28 6 2011 6 : 1000 8152(2011)06 0839 06 Control Theory & Applications Vol. 28 No. 6 Jun. 2011 1,2, 2, 2, 1 (1., 400715; 2., 200240) :, DS, DS.. k,, k., -,,,. 1, 0.. : D-S ; ; ; ; : TP273 : A A new method to analyze evidence conflict DENG Yong 1,2, WANG Dong 2, LI Qi 2, ZHANG Ya-juan 1 (1. College of Computer and Information Sciences, Southwest University, Chongqing 400715, China; 2. School of Electronic, Information and Electrical Engineering, Shanghai Jiaotong University, Shanghai 200240, China) Abstract: Dempster Shafer evidence theory is widely used in data fusion. However, incorrect results may be obtained by classical Dempster combination rule when collected evidence highly conflict with each other. Extensive work has been done to improve the DS combination rule, but how to measure the conflict among two pieces of evidence is an issue which has not been well considered. We define a new factor, the relative coefficient, for measuring the conflict between two pieces of evidence based on the partial entropy and the mixture entropy. When the relative coefficient is close to one, the conflict degree between two pieces of evidence is very low. On the other hand, when the relative coefficient is close to zero, the conflict degree between two pieces of evidence is very high. Some numerical examples are given to illustrate the efficiency of the proposed method. Key words: D-S evidence theory; combination rule; evidence conflict; partial entropy; relative coefficient 1 (Introduction) D-S, [1 3].,,, [4 6]. D-S, D-S [7 10]. [10]., k., k, : k.,.,,,.,,. 1,, 0,. D-S. 2 D-S (The basic concepts of D-S evidence theory), D-S : 2009 04 17; : 2010 12 31. : (60874105); (NCET-08-0345); (09QA1402900); (CSCT, 2010BA2003); (11GFF 17); (SWU110021).
840 28, [11]. U X, U, U X. U, U 2 U 2 U. U n, 2 n. 1 U, U 2 U 2 U, A Θ, m : 2 U [0, 1] : m (Φ) = 0, (1) m (A) = 1, (2) A U m U (BPA). BPA A, m(a). A Θ, m(a) > 0, A.. D-S, A [Bel (A), Pl (A)], Bel Pl (belief function) (plausibility function). D-S : m(a) = 1 1 k A i B j C l =A k = A i B j C l =φ [m 1 (A i )m 2 (B j )m 3 (C l ) ], (3) [m 1 (A i )m 2 (B j )m 3 (C l ) ]. (4) k,. 3 Dempster (The existing problems of Dempster combination rule) Dempster, k. k = 1, Dempster ; k 1,. 1 [6], U = (a, b, c), 1: m 1 {a} = 0.99, m 1 {b} = 0.01; 2: m 2 {b} = 0.01, m 2 {c} = 0.99. m 1 m 2, D-S m 1 m 2 m 1 {a} = 0, m 1 {b} = 1, m 1 {c} = 0., {b}.,,, D-S.,,?,?? D-S k,,, k 1. 2. 2 : U = {a, b, c, d, e}, m 1 {a}=m 1 {b}=m 1 {c}=m 1 {d}=m 1 {e}=0.2; m 2 {a}=m 2 {b}=m 2 {c}=m 2 {d}=m 2 {e} =0.2. D-S k, k = 0.8,,.,,. D-S k.? 2006 Liu [12],., k, pignistic, k. cf (m 1, m 2 ) = k, difbetp,,, D-S. difbetp : BetP m (A) = BetP m (ω), (5) ω A difbetp m2 m 1 = max ( BetP m1 (A) BetP m2 (A) ). (6) A Ω, 4 : A) k, difbetp, m 1, m 2, D-S. B) k, difbetp, m 1, m 2, D- S. C) k, difbetp, m 1, m 2, D-S. D) k, difbetp, m 1, m 2,, D-S. Liu k, difbetp,.,,
6 : 841.,,?, [13 16],, [17 20].,,,,,,. 4 (Characterization of evidential conflict with correlation coefficient),,,,, :,,,., [21],, [22]. 2 X Y { } { } a1 a X = k b1 b, Y = k, p 1 p k q 1 q k X Y : H Y (X) = n q k log p k, (7) H (X) = n q k log q k. (8) 3 X Y, 4 : H (X, Y ) = H Y (X) + H X (Y ). (9) r Y (X) = H (Y ) H Y (X), (10) r X (Y ) = H (X) H X (Y ), (11) r (X, Y )= H (X Y ) H (X) + H (Y ) = H (X, Y ) H Y (X) + H X (Y ). (12) : 0 r X (Y ), r Y (X), r (X, Y ) 1, X, Y, r X (Y ) = r Y (X) = r (X, Y ) = 1. r X Y,. { }, X = a1 a k a 1,, a k, p 1 p k p 1,, p k,.,, 1, 1 m(c) = 0, 2 m(c) = 0.99, 0.99 log 0=,, r,, 0. 0, 0,, 0,., [23], 0, log 0 =,, 1 10 12 0,., : 3 U = (a, b, c), 1: m 1 {a} = 0.01, m 1 {b} = 0.99; 2: m 2 {b} = 0.99, m 2 {c} = 0.01. r = 0.1956,,,,,, 0,.,, X Y : H Y (X) = n q k 5p k, (13) H (X) = n q k 5q k. (14), log 0-1, 0-1, e log, e log. e p k 0-1, e p k, e 5p k, log., (9) (12)., 3, r = 0.9713,, 0, 0,.
842 28, 1 0 0 0 0. m 1 {a} = 0.1, m 1 {b} = 0.8, Y =DY = 0 1 0 0.01 = 0.01. m 1 {a, c} = 0.1, 0 0 1 0.99 0.99, c.,, ;,.,,,., Θ,., [20] BPA, BPA, D., D,. D,, : : D(A, B) = A B A B, A, B 2Θ. (15) D, v = D (i, j) v. (16).,. 1,, r = 0.0165. : { } m (a) m (b) m (c) m1 =, 0.99 0.01 0 { } m (a) m (b) m (c) m2 =. 0 0.01 0.99, {a} {b} {c} {a} 1 0 0 D = {b} 0 1 0, {c} 0 0 1 X = [0.99 0.01 0] T, Y = [0 0.01 0.99] T, 1 0 0 0.99 0.99 X =DX = 0 1 0 0.01 = 0.01, 0 0 1 0 0, : H Y (X) = 0.9995, H X (Y ) = 0.9995, H(X) = 0.0165, H(Y ) = 0.0165, 0.0165 + 0.0165 r(x, Y ) = 0.9995 + 0.9995 = 0.0165.,, 1 a 0.99, 2 a 0,,. k.,,, 0,, D-S. 2, 1,,,,. 5 (The analysis of evidential conflict) k,., r = 1,,,.,.. 4 U = (a, b, c), 1: m 1 {a}=0.8, m 1 {b}=0.1, m 1 {c}=0.1; 2: m 2 {a} = 0.1, m 2 {b} = 0.8, m 2 {a, c} = 0.1. r = 0.2811. 5 U = (a, b, c), 1: m 1 {a} = 0.8, m 1 {b} = 0.1, m 1 {c} = 0.1; 2: m 2 {a} = 0.8, m 2 {b} = 0.1, m 2 {a, c} = 0.1. r = 0.9719. 4 5,,,.
6 : 843,?,,,,. 6 U = (a, b), 1: m 1 {a} = 0.8, m 1 {b} = 0.2; 2: m 2 {a} = 0.2, m 2 {b} = 0.8. r = 0.2961. 7 U = (a, b), 1: m 1 {a} = 0.9, m 1 {b} = 0.1; 2: m 2 {a} = 0.1, m 2 {b} = 0.9. r = 0.1292. 6 7, 6 7, 6,, 7 6,., 0 1, 1,,, ; 0,,., k,., [24] Liu pignistic. 8 [24], Ω = {1, 2, 3,, 20}, : 1: m 1 (2, 3, 4) = 0.05, m 1 (5) = 0.05, m 1 (Ω) = 0.1, m 1 (A) = 0.8; 2: m 2 (1, 2, 3, 4, 5) = 1. A {1}, {1, 2}, {1, 2, 3},, {1, 2, 3,, 20}. 1 A 20 m 1 m 2 pignistic. 1 A. 1, Liu pignistic difbetp, difbetp,, difbetp,,.,,,. 1 Table 1 Comparison of new proposed conflict coefficient with classical conflict coefficient difbetp r k A ={1} 0.605 0.3313 0.05 A ={1, 2} 0.426 0.6422 0.05 A ={1, 2, 3} 0.248 0.8579 0.05 A ={1,, 4} 0.125 0.9290 0.05 A ={1,, 5} 0.125 0.9308 0.05 A ={1,, 6} 0.258 0.8913 0.05 A ={1,, 7} 0.355 0.7014 0.05 A ={1,, 8} 0.425 0.6773 0.05 A ={1,, 9} 0.480 0.6436 0.05 A ={1,, 10} 0.525 0.6066 0.05 A ={1,, 11} 0.560 0.5698 0.05 A ={1,, 12} 0.591 0.5351 0.05 A ={1,, 13} 0.617 0.5031 0.05 A ={1,, 14} 0.639 0.4740 0.05 A ={1,, 15} 0.658 0.4477 0.05 A ={1,, 16} 0.675 0.4241 0.05 A ={1,, 17} 0.689 0.4027 0.05 A ={1,, 18} 0.702 0.3835 0.05 A ={1,, 19} 0.714 0.3661 0.05 A ={1,, 20} 0.725 0.3627 0.05 1 Fig. 1 Comparison of new proposed conflict coefficient with classical conflict coefficient 6 (Conclusion) k D-S, k, k.,, D-S. :, (13)(14) 5, log,.,.
844 28,,.,.,,.. :, Liu,,, ( ) ( ),,... (References): [1] SMETS P, MAMDANI E H, DUBOIS D, et al. Non-standard Logics for Automated Reasoning[M]. New York, American: Academic Press, 1988. [2] ZADEH L. Review of a mathematical theory of evidence[j]. AI Magazine, 1984, 5(3): 81 83. [3] ZADEH L. A simple view of the dempster-shafer theory of evidence and its implication for the rule of combination[j]. AI Magazine, 1986, 7(2): 85 90. [4] DUBOIS D, PARDE H. Representation and combination of uncertainty with belief functions and possibility measures[j]. Computational Intelligence, 1988, 4(3): 244 264. [5] SMETS P. The combination of evidence in the transferable belief model[j]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 11(5): 447 458. [6] YAGER R R. On the Dempster-Shafer framework and new combination rules[j]. Information Sciences, 1987, 41(2): 93 137. [7] JOSANG A. The consensus operator for combining beliefs[j]. Artificial Intelligence, 2002, 141(1): 157 170. [8] LEFEVRE E, COLOT O, VANNOORENBERGHE P. Belief function combination and conflict management[j]. Information Fusion, 2002, 3(2): 149 162. [9] MURPHY C. Combining belief functions when evidence conflicts[j]. Decision Support Systems, 2000, 29(1): 1 9. [10] SMETS P. Analyzing the combination of conflicting belief functions[j]. Information Fusion, 2007, 8(4): 387 412. [11]. [M]. :, 1997. (KANG Yaohong. The Theory of Data Fusion[M]. Xi an: Xidian University Press, 1997.) [12] LIU W R. Analyzing the degree of conflict among belief functions[j]. Artificial Intelligence, 2006, 170(11): 909 924. [13],,. [J].. 2004, 27(2): 281 286. (HE Bing, HAO Aiming, ZHAO Q P. A decision making method based on uncertain information[j]. Chinese Journal of Computers, 2004, 27(2): 281 286.) [14],,. [J]., 2004, 19(12): 1388 1392. (XING Qinghua, LEI Yingjie, LIU Fuxian. One combination rule of evidence theory based on distributing conflict in proportion[j]. Control and Decision, 2004, 19(12): 1388 1392.) [15],. DS [J]., 2003, 24(6): 559 563. (HE Bing, HU Hongli. A modified DS evidence combination strategy[j]. Acta Aeronautica et Astronautica Sinica, 2003, 24(6): 559 563.) [16],,,. [J]., 2001, 27(6): 798 805. (PAN Quan, ZHANG Shanying, CHENG Yongmei, et al. Some research on robustness of evidence theory[j]. Acta Automatica Sinica, 2001, 27(6): 798 805.) [17],,. :,?[J]., 2007, 29(6): 890 898. (GUO Huawei, SHI Wenkang, DENG Yong. Evidential conflict and its 3D strategy: discard, discover and disassemble?[j]. Systems Engineering and Electronics, 2007, 29(6): 890 898.) [18] GUO H W, SHI W K, DENG Y. Evaluating sensor reliability in classification problems based on evidence theory[j]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2006, 36(5): 970 981. [19],,. [J]., 2005, 26(6): 754 758. (DENG Yong, ZHU Zhenfu, ZHONG Shan. Fuzzy information fusion based on evidence theory and its application in target recognition[j]. Acta Aeronautica et Astronautica Sinica, 2005, 26(6): 754 758.) [20] DENG Y, SHI W K, LIU Q. Combining belief functions based on distance of evidence[j]. Decision Support Systems, 2004, 38(3): 489 493. [21],. [J]., 2005, 19(4): 60 65. (WANG Weiqiong Q, XIN Xiaolong. Hybrid partial entropy and relative entropy[j]. Fuzzy Systems and Mathematics, 2005, 19(4): 60 65.) [22],. [J]. ( ), 1998(2): 28 35. (WU Minjin, BAI Zhijiang. Relative Entropy and its application[j]. Journal of Eastchina Normal University(Natural Science), 1998(2): 28 35.) [23],. Fuzzy [J]., 2005, 19(2): 97 103. (GUO Xiaozhi, XIN Xiaolong. Partial entropy and relative entropy of fuzzy sets[j]. Fuzzy Systems and Mathematics, 2005, 19(2): 97 103.) [24] JOUSSELME A L, GRENIER D, BOSSE E. A new distance between two bodies of evidence[j]. Information Fusion, 2001, 2(2): 91 101. : (1975 ),,,,, SMC,, E-mail: ydeng@swu.edu.cn professordeng@hotmail.com; ;. (1980 ),,, ; (1976 ),,, (1989 ),,,