / L 16. 9m 8. 3m 4 9 9 4 8. 5% 1 ~ 2 P641. 2 A 1 32 330km Honolulu 1 20 60 1974 Meyer 2 1979 Weatcart 3 1981 Contractor 4
Comparison of Evapotranspiration between Indigenous Vegetation and Invading Vegetation in a Bog
J. Jpn. Soc. Soil Phys. No. +*-, p.-3.1,**0 ** * *** Comparison of Evapotranspiration between Indigenous Vegetation and Invading Vegetation in a Bog Toshiki FUJIMOTO*, Ippei IIYAMA*, Mai SAKAI*, Osamu
ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΤΟΠΟΛΟΓΙΑΣ ΚΟΜΒΩΝ ΚΑΙ ΡΑΒ ΩΝ ΣΕ ΙΚΤΥΩΜΑΤΑ
ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΤΟΠΟΛΟΓΙΑΣ ΚΟΜΒΩΝ ΚΑΙ ΡΑΒ ΩΝ ΣΕ ΙΚΤΥΩΜΑΤΑ Αθανάσιος Στάµος ρ. Πολιτικός Μηχανικός, ΕΕ ΙΠ Σχολή Πολιτικών Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα, Ελλάδα e-mal: stamthan@central.ntua.gr
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (
35 Þ 6 Ð Å Vol. 35 No. 6 2012 11 ACTA MATHEMATICAE APPLICATAE SINICA Nov., 2012 È ÄÎ Ç ÓÑ ( µ 266590) (E-mail: jgzhu980@yahoo.com.cn) Ð ( Æ (Í ), µ 266555) (E-mail: bbhao981@yahoo.com.cn) Þ» ½ α- Ð Æ Ä