A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION

Σχετικά έγγραφα
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (


Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #


2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

MODEL RESEARCH BASED ON LIQUID/SOLID TWO PHANSE FLOWS IN METALLURGY STIRRED TUBULAR REACTOR

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

ØSrÚCa Mg 12Zn 4Al 0.3MnÜ

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

EFFECTS OF Al Al 4 C 3 REFINER AND ULTRASONIC FIELD ON MICROSTRUCTURES OF PURE Mg

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

BEHAVIOUR AND MECHANISM OF STRAIN HARDEN- ING FOR DUAL PHASE STEEL DP1180 UNDER HIGH STRAIN RATE DEFORMATION

{:=, :, goto, if, else} ß ß LB {beg, end, l 1, l 2,..., }.

p din,j = p tot,j p stat = ρ 2 v2 j,

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

v w = v = pr w v = v cos(v,w) = v w

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

DuPont Suva 95 Refrigerant

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL

Delta Inconel 718 δ» ¼

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

High order interpolation function for surface contact problem

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

; +302 ; +313; +320,.

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

DuPont Suva 95 Refrigerant

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

MICROSEGREGATION OF SOLUTE ELEMENTS IN SOLIDIFYING MUSHY ZONE OF STEEL AND ITS EFFECT ON LONGITUDINAL SURFACE CRACKS OF CONTINUOUS CASTING STRAND

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

2 SFI

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

AN INVESTIGATION ON THE CREEP BEHAVIOR OF PURE Mg

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

Ó³ Ÿ , º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Second Order RLC Filters

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

Motion analysis and simulation of a stratospheric airship

DISCONTINUOUS YIELDING BEHAVIOR OF β PHASE CONTAINING TiAl ALLOY DURING HIGH TEMPERATURE DEFORMATION PROCESS

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 11: SPLINES. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

S i L L I OUT. i IN =i S. i C. i D + V V OUT

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY β Ti Mo Zr(Sn) ALLOYS ON YOUNG S MODULUS AND MECHANICAL PROPERTIES

49 Ö 6 Đ Vol.49 No ACTA METALLURGICA SINICA Jun pp

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA

Ó³ Ÿ , º 7(205) Ä1268 ˆ ˆŠ ˆ ˆŠ Š ˆ. ƒ ˆˆ μì Ê ³... Ê ±μ, Œμ ± Í μ ²Ó Ò ² μ É ²Ó ± Ö Ò Ê É É Œˆ ˆ, Œμ ± É ƒ ³³ - μ ª Œμ ±, Œμ ±

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

48 12 Ö Vol.48 No ACTA METALLURGICA SINICA Dec pp Î µ TG142.1, Á A Ì µ (2012)

ER-Tree (Extended R*-Tree)

ƒê,.. ± É,.. Ëμ μ. ˆŸ Œ ƒ ˆ ƒ Ÿ ˆ ˆˆ ˆ ˆ ˆ Šˆ- ˆŒŒ ˆ ƒ Œ ƒ ˆ. ² μ Ê ² ² ±É Î É μ

EFFECTS OF TEMPERATURE GRADIENT ON LAMEL- LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl BASED ALLOY

EXPERIMENTAL RESEARCH ON MELTING SURFACE BEHAVIOR IN MOLD UNDER COMPOUND MAGNETIC FIELD


ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

Ανώτερα Μαθηματικά ΙI

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

,,, (, ) , ;,,, ; -

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

ˆ Œ ˆ Ÿ ˆ ˆŸ Ÿ - ˆ ˆ Šˆ Š ˆŸˆ

arxiv: v1 [math.dg] 3 Sep 2007

SYNTHESIS KINETICS OF (Y, Gd) 2 O 3 Eu 3+ NANO POWDERS DURING PROCESS OF PREPARATION

þÿ¼ ½ ±Â : ÁÌ» Â Ä Å ÃÄ ²µ þÿä Å ÃÇ»¹º Í Á³ Å

Design Method of Ball Mill by Discrete Element Method

DtN ² *1) May, 2016 MATHEMATICA NUMERICA SINICA Vol.38, No.2. ˱ Helmholtz µå ű Dirichlet-to-Neumann. u = g, Γ, (1.1) r iku = o(r 1 2 ), r,

EFFECT OF LOADING MODES ON MECHANICAL PROPERTY AND STRAIN INDUCED MARTENSITE TRANSFORMATION OF AUSTENITIC STAINLESS STEELS

Instruction Execution Times

½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾

CorV CVAC. CorV TU317. 1

ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ

5.4 The Poisson Distribution.

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

Τεχνικές βασισμένες στα Δίκτυα Αναμονής Εισαγωγικά Επιχειρησιακοί νόμοι

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

P ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ

v[m/s] U[mV] 2,2 3,8 6,2 8,1 9,7 12,0 13,8 14,2 14,6 14,9

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

Transcript:

Õ 48 Õ 12 Vol.48 No.12 212 Û 12 Õ 151 1519 Í ACTA METALLURGICA SINICA Dec. 212 pp.151 1519 Æ È ÒÕ Þ Đ ÕÜÌÏ Ê ³ 1) µ²¹ 1) ½ 1) ¼ º 2) 1) ĐÔ CAD Ñ Á ¼, 23 2), Õ ÄÅËÏ, ÆÂ Ô Avrami Æ Ú ¾, ÀÂÏ º Ñ ¼Å ¾, Â È Ë È Ø. ¹ Gleeble 15 Ù Æ, Ú ¾ Ñ Ä AZ31B  Æ, Õ ¼ÅË Â ¾, Ö Æ, Æ Â ¾. ϲ «ÑÛ ¼ ÄÅ ¾ ²ÝÓ, Ö Î ¾, «ÑÛ Ú, ÙÖ Æ Î ßÀ «Ï, Ç Â «ÝÓÚ Æ«. Í, Å, ¾, AZ31B Ø TG146 Å Ä Ð A Å Ã 412 1961(212)12 151 1 A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION LIU Juan 1), LI Juqiang 1), CUI Zhenshan 1), RUAN Liqun 2) 1) National Engineering Research Center of Die & Mold CAD, Shanghai Jiao Tong University, Shanghai 23 2) Department of Mechanical Engineering, Kumamoto University, Kumamoto, Japan Correspondent: CUI Zhenshan, professor, Tel: (21)6282765, E-mail: cuizs29@sjtu.edu.cn Supported by National Science and Technology Major Project (No.212ZX412 11) and National Natural Science Foundation of China (No.59511) Manuscript received 212 8 16, in revised form 212 9 3 ABSTRACT Dynamic recrystallization (DRX) is considered as one of the most important microstructural evolution mechanisms to obtain fine metallurgical structures, eliminate defects and improve mechanical properties of products. Although the DRX kinetics models proposed by researchers have some differences in parameters and forms, they are all based on the Avrami functioescribing the relationship betweeynamically recrystallized volume fraction and strain or time. Avrami equation is in the form of exponential function and the kinetics curve of DRX exhibits different when the exponent is assumed to be different (between 1 and 2). Under these conditions, however, the exponential function cannot exactly describe the slow rapid slow property of the development speed of DRX process. By introducing the velocity of development of DRX process, which is referred to as the variation of the dynamically recrystallized volume fraction with strain, namely, the first partial derivative of the dynamically recrystallized volume fraction to strain, a new kinetics model of DRX was proposed in comparison with the classical kinetics model of DRX. The new model represents the characteristics of DRX: the dynamically recrystallized volume fraction equals zero when the strain is smaller than the critical strain, and the maximum of the dynamically recrystallized volume fraction equals 1; once the strain exceeds the critical strain, the dynamically recrystallized volume fraction slowly increases first, and then rapidly increases, at last slowly increases. Consequently, the new kinetics model is in agreement with the development law of DRX process and includes few parameters which have clear * Ò» º Ó 212ZX412 11 Ò» Ó 59511 : 212 8 16, : 212 9 3 ÁÆ «: É ³, Þ, 1976 ½, Â ß DOI: 1.3724/SP.J.137.212.486

Õ 12 È ²Ñ : ¹»ÄÐ Ð Þ ÍÙ¾ 1511 physical meaning and are easy to determine. By conducting Gleeble 15 thermomechanical simulation compression tests at the temperatures ranging from 523 to 673 K and at the strain rates 1, 1,.1 and 1 s 1, the kinetics model for Mg alloy AZ31B characterized by DRX for instance was built and parameters were determined. Microscopic examination shows that the experimental results are in good agreement with the predicted values, which validates the accuracy of the new kinetics model. Then combined with grain size of DRX model, the kinetic model built under steady state conditions was rewritten as superimposed step form to apply in the prediction of grain size under unsteady state conditions. The simulated data accord with the experimental results by means of quantitative metallography, which verified the rationality of the superimposed prediction method. KEY WORDS dynamic recrystallization (DRX), dynamically recrystallized volume fraction, kinetics model, magnesium alloy AZ31B ² Ë ÐÐß Ï, Ç Ð, Ð Ò Ð. à Рµ, ˼±Ã Рƾ Î., Đ ¹»ËÐ ½ Æ ², ²Â ÐÐ Ò. Ï ÐÅÅ, ß ½ ÅÆ, ÛÆ, Í Ð ±ÅÅ. [1 9] ß Ã Õ Ø ÅÐĐ ÅÆ Û Ð ½ Æ. Æ Ó «ØÙ Ü ÈĐ, Ò ÐµÎ Æ Š[1]. ÐÕ ÒÐ ßÌ ¹, Æ Õ Å¾Í, Ó Å¾ Ì ÈÆ, Ì, Í ËÀ ² Ì, Õ Í ÐÆ Å. Æ Ó, ÓÐ Ôµ ¾ Đ, ½ ÆÂ, ÆÐĐ ± Đ, Ð ½ ÅÆ» [11 13]. Barnett Ò [14] à à Mg 3Al 1Zn Ï ½ Ð, ½ [15] AZ61 Æ ÐĐ ² Ã. µâà ¹ Ò ÐĐ Đ ¼±, ÕÉ, ß Ã ± Đ Ð Ò ½ÆÐ Æ AZ31B Đ Đ. Áº ³ÞÔ Ð ÒÜ Ð ½ ÅÆ Ð Û, Ç, Ç Ð. 1 ÑÔ Ý Ù 1.1 ÓÖ ß «Sellars Ò [1,2] Áà ½ ÅÆ Ð Ý, Á Ú ÇÐ Ä, ß Ã ÐĐ Û, Õ Avrami ÁÃĐ Æ Û, : f drx = 1 exp(.693( t t.5 )) (1), f drx Đ Æ, t.5 ž 5% Đ Ð Ö, t Ö. Sellars Ö º Æ.693, Ð Ò Á Ò Ð. Mc- Queen Ò [3] ß ÐĐ Đ Ì Ö ÁÐ. º Å [4] º Yada ß Ã Đ ÆÛ, : f drx = 1 exp(.693( ε εc ε.5 ) 2 ) (2) ε.5 = 1.144 1 3 d.28 ε 5 exp( 642 T ), ε c ÇÅ, ε.5 ž 5% Đ Ð, d Ï, T, ε Ì. Sellars Yada Ø, ³ Ø, Ò Ì, Ö Ð. Ð Õ Yada º Ã, ¼ Ô Õ ÔµÆ Ú, µ Ò Ý²Ü Marc, Superform Deform Ò Ã Yada Ð ½ ÅÆÐ. Sellars, Yada Ð ε.5 Ð, ž 5% Đ Ð, ±Ù Á, Õ. Ê Yada Ð Æ 2, Sellar Ð Æ 1. Ü, Kim Ò [5,6] ÇÐ Ä ß Ã Ð Đ ÆÛ, : f drx = 1 exp( ( ε εc ε ) m ) m = 1.12(Z/A) 8 (3), ε ²Æ Ð ; Z Ð Ì, Zener Hollomon ½Æ; A ½ Æ. Kim º ε Ð Yada Ð ε.5 ß, ³ Û Đ Ð Ð ¾ Ê, Đ ÐÌ, Á Ý,, ÖÁ Ó Ý, È Kim Ð ε Yada Ð ε.5 Ð, Ð Đ Ì Ð, Ì ²Æ Ð. Kim Ò Æ.693, Ð ÆÌ Z Ð Æ, Ê

1512 Á Õ 48 ½ÆÐ Sellars ÆÃ. : Kopp Ò [7] º ß Đ ÆÛ f drx = 1 exp( k d ( ε εc ε.5 ε c )) ε.5 = k 1 Z n1 (4), k d, k 1 n 1 ½Æ. Kopp Yada Ã, Æ k d Ð Æ.693, 1 Ê Æ Ð 2 Ê Æ, Ò ε.5 ε c Ð ε.5. Laasraoui Jonas [8] Serajzadeh Ò [9] ß Ã Ø ÒÜ Ø Ð Đ, ¼ Ù f drx = 1 exp( k d ( ε ε c ε p ) ) (5), ε p ; k d ½Æ. Yada, É ε p Ð ε.5, µ Ð k d Ì Z Ð Æ Ì ε T Ð Æ, µ ØÐ ÒÜ k d Æ, ɹ Ô Đ ÅÆ Ð. ¼ Á, Ò ÐĐ ÆÛ Õ Avrami, ØÐ Ð Æ Æ ε.5 ½ÆÐ. ½Æ Ò Ð ÒÜ, Õ Kopp Ð ºÍà Sellars Yada Æ.693 (5) Æ Ð, Å Ð Kopp ÛÐ Õ Avrami ÐĐ Đ. f drx = 1 exp(.693( ε ε c ε.5 ε c ) ) (6) 1.2 ÐÚ ³ Đ Ð Ù: ÇÅ Đ Æ, 1; ÇÅ Á, Đ Ð Æ É Ô, Á Ì Ô, ÁÓÉ Ô, Ź à ÐĐ ÆÛ : ε εc (1 ε.5 εc ) f drx = [1+k v ] 1 (7), k v Đ Ì Ò»Ð Æ, ¼ Ë Ð Ï Ð. ε c.2, ε.5.5, ³ (6) ÂÁ Ø ÐĐ Đ, Ý 1a ; ε c.2, ³ (7) ÂÁ Ø k v ε.5 ÐĐ Đ, Ý 1b. ÐÝ 1b ¼ Á,» Đ ÐĐ ¾Î. (7) ¼, Ð½Æ k v ± 1..8.6 (a).4 =1.2 =2 =3 =4 1..8.6.4.2 (b) k v.5 1,.4 15,.5 15,.6 2,.7 1 ¾ Fig.1 Kinetics curves of DRX based on modified Kopp s model (a) and the new kinetics model (b) Ð : ε ³Õ ε c, f drx Õ ; ε Ð Õ ε c, f drx Õ 1; ε ÒÕ ε.5,» ÀÒÕ.5. ³ºÍĐ ÐÌ, (7) Æ, ¼ Đ ÐÌ Æ: v drx = f drx ε = lnk v k (1 ε.5 ε c ε εc (1 ε.5 εc ) ε εc ε.5 εc ) v (1+k v ) 2 (8) ε c.2, ε.5.5, (6) Æ, ÂÁ Ø, Õ Avrami ÐĐ Ì, Ý 2a ; ε c.2, ³ (8)  Á Ø k v ε.5 ÐĐ Đ, Ý 2b. ÐÝ 2b ¼ Á,» Đ ÐÅÅ,. Ý 1a Ý 2a Ð Æ Õ 2 Ð Ð. Sellars Kopp º Ã Æ 1 Ð, =1, Đ Đ Á Û Ð, Đ Ì ÙÐ, ¾. Yada º Ã Æ 2 Ð, ÐÝ 1a Ý 2a ¼ Á, Đ ÐĐ ¾ ¾Î, =2, Đ Ì Ð Ì ε.5 Å.

Õ 12 È ²Ñ : ¹»ÄÐ Ð Þ ÍÙ¾ 1513 Velocity of DRX v drx Velocity of DRX v drx 6 5 4 3 2 1 (a) =1 =2 =3 =4 6 (b) k v.5 5 1,.4 15,.5 15,.6 4 2,.7 3 2 1 2 ¾ ËÏ Fig.2 Schematic of velocity curves based on modified True stress, MPa Kopp s model (a) and the new kinetics model (b) 2 18 16 14 12 1 8 6 4 2 (a) 25 o C 3 o C 35 o C 4 o C Õ 2, ÆÐ Ô, Đ Ì, Đ Ì Ð Õ ε.5 Å., Avrami,»ÐĐ Đ Ò Æ Ù: (1) ÐÕ Æ ÆÐ ³, Avrami ³ÕÇÅ Õ Ð,» ¼ ÇÅ Ð Æ. (2) ε.5 Ò ÆÃÐ, Æ 5% Ð. (3) ½Æ k v ÃĐ Å¾Ð Đ Ì Ð ³. 4)» Ð ½Æ º,  ε c ε.5 Z ½Æ Ì ß, Ò k v, Ð (6) ºÃ ± ½Æ. 2 Ñ Æ AZ31B(Mg 3Al 1Zn(³Á Æ, %)), Ê 1 mm, 17 mm. Gleeble 15 Ú Ç Ò, 1., Ø Ì Ð Ý 3. ÆË ÒÐ Ë Ò: (1), ÐÕÔµ Æ«Ô, ± Ô Ñ±. (2) Ì Ô Ì Ó, ÐÕÔµ Æ Ô¼, Ë. (3) Õ, ÐÕĐ Ð²Æ ÕÔµ Æ Ð«Æ, Ë True stress, MPa 2 (b) 18 16 14 12 1 8 6 4 2 25 o C 3 o C 35 o C 4 o C True stress, MPa 2 (c) 18 16 14 12 1 8 6 4 2 25 o C 3 o C 35 o C 4 o C True stress, MPa 2 (d) 18 16 14 12 1 8 6 4 2 25 o C 3 o C 3 AZ31B Ê [16] Fig.3 The stress strain curves of magnesium alloy AZ31B [16] 35 o C 4 o C (a) ε=1 s 1 (b) ε=1 s 1 (c) ε=.1 s 1 (d) ε=1 s 1

I A 1514 Y e l p ~. (4) Y < e l p, &N sg N K~G, S ee? a. Aw3l$n a h l+ MS h 9. 4 ad AZ31B q 48 ( y 4 C 5 #t 5nx l E 5_. [,I 5 C e T X a B EW n 5 f!: Y < 5 l 3!, B EW h p; Y < e T X 4 "s4k D (a), 3 (b), 35 (c) and 4 Fig.4 OM images of magnesium alloy AZ31B at the temperatures of 25 (d) (ε =1 s 1, ε=1.) 5 ad AZ31B d SW"s4k D Fig.5 OM images of magnesium alloy AZ31B at the strain rates of 1 s 1 (a), 1 s 1 (b),.1 s 1 (c) and 1 s 1 (d) (T =35, ε=1.)

Õ 12 È ²Ñ : ¹»ÄÐ Ð Þ ÍÙ¾ 1515 Ð Ô, Ï Ù³. 3 Æ Bergstrom [17] º ÏĐ Æ, É Ø. f drx = σ σ p σ s σ p (9), σ p, σ s, σ ½Ð. Ð (7) Æ 1 f drx f drx ε εc = k 1 ε.5 εc v (1) ln( 1 f drx f drx ) = lnk v (1 ε ε c ε.5 ε c ) (11) ÐÕ «Ò ε c ε.5, Ö ε c =(.6.85)ε p, Å.8. À Ö Ú lnz ln(ε p ) lnz ln(ε.5 ) л,, Z= εexp(q/(rt)), Q= 158732.3 kj/mol [16], ε c ε.5 Ð [18], Ý 6a b. ÁÖ Ú Ç Ð ln((1 f drx )/f drx ) 1 (ε ε c )/(ε.5 ε c ), ¼ k v, Ý 6c, Ð (12). ε εc (1 ε f drx = (1+15.5 εc ) ) 1 ε c = 834 Z 75 ε.5 = 426 Z 781 (12),Z= εexp(q/(rt)),q=158732.3kj/mol [16], R Æ. ³ (12), β Æ AZ31B Ø Ø Ì ÐĐ Đ Ý 7. à Ð, ÁÆ Ç Ç. Ý 8 Æ AZ31B Ð Ï, Ï 22 µm. 3 Ì.1 s 1, Ø ÁÐ Æ AZ31B ½ Ý 9. ÐݼÚ, Á.15, Ò º Å¾Đ ; Á Ô.3, ž Đ ; ÁÐ Ô,, ÏÙº, Á.5, µ žÃĐ ; Á.8, Þ Đ Ð. ln( p ) (a) -.5-1. -1.5-2. -2.5-3. -3.5 Experiment data Linear fit -4. 5 1 15 2 25 3 35 4 45 5 lnz ln(.5 ) -.5-1. -1.5-2. (b) -2.5 Experiment data Linear fit -3. 5 1 15 2 25 3 35 4 45 5 lnz ln((1-f drx )/f drx ) 6 4 2 (c) 25 o C, 1 s -1 25 o C,.1 s -1-2 3 o C,.1 s -1 3 o C, 1 s -1-4 35 o C, 1 s -1 35 o C, 1 s -1 Linear fit -6-2. -1.5-1. -.5.5 1. 1.5 2. 2.5 1-( - c )/(.5 - c ) 6 AZ31B ÆÅ Ù º Ü Fig.6 Relationships of lnz ln(ε p) (a), lnz ln(ε.5 ) (b) and ln((1 f drx )/f drx ) [1 (ε ε c)/ (ε.5 ε c)] (c)

1516 Á Õ 48 1. (a) 1. (b).8.6.4.2 25 o C 3 o C 35 o C 4 o C.8.6.4.2 1. (c) 1. (d).8.6.4.2.8.6.4.2 7 AZ31B Fig.7 Kinetics curves of DRX of magnesium alloy AZ31B at ε=1 s 1 (a), 1 s 1 (b),.1 s 1 (c) and 1 s 1 (d) ÐÕß Ð ½ ÅÆ Ò Ò Ì ÒÜ Ð, ¾ Ì Æ, É, Ð ÒÜ Ð ½ ÅÆ ÞÔ, ÒÜÐÆ Ú. ÐÖ i ½, ³ Á ε i ³Õ ½ ÇÅ Á ε i c, Đ Æ Á ; ³ Á ε i Õ ½ÇÅ Á ε i c, Đ Æ¼Ð (7) (8) Þ : 8 AZ31B Î Fig.8 The initial grain of magnesium alloy AZ31B Ç ÐĐ Æ Û Ð Ý 1. Ðݼ, º Ï ÐĐ Æ ÁÆ Ð. 4 ÔÛËÎ É º, 1 ± ØÐ Ö Á 5 Ê, Á  ÉÊ ÒÜ ÐĐ Ï D drx, lnz lnd drx ÀÝ Ú, Ý 11. ÐÉ, Đ Ï : D drx = 48.2583 Z.115 (13) fdrx i = ε i (1 f i 1 drx )lnk v f i 1 drx ε i.5 εi c (14), f i drx ³ÐĐ Æ Á; εi ³Ð Á; f i 1 drx ³ÐĐ Æ; εi.5 ½Å¾ 5% Đ Ð Á; ε i c ½ÇÅ Á. Đ Æ : f i drx = f i 1 drx + fi drx (15) Đ ÆÞÔ Õ.99, Ó ÞÔ, Đ Ã. ÏÐ Ï Õ Õ»: (1) Ï ¾ Ð ÒĐ

q 12 P & m : - j_/ L } _ } CB z i b CU u 2 ad 9 AZ31B 1517 4 3 4SW.1 s, "s 4H4k4^x 1 Fig.9 OM images of magnesium alloy AZ31B at the strain of.15 (a),.3 (b),.5 (c) and.7 (d) (T =3 ε =.1 s 1 ), 4. 1. Predicted by model.9 Experiment data Experiment data Linear fit 3.5.8 3. D drx.6 ln f drx.7.5 2.5.4.3 2..2.1 1.5.1.2.3.4.5.6.7.8.9 15 1. 2 25 3 Z 35 4 45 ~` ADVB Z k. ln 1 ad AZ31B ~` Mv3 B6N x Fig.1 Comparison of the predicted value by the model with the experimental data 11 Fig.11 Relationship betweeynamical recrystallization grain size with Z, lq 5 : B, J Y a > I l B9\:B. (2) a : B *, X 5 1 l a B } IX51l a B. 5:B*, ~* BEW < : Ddrx = q 2 f 2 + D 2 (1 f 2 Ddrx drx ) drx (16) =j ) jn y &x Marc, 7 6 G [: Bl N k v, '! 2 < h u 5 l 1/2 K %, a y :3 Q u 5 2 <a y, n y ~$L #y 12 12 m x}# -t $=^x Fig.12 Schematic of finite element meshes and reference position for sample

1518 Á Õ 48. ÚÐ 35, Ì.1/s. ½Æ : Æ AZ31B Ð Ú 1, Ç Æ Ú 2, 178 kg/m 3, Ê ¾ ÐÊ Æ 2 W/(m 2 ), Ê ÚÐÊ Æ 3 W/(m 2 ), µâå 8. Ê ÚÐ 35, Ê ÚÐе Æ.2, Ê Æ.9. Ë Å [16] ß Ð. Ý 13 ²ÁÃ Æ AZ31B Ø Å 1 AZ31B Table 1 Specific heat of magnesium alloy AZ31B T, 2 1 3 6 c, kj/(kg ) 1.4 1.42 1.148 1.414 Á Ð Ï ±. ÐݼÚ,, ÐÕ Å¾Đ, Ð Ï. Ã, Ð Ð Ï, ½ Ð Ï ³, ÐÕ Ø ØĐ Ð Ø, Ð Í Ï ±. Ý 12 Ð 3 ±Ù 3 ±½º ±, ÏÐ. Ý 14 3 ± Ø ±ÅÐ, A ÅР˳ÕÕ C Å, Ð B ÅÐ ¹ ÕÕ C ÅÐ. Ç Ð Ï Æ ÚÐ Ý 15, Ç Å 2 AZ31B Æ Å Table 2 Thermal conductivity of magnesium alloy AZ31B T, 2 5 1 15 2 25 λ, W/(m ) 76.9 83.9 87.3 92.4 97. 11.8 13 À É µ Î Fig.13 Distribution of grain size in the sample at the stroke distance of 3.79 mm (a), 5.69 mm (b) and 9.48 mm (c) 14 Ü 12 µ Fig.14 OM images of different areas in Fig.12 (a) position A (b) position B (c) position C

Õ 12 È ²Ñ : ¹»ÄÐ Ð Þ ÍÙ¾ 1519 Grain size, m 4 35 3 25 2 15 1 5 Calculate Experimental A B C Position 15 Ü 12 µ Ö Ù Î Fig.15 Simulated and measured grain size at different positions in Fig.12 Õ Ú, Ë,, Ã ß Ï Ð. 5 Ñ (1) Õ ÇÙÐ Ë Avrami ÐĐ Đ Ð, ÁûÐĐ Đ, Đ ÐÉ Ì É ÐÅÆ Ù, Ò «½Æº Ø ½Æ Ð Ù. (2) ß ÃĐ ÏÛ, РлÐĐ Đ Þ Õ ÒÜÐ Û Ð ³ÞÔ, Ð ÏÛ. (3) Û Ð ÒĐ Ð Å Æ AZ31B, Ö Gleeble Ç, ½ÆÌ, ß ÃĐ Đ, ÕÒ Ý Ú ÏÐÛ, Ö Æ, Ç Ã Ð. Ç Å [1] Sellars C M. Mater Sci Tech Ser, 199; 6: 172 [2] Sellars C M, Whiteman J A. Met Sci, 1979; 13(3 4): 187 [3] McQueen H J, Yue S, Ryan N D, Fry E. J Mater Process Tech, 1995; 53: 293 [4] Devadas C, Samarasekera I V, Hawbolt E B. Metall Trans, 1991; 22A: 335 [5] Kim S, Lee Y, Lee D, Yoo Y. Mater Sci Eng, 23; A355: 384 [6] Kim S, Yoo Y. Mater Sci Eng, 21; A311: 18 [7] Kopp R, Karnhausen K, de Souza M. Scand J Met, 1991; 2: 351 [8] Laasraoui A, Jonas J J. Metall Trans, 1991; 22A(7): 151 [9] Serajzadeh S, Taheri A K. Mech Res Commun, 23; 3: 87 [1] Avedesian M M, Baker H. United States of America: ASM International, 1999: 3 [11] McQueen H J. Mater Sci Eng, 24; A387 389: 23 [12] Tan J C, Tan M J. Mater Sci Eng, 23; A339: 124 [13] Mwembela A, Konopleva E B, McQueen H J. Scr Mater, 1997; 37: 1789 [14] Barnett M R, Beer A G, Atwell D, Oudin, A. Scr Mater, 24; 51: 19 [15] Zhou H T. PhD Thesis, Shanghai Jiao Tong University, 24 (¼. Õ, 24) [16] Liu J, Cui Z, Li C. Comp Mater Sci, 28; 41: 375 [17] Bergstrom Y. Mater Sci Eng, 1969/197; (5): 193 [18] Liu J, Cui Z, Ruan L. Mater Sci Eng, 211; A529: 3 (¾» ±: )