A new method to analyze evidence conflict

Σχετικά έγγραφα
Quick algorithm f or computing core attribute

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

High order interpolation function for surface contact problem

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

ER-Tree (Extended R*-Tree)

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

Approximation Expressions for the Temperature Integral

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

ADT

Research on real-time inverse kinematics algorithms for 6R robots

A research on the influence of dummy activity on float in an AOA network and its amendments

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

Motion analysis and simulation of a stratospheric airship

FENXI HUAXUE Chinese Journal of Analytical Chemistry. Savitzky-Golay. n = SG SG. Savitzky-Golay mmol /L 5700.

(II) * PACS: a, Hj 300. ) [6 9] ) [10 23] ) [26 30]. . Deng [24,25] Acta Phys. Sin. Vol. 61, No. 15 (2012)

Adaptive grouping difference variation wolf pack algorithm

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

CorV CVAC. CorV TU317. 1

Homomorphism in Intuitionistic Fuzzy Automata

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

A summation formula ramified with hypergeometric function and involving recurrence relation

Research on vehicle routing problem with stochastic demand and PSO2DP algorithm with Inver2over operator

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

Probabilistic Approach to Robust Optimization

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

A System Dynamics Model on Multiple2Echelon Control

Congruence Classes of Invertible Matrices of Order 3 over F 2

On the Galois Group of Linear Difference-Differential Equations

IL - 13 /IL - 18 ELISA PCR RT - PCR. IL - 13 IL - 18 mrna. 13 IL - 18 mrna IL - 13 /IL Th1 /Th2

Control Theory & Applications PID (, )

Research on Economics and Management

Prey-Taxis Holling-Tanner

172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell

Arbitrage Analysis of Futures Market with Frictions

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

College of Life Science, Dalian Nationalities University, Dalian , PR China.

ΚΒΑΝΤΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

Application of Wavelet Transform in Fundamental Study of Measurement of Blood Glucose Concentration with Near2Infrared Spectroscopy

Research on explaining porosity in carbonate reservoir by capture cross section method

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

Area Location and Recognition of Video Text Based on Depth Learning Method

The optimization of EV powertrain s efficiency control strategy under dynamic operation condition

Δυσκολίες που συναντούν οι μαθητές της Στ Δημοτικού στην κατανόηση της λειτουργίας του Συγκεντρωτικού Φακού

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Single-value extension property for anti-diagonal operator matrices and their square

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Detection and Recognition of Traffic Signal Using Machine Learning

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

A multipath QoS routing algorithm based on Ant Net

Gain self-tuning of PI controller and parameter optimum for PMSM drives

Multi-objective design of control chart for short-run production

Research on model of early2warning of enterprise crisis based on entropy

Evaluation on precision of occurrence measurement based on theory of errors

Error ana lysis of P2wave non2hyperbolic m oveout veloc ity in layered media

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

I. Μητρώο Εξωτερικών Μελών της ημεδαπής για το γνωστικό αντικείμενο «Μη Γραμμικές Ελλειπτικές Διαφορικές Εξισώσεις»

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

ΑΝΑΠΤΥΞΗ ΠΡΟΓΡΑΜΜΑΤΩΝ ΕΚΠΑΙΔΕΥΣΗΣ ΜΕ ΣΤΟΧΟ ΤΗΝ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΕΥΑΙΣΘΗΤΟΠΟΙΗΣΗ ΑΤΟΜΩΝ ΜΕ ΕΙΔΙΚΕΣ ΑΝΑΓΚΕΣ ΚΑΙ ΤΗΝ ΚΟΙΝΩΝΙΚΗ ΤΟΥΣ ΕΝΣΩΜΑΤΩΣΗ

ADVANCED STRUCTURAL MECHANICS

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Other Test Constructions: Likelihood Ratio & Bayes Tests

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Computing the Gradient

, -.

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

,,, (, ) , ;,,, ; -

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

Partial Trace and Partial Transpose

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

ΤΟ ΜΟΝΤΕΛΟ Οι Υποθέσεις Η Απλή Περίπτωση για λi = μi 25 = Η Γενική Περίπτωση για λi μi..35

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία ΟΛΙΣΘΗΡΟΤΗΤΑ ΚΑΙ ΜΑΚΡΟΥΦΗ ΤΩΝ ΟΔΟΔΤΡΩΜΑΤΩΝ ΚΥΚΛΟΦΟΡΙΑΣ

«ΧΩΡΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΑΝΟΜΗΣ ΤΟΥ ΠΛΗΘΥΣΜΟΥ ΤΗΣ ΠΕΡΔΙΚΑΣ (ALECTORIS GRAECA) ΣΤΗ ΣΤΕΡΕΑ ΕΛΛΑΔΑ»

Conjoint. The Problems of Price Attribute by Conjoint Analysis. Akihiko SHIMAZAKI * Nobuyuki OTAKE

Fragility analysis for control systems

Control Theory & Applications. Lyapunov. : (intelligent transportation system, ITS),

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

40 3 Journal of South China University of Technology Vol. 40 No Natural Science Edition March

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Supporting Information

Analysis of energy consumption of telecommunications network and application of energy-saving techniques

Homomorphism of Intuitionistic Fuzzy Groups

Transcript:

28 6 2011 6 : 1000 8152(2011)06 0839 06 Control Theory & Applications Vol. 28 No. 6 Jun. 2011 1,2, 2, 2, 1 (1., 400715; 2., 200240) :, DS, DS.. k,, k., -,,,. 1, 0.. : D-S ; ; ; ; : TP273 : A A new method to analyze evidence conflict DENG Yong 1,2, WANG Dong 2, LI Qi 2, ZHANG Ya-juan 1 (1. College of Computer and Information Sciences, Southwest University, Chongqing 400715, China; 2. School of Electronic, Information and Electrical Engineering, Shanghai Jiaotong University, Shanghai 200240, China) Abstract: Dempster Shafer evidence theory is widely used in data fusion. However, incorrect results may be obtained by classical Dempster combination rule when collected evidence highly conflict with each other. Extensive work has been done to improve the DS combination rule, but how to measure the conflict among two pieces of evidence is an issue which has not been well considered. We define a new factor, the relative coefficient, for measuring the conflict between two pieces of evidence based on the partial entropy and the mixture entropy. When the relative coefficient is close to one, the conflict degree between two pieces of evidence is very low. On the other hand, when the relative coefficient is close to zero, the conflict degree between two pieces of evidence is very high. Some numerical examples are given to illustrate the efficiency of the proposed method. Key words: D-S evidence theory; combination rule; evidence conflict; partial entropy; relative coefficient 1 (Introduction) D-S, [1 3].,,, [4 6]. D-S, D-S [7 10]. [10]., k., k, : k.,.,,,.,,. 1,, 0,. D-S. 2 D-S (The basic concepts of D-S evidence theory), D-S : 2009 04 17; : 2010 12 31. : (60874105); (NCET-08-0345); (09QA1402900); (CSCT, 2010BA2003); (11GFF 17); (SWU110021).

840 28, [11]. U X, U, U X. U, U 2 U 2 U. U n, 2 n. 1 U, U 2 U 2 U, A Θ, m : 2 U [0, 1] : m (Φ) = 0, (1) m (A) = 1, (2) A U m U (BPA). BPA A, m(a). A Θ, m(a) > 0, A.. D-S, A [Bel (A), Pl (A)], Bel Pl (belief function) (plausibility function). D-S : m(a) = 1 1 k A i B j C l =A k = A i B j C l =φ [m 1 (A i )m 2 (B j )m 3 (C l ) ], (3) [m 1 (A i )m 2 (B j )m 3 (C l ) ]. (4) k,. 3 Dempster (The existing problems of Dempster combination rule) Dempster, k. k = 1, Dempster ; k 1,. 1 [6], U = (a, b, c), 1: m 1 {a} = 0.99, m 1 {b} = 0.01; 2: m 2 {b} = 0.01, m 2 {c} = 0.99. m 1 m 2, D-S m 1 m 2 m 1 {a} = 0, m 1 {b} = 1, m 1 {c} = 0., {b}.,,, D-S.,,?,?? D-S k,,, k 1. 2. 2 : U = {a, b, c, d, e}, m 1 {a}=m 1 {b}=m 1 {c}=m 1 {d}=m 1 {e}=0.2; m 2 {a}=m 2 {b}=m 2 {c}=m 2 {d}=m 2 {e} =0.2. D-S k, k = 0.8,,.,,. D-S k.? 2006 Liu [12],., k, pignistic, k. cf (m 1, m 2 ) = k, difbetp,,, D-S. difbetp : BetP m (A) = BetP m (ω), (5) ω A difbetp m2 m 1 = max ( BetP m1 (A) BetP m2 (A) ). (6) A Ω, 4 : A) k, difbetp, m 1, m 2, D-S. B) k, difbetp, m 1, m 2, D- S. C) k, difbetp, m 1, m 2, D-S. D) k, difbetp, m 1, m 2,, D-S. Liu k, difbetp,.,,

6 : 841.,,?, [13 16],, [17 20].,,,,,,. 4 (Characterization of evidential conflict with correlation coefficient),,,,, :,,,., [21],, [22]. 2 X Y { } { } a1 a X = k b1 b, Y = k, p 1 p k q 1 q k X Y : H Y (X) = n q k log p k, (7) H (X) = n q k log q k. (8) 3 X Y, 4 : H (X, Y ) = H Y (X) + H X (Y ). (9) r Y (X) = H (Y ) H Y (X), (10) r X (Y ) = H (X) H X (Y ), (11) r (X, Y )= H (X Y ) H (X) + H (Y ) = H (X, Y ) H Y (X) + H X (Y ). (12) : 0 r X (Y ), r Y (X), r (X, Y ) 1, X, Y, r X (Y ) = r Y (X) = r (X, Y ) = 1. r X Y,. { }, X = a1 a k a 1,, a k, p 1 p k p 1,, p k,.,, 1, 1 m(c) = 0, 2 m(c) = 0.99, 0.99 log 0=,, r,, 0. 0, 0,, 0,., [23], 0, log 0 =,, 1 10 12 0,., : 3 U = (a, b, c), 1: m 1 {a} = 0.01, m 1 {b} = 0.99; 2: m 2 {b} = 0.99, m 2 {c} = 0.01. r = 0.1956,,,,,, 0,.,, X Y : H Y (X) = n q k 5p k, (13) H (X) = n q k 5q k. (14), log 0-1, 0-1, e log, e log. e p k 0-1, e p k, e 5p k, log., (9) (12)., 3, r = 0.9713,, 0, 0,.

842 28, 1 0 0 0 0. m 1 {a} = 0.1, m 1 {b} = 0.8, Y =DY = 0 1 0 0.01 = 0.01. m 1 {a, c} = 0.1, 0 0 1 0.99 0.99, c.,, ;,.,,,., Θ,., [20] BPA, BPA, D., D,. D,, : : D(A, B) = A B A B, A, B 2Θ. (15) D, v = D (i, j) v. (16).,. 1,, r = 0.0165. : { } m (a) m (b) m (c) m1 =, 0.99 0.01 0 { } m (a) m (b) m (c) m2 =. 0 0.01 0.99, {a} {b} {c} {a} 1 0 0 D = {b} 0 1 0, {c} 0 0 1 X = [0.99 0.01 0] T, Y = [0 0.01 0.99] T, 1 0 0 0.99 0.99 X =DX = 0 1 0 0.01 = 0.01, 0 0 1 0 0, : H Y (X) = 0.9995, H X (Y ) = 0.9995, H(X) = 0.0165, H(Y ) = 0.0165, 0.0165 + 0.0165 r(x, Y ) = 0.9995 + 0.9995 = 0.0165.,, 1 a 0.99, 2 a 0,,. k.,,, 0,, D-S. 2, 1,,,,. 5 (The analysis of evidential conflict) k,., r = 1,,,.,.. 4 U = (a, b, c), 1: m 1 {a}=0.8, m 1 {b}=0.1, m 1 {c}=0.1; 2: m 2 {a} = 0.1, m 2 {b} = 0.8, m 2 {a, c} = 0.1. r = 0.2811. 5 U = (a, b, c), 1: m 1 {a} = 0.8, m 1 {b} = 0.1, m 1 {c} = 0.1; 2: m 2 {a} = 0.8, m 2 {b} = 0.1, m 2 {a, c} = 0.1. r = 0.9719. 4 5,,,.

6 : 843,?,,,,. 6 U = (a, b), 1: m 1 {a} = 0.8, m 1 {b} = 0.2; 2: m 2 {a} = 0.2, m 2 {b} = 0.8. r = 0.2961. 7 U = (a, b), 1: m 1 {a} = 0.9, m 1 {b} = 0.1; 2: m 2 {a} = 0.1, m 2 {b} = 0.9. r = 0.1292. 6 7, 6 7, 6,, 7 6,., 0 1, 1,,, ; 0,,., k,., [24] Liu pignistic. 8 [24], Ω = {1, 2, 3,, 20}, : 1: m 1 (2, 3, 4) = 0.05, m 1 (5) = 0.05, m 1 (Ω) = 0.1, m 1 (A) = 0.8; 2: m 2 (1, 2, 3, 4, 5) = 1. A {1}, {1, 2}, {1, 2, 3},, {1, 2, 3,, 20}. 1 A 20 m 1 m 2 pignistic. 1 A. 1, Liu pignistic difbetp, difbetp,, difbetp,,.,,,. 1 Table 1 Comparison of new proposed conflict coefficient with classical conflict coefficient difbetp r k A ={1} 0.605 0.3313 0.05 A ={1, 2} 0.426 0.6422 0.05 A ={1, 2, 3} 0.248 0.8579 0.05 A ={1,, 4} 0.125 0.9290 0.05 A ={1,, 5} 0.125 0.9308 0.05 A ={1,, 6} 0.258 0.8913 0.05 A ={1,, 7} 0.355 0.7014 0.05 A ={1,, 8} 0.425 0.6773 0.05 A ={1,, 9} 0.480 0.6436 0.05 A ={1,, 10} 0.525 0.6066 0.05 A ={1,, 11} 0.560 0.5698 0.05 A ={1,, 12} 0.591 0.5351 0.05 A ={1,, 13} 0.617 0.5031 0.05 A ={1,, 14} 0.639 0.4740 0.05 A ={1,, 15} 0.658 0.4477 0.05 A ={1,, 16} 0.675 0.4241 0.05 A ={1,, 17} 0.689 0.4027 0.05 A ={1,, 18} 0.702 0.3835 0.05 A ={1,, 19} 0.714 0.3661 0.05 A ={1,, 20} 0.725 0.3627 0.05 1 Fig. 1 Comparison of new proposed conflict coefficient with classical conflict coefficient 6 (Conclusion) k D-S, k, k.,, D-S. :, (13)(14) 5, log,.,.

844 28,,.,.,,.. :, Liu,,, ( ) ( ),,... (References): [1] SMETS P, MAMDANI E H, DUBOIS D, et al. Non-standard Logics for Automated Reasoning[M]. New York, American: Academic Press, 1988. [2] ZADEH L. Review of a mathematical theory of evidence[j]. AI Magazine, 1984, 5(3): 81 83. [3] ZADEH L. A simple view of the dempster-shafer theory of evidence and its implication for the rule of combination[j]. AI Magazine, 1986, 7(2): 85 90. [4] DUBOIS D, PARDE H. Representation and combination of uncertainty with belief functions and possibility measures[j]. Computational Intelligence, 1988, 4(3): 244 264. [5] SMETS P. The combination of evidence in the transferable belief model[j]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 11(5): 447 458. [6] YAGER R R. On the Dempster-Shafer framework and new combination rules[j]. Information Sciences, 1987, 41(2): 93 137. [7] JOSANG A. The consensus operator for combining beliefs[j]. Artificial Intelligence, 2002, 141(1): 157 170. [8] LEFEVRE E, COLOT O, VANNOORENBERGHE P. Belief function combination and conflict management[j]. Information Fusion, 2002, 3(2): 149 162. [9] MURPHY C. Combining belief functions when evidence conflicts[j]. Decision Support Systems, 2000, 29(1): 1 9. [10] SMETS P. Analyzing the combination of conflicting belief functions[j]. Information Fusion, 2007, 8(4): 387 412. [11]. [M]. :, 1997. (KANG Yaohong. The Theory of Data Fusion[M]. Xi an: Xidian University Press, 1997.) [12] LIU W R. Analyzing the degree of conflict among belief functions[j]. Artificial Intelligence, 2006, 170(11): 909 924. [13],,. [J].. 2004, 27(2): 281 286. (HE Bing, HAO Aiming, ZHAO Q P. A decision making method based on uncertain information[j]. Chinese Journal of Computers, 2004, 27(2): 281 286.) [14],,. [J]., 2004, 19(12): 1388 1392. (XING Qinghua, LEI Yingjie, LIU Fuxian. One combination rule of evidence theory based on distributing conflict in proportion[j]. Control and Decision, 2004, 19(12): 1388 1392.) [15],. DS [J]., 2003, 24(6): 559 563. (HE Bing, HU Hongli. A modified DS evidence combination strategy[j]. Acta Aeronautica et Astronautica Sinica, 2003, 24(6): 559 563.) [16],,,. [J]., 2001, 27(6): 798 805. (PAN Quan, ZHANG Shanying, CHENG Yongmei, et al. Some research on robustness of evidence theory[j]. Acta Automatica Sinica, 2001, 27(6): 798 805.) [17],,. :,?[J]., 2007, 29(6): 890 898. (GUO Huawei, SHI Wenkang, DENG Yong. Evidential conflict and its 3D strategy: discard, discover and disassemble?[j]. Systems Engineering and Electronics, 2007, 29(6): 890 898.) [18] GUO H W, SHI W K, DENG Y. Evaluating sensor reliability in classification problems based on evidence theory[j]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2006, 36(5): 970 981. [19],,. [J]., 2005, 26(6): 754 758. (DENG Yong, ZHU Zhenfu, ZHONG Shan. Fuzzy information fusion based on evidence theory and its application in target recognition[j]. Acta Aeronautica et Astronautica Sinica, 2005, 26(6): 754 758.) [20] DENG Y, SHI W K, LIU Q. Combining belief functions based on distance of evidence[j]. Decision Support Systems, 2004, 38(3): 489 493. [21],. [J]., 2005, 19(4): 60 65. (WANG Weiqiong Q, XIN Xiaolong. Hybrid partial entropy and relative entropy[j]. Fuzzy Systems and Mathematics, 2005, 19(4): 60 65.) [22],. [J]. ( ), 1998(2): 28 35. (WU Minjin, BAI Zhijiang. Relative Entropy and its application[j]. Journal of Eastchina Normal University(Natural Science), 1998(2): 28 35.) [23],. Fuzzy [J]., 2005, 19(2): 97 103. (GUO Xiaozhi, XIN Xiaolong. Partial entropy and relative entropy of fuzzy sets[j]. Fuzzy Systems and Mathematics, 2005, 19(2): 97 103.) [24] JOUSSELME A L, GRENIER D, BOSSE E. A new distance between two bodies of evidence[j]. Information Fusion, 2001, 2(2): 91 101. : (1975 ),,,,, SMC,, E-mail: ydeng@swu.edu.cn professordeng@hotmail.com; ;. (1980 ),,, ; (1976 ),,, (1989 ),,,