Σχετικά έγγραφα

The Political Economy of Heterogeneity and Conflict

WORKING P A P E R. Learning your Child s Price. Evidence from Data on Projected Dowry in Rural India A. V. CHARI AND ANNEMIE MAERTENS WR-899

SECTION II: PROBABILITY MODELS

Supplementary Appendix

Queensland University of Technology Transport Data Analysis and Modeling Methodologies


Assalamu `alaikum wr. wb.

2 4 5


Table 1: Military Service: Models. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed

)# * ' +," -.(. / ( 01(#(' ( 0 #('( +' ")# *'+,"+ (. 20#('( / )%34"5 "+56336"% (%1/ :8;434(

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Summary of the model specified

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Cite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare ( Massachusetts

ΕΠΙΔΡΑΣΗ ΤΗΣ ΧΡΗΣΗΣ ΕΛΑΙΟΠΛΑΚΟΥΝΤΑ ΣΤΗΝ ΔΙΑΤΡΟΦΗ ΤΩΝ ΑΙΓΩΝ ΔΑΜΑΣΚΟΥ ΩΣ ΠΡΟΣ ΤΗΝ ΠΟΣΟΤΗΤΑ ΚΑΙ ΠΟΙΟΤΗΤΑ ΤΟΥ ΠΑΡΑΓΟΜΕΝΟΥ ΓΑΛΑΚΤΟΣ

Μελέτη των μεταβολών των χρήσεων γης στο Ζαγόρι Ιωαννίνων 0

Si + Al Mg Fe + Mn +Ni Ca rim Ca p.f.u

- S P E C I A L R E P O R T - EMPLOYMENT. -January Source: Cyprus Statistical Service


the total number of electrons passing through the lamp.

Spatiotemporal footprint of the WNV in Greece : Analysis & Risk Αssessment in a GIS Εnvironment

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ


ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

ΣΤΥΛΙΑΝΟΥ ΣΟΦΙΑ

1, +,*+* + +-,, -*, * : Key words: global warming, snowfall, snowmelt, snow water equivalent. Ohmura,,**0,**

4.6 Autoregressive Moving Average Model ARMA(1,1)

The challenges of non-stable predicates

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

; +302 ; +313; +320,.

,,, (, ) , ;,,, ; -

Η ΕΠΙΔΡΑΣΗ ΤΗΣ ΑΙΘΑΝΟΛΗΣ,ΤΗΣ ΜΕΘΑΝΟΛΗΣ ΚΑΙ ΤΟΥ ΑΙΘΥΛΟΤΡΙΤΟΤΑΓΗ ΒΟΥΤΥΛΑΙΘΕΡΑ ΣΤΙΣ ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΒΕΝΖΙΝΗΣ

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

DuPont Suva 95 Refrigerant

February 2012 Source: Cyprus Statistical Service

Supplementary Materials: A Preliminary Link between Hydroxylated Metabolites of Polychlorinated Biphenyls and Free Thyroxin in Humans

Molecular evolutionary dynamics of respiratory syncytial virus group A in

Infrastructure Revenue Bond for Sustainable Growth

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

DuPont Suva 95 Refrigerant

1. ΝΕΕΣ ΕΚΔΟΣΕΙΣ ΜΕΤΟΧΩΝ* ΤΩΝ ΗΔΗ ΕΙΣΗΓΜΕΝΩΝ ΕΤΑΙΡΕΙΩΝ ΚΑΤΑ ΤΟ

ΜΕΛΕΤΗ ΤΗΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΣΥΝΤΑΓΟΓΡΑΦΗΣΗΣ ΚΑΙ Η ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΦΑΡΜΟΓΗΣ ΤΗΣ ΣΤΗΝ ΕΛΛΑΔΑ: Ο.Α.Ε.Ε. ΠΕΡΙΦΕΡΕΙΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΚΑΣΚΑΦΕΤΟΥ ΣΩΤΗΡΙΑ

Section 8.3 Trigonometric Equations

[1] P Q. Fig. 3.1

Simon et al. Supplemental Data Page 1

Group 2 Methotrexate 7.5 mg/week, increased to 15 mg/week after 4 weeks. Methotrexate 7.5 mg/week, increased to 15 mg/week after 4 weeks

Math 6 SL Probability Distributions Practice Test Mark Scheme

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Αξιολόγηση των Φασματικού Διαχωρισμού στην Διάκριση Διαφορετικών Τύπων Εδάφους ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Σπίγγος Γεώργιος

Appendix A3. Table A3.1. General linear model results for RMSE under the unconditional model. Source DF SS Mean Square

ΠΩΣ ΕΠΗΡΕΑΖΕΙ Η ΜΕΡΑ ΤΗΣ ΕΒΔΟΜΑΔΑΣ ΤΙΣ ΑΠΟΔΟΣΕΙΣ ΤΩΝ ΜΕΤΟΧΩΝ ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

LAMPIRAN. Fixed-effects (within) regression Number of obs = 364 Group variable (i): kode Number of groups = 26

Συστήματα Διαχείρισης Βάσεων Δεδομένων

!"!"!!#" $ "# % #" & #" '##' #!( #")*(+&#!', & - #% '##' #( &2(!%#(345#" 6##7

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

Risk! " #$%&'() *!'+,'''## -. / # $

Διερεύνηση και αξιολόγηση μεθόδων ομογενοποίησης υδροκλιματικών δεδομένων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram?

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ

5.4 The Poisson Distribution.

ΤΕΙ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

þÿÿ ÁÌ» Â Ä Å ¹µÅ Å½Ä ÃÄ

Supplementary figures

Statistical Inference I Locally most powerful tests

ΚΑΘΟΡΙΣΜΟΣ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥ ΣΕ Φ/Β ΠΑΡΚΟ 80KWp

2 Composition. Invertible Mappings

Thesis presentation. Turo Brunou

derivation of the Laplacian from rectangular to spherical coordinates

10 MERCHIA. 10. Starting from standing position (where the SIGN START ) without marshal (self start) 5 minutes after TC4 KALO LIVADI OUT

Bayesian modeling of inseparable space-time variation in disease risk

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

Marginal effects in the probit model with a triple dummy variable interaction term

Calculating the propagation delay of coaxial cable

Asset pricing at the Oslo Stock Exchange. A Source Book.

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΙΚΟΝΟΜΕΤΡΙΑΣ LAB 2

10-π-electron arenes à la carte: Structure. Sr, Ba; n = 6-8) complexes

Μηχανική Μάθηση Hypothesis Testing

CYPRUS UNIVERSITY OF TECHNOLOGY Faculty of Geotechnical Sciences and Environmental Management Department of Environmental Science and Technology

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Αναφοράς ως Μοχλός Ανάπτυξης στην Περιφέρεια της Κρήτης»


1. Αφετηρία από στάση χωρίς κριτή (self start όπου πινακίδα εκκίνησης) 5 λεπτά µετά την αφετηρία σας από το TC1B KALO LIVADI OUT

Transcript:

CSAE WPS/2009-06

Figure 1: Cut Flower Exports from Kenya, 1995-2007

Table 1: Firms in Areas with and w/out Conflict Panel A - Export Records Variable Observations Mean in No-Conflict St. Dev. Noconflict Mean in Conflict St. Dev. Conflict p-value Export, Jan+Feb 07, in Kg '000 107 90.5 [ 80.73] 104.6 [119.16] 0.24 % Production in Roses 107 0.662 [0.435] 0.591 [0.454] 0.2 % sold to Auctions 107 51.68 [35.00] 52.22 [35.44] 0.47 Panel B - Firm-level survey Variable Observations Mean in No-Conflict St. Dev. Noconflict Mean in Conflict St. Dev. Conflict p-value HA of Land 68 44.92 [26.28] 98.61 [398.04] 0.23 HA under Greenhouse 69 13.92 [12.73] 24.54 [20.17] 0.08* number of workers 74 480.83 [568.38] 479.18 [374.31] 0.49 Year of Firm creation 73 1997 [5.73] 1999 [4.81] 0.10* indian owner 111 0.25 [0.44] 0.22 [0.42] 0.36 kenyan owner 111 0.38 [0.49] 0.27 [0.45] 0.10* foreign owner 111 0.27 [0.45] 0.45 [0.50] 0.02** politically connected owner 111 0.27 [0.45] 0.19 [0.39] 0.15 % workers housed 73 11.2 [19.58] 11.21 [20.58] 0.5 KFC member 74 0.63 [0.49] 0.52 [0.51] 0.18 Fair Trade Certification 74 0.3 [0.47] 0.32 [0.47] 0.43 Number of Trucks 68 1.5 [1.24] 1.14 [1.48] 0.16

Table 2: Exports of Kenyan Flower Firms - Beginning of 2008 Dependent Variable = Log (1 + weekly exports of firm f [in kgs]) (1) Week 1 of 2008-0.400 (0.229)* Week 2 of 2008-0.051 (0.176) Week 3 of 2008-0.158 (0.180) Week 4 of 2008-0.003 (0.186) Week 5 of 2008-0.211 (0.198) Week 6 of 2008-0.332 (0.190)* FIXED EFFECTS week firm-season Observations (firm-day) 15831 Adjusted R-squared 0.68 SAMPLE Excluding 4 largest firms Notes: Results from a regression of log export weight on week dummies, firm-season dummies as well as dummies for the first weeks of 2008 (period of violence). ***, **, * denote statistical significance at the 1, 5 and 10 percentage-level respectively. Robust standard errors are reported in parenthesis.

Table 3: Difference-in-Difference Results (Season 4) Dependent Variable = Log (1 + weekly exports of firm f [in kgs]) (1) Week 1 of 2008 * Conflict -2.238 (0.693)*** Week 2 of 2008 * Conflict -0.487 (0.259)* Week 3 of 2008 * Conflict -0.622 (0.220)*** Week 4 of 2008 * Conflict -0.139 (0.231) Week 5 of 2008 * Conflict -0.598 (0.239)** Week 6 of 2008 * Conflict -0.399 (0.233)* FIXED EFFECTS week firm Observations (firm-day) 4321 Adjusted R-squared 0.81 SAMPLE Only Season 4 Notes: Results from a difference in difference regression within the season of 2007/2008. Log export weight regressed on week dummies, firm dummies as well as dummies for the first weeks of 2008 (period of violence) and first weeks of 2008 interacted with conflict location (latter coefficients are shown). Include a post-week 6 dummy, as well as a postweek 6 * conflict dummy. ***, **, * denote statistical significance at the 1, 5 and 10 percentage-level respectively. Robust standard errors are reported in parenthesis.

Dependent Variable = Log (1 + weekly exports of firm f [in kgs]) Table 4: Effects of Violence (1) (2) (3) (4) Weeks of violence in 2008 & location affected -1.197-0.986-0.703-0.606 (0.295)*** (0.176)*** (0.145)*** (0.131)*** Weeks of violence in 2008-0.193 0.160 0.053 0.020 (0.174) (0.091)* (0.076) (0.075) FIXED EFFECTS week * conflict location season No No No firm firm-season No No firm-week No No No SAMPLE Only Season 4 No No No Observations (firm-day) 4321 15831 15831 15831 Adjusted R-squared 0.81 0.68 0.78 0.86 Notes: Weeks of violence takes on a value of one if week 1 - week 6 in 2008. Weeks of violence in 2008 & location affected takes on a value of one if and once the location has been affected by violence. Table reports various specifications. All specifications include a post-week 6 dummy, as well as a post-week 6 * conflict dummy. ***, **, * denote statistical significance at the 1, 5 and 10 percentage-level respectively. Robust standard errors are reported in parenthesis.

Table 5: Baseline Specification Dependent Variable = Log (1 + weekly exports of firm f [in kgs]) (1) (2) (3) (4) Week 1 of 2008 * conflict -2.780-2.751-2.233-2.220 (0.720)*** (0.722)*** (0.700)*** (0.663)*** Week 2 of 2008 * conflict -1.225-1.195-0.678-0.702 (0.495)** (0.497)** (0.270)** (0.292)** Week 3 of 2008 * conflict -1.368-1.336-0.821-0.707 (0.486)*** (0.489)*** (0.247)*** (0.258)*** Week 4 of 2008 * conflict -0.565-0.491-0.430-0.359 (0.359) (0.373) (0.290) (0.275) Week 5 of 2008 * conflict -0.742-0.665-0.610-0.490 (0.379)** (0.393)* (0.305)** (0.279)* Week 6 of 2008 * conflict -0.574-0.493-0.445-0.425 (0.360) (0.376) (0.283) (0.249)* Week 1 of 2008 0.103 0.105 0.015 0.022 (0.190) (0.191) (0.168) (0.166) Week 2 of 2008 0.177 0.179 0.088 0.054 (0.172) (0.174) (0.135) (0.140) Week 3 of 2008 0.096 0.099 0.009-0.016 (0.183) (0.186) (0.153) (0.149) Week 4 of 2008 0.300 0.271 0.234 0.229 (0.232) (0.238) (0.177) (0.179) Week 5 of 2008 0.180 0.150 0.108 0.059 (0.251) (0.258) (0.216) (0.209) Week 6 of 2008-0.028-0.059-0.097-0.118 (0.204) (0.213) (0.179) (0.163) FIXED EFFECTS No No No No No No No No No No Observations (firm-day) 15831 15831 15831 15831 Adjusted R-squared 0.68 0.68 0.78 0.86 Notes: Table reports results from regressions of log weekly export weight on weeks of 2008 and weeks of 2008 interacted with the location being affected by conflict. All specifications include a post-week 6 dummy, as well as a post-week 6 * conflict dummy. ***, **, * denote statistical significance at the 1, 5 and 10 percentage-level respectively. Robust standard errors are reported in parenthesis.

Table 5B: Heterogeneous Impacts of the violence Dependent Variable = Log (1 + weekly exports of firm f [in kgs]) (1) Weeks of violence in 2008 Weeks of violence in 2008 & location affected Weeks of violence in 2008 * small Weeks of violence in 2008 & location affected * small FIXED EFFECTS week * conflict location *large firm season *large Observations (firm-day) 16146 Adjusted R-squared 0.68 SAMPLE Weekly Aggregated Data Excluding 4 largest firms Notes: Table presents the different impacts of the violence by large and small firms. Firms are defined as large if they rank amoung the 30 largest firms in export weight (according to their 06/07 exports). The fourth coefficient reports the result of the interaction. ***, **, * denote statistical significance at the 1, 5 and 10 percentage-level respectively. Robust standard errors are reported in parenthesis.

Table 6: Exports before January 2008, by conflict region (Placebo) Dependent Variable = Log (1 + weekly exports of firm f [in kgs]) Week 46 *Conflict -0.177 (0.251) Week 47 *Conflict -0.128 (0.275) Week 48 *Conflict -0.259 (0.254) Week 49 *Conflict 0.200 (0.256) Week 50 *Conflict 0.325 (0.236) Week 51 *Conflict 0.317 (0.223) Week 52 *Conflict 0.204 (0.331) Week 46 0.122 (0.174) Week 47 0.204 (0.191) Week 48 0.268 (0.182) Week 49 0.069 (0.133) Week 50-0.091 (0.142) Week 51-0.055 (0.137) Week 52-0.403 (0.277) FIXED EFFECTS week * conflict location time trend * conflict location firm-season Observations (firm-day) 15831 Adjusted R-squared 0.78 SAMPLE Weekly Aggregated Data Excluding 4 largest firms Notes: Table reports results from regressions of log weekly export weight on weeks in 2007 just before the onset of violence and these weeks interacted with the location being affected by conflict in a later period. ***, **, * denote statistical significance at the 1, 5 and 10 percentage-level respectively. Robust standard errors are reported in parenthesis. (1)

Table 7: Changes in Export Behaviour in the No-Conflict Region #SALES/WEEK #DAYS/WEEK AVE. WEIGHT/SALE (1) (2) (3) Week 1 of 2008-0.689-0.080 0.147 (0.459) (0.138) (0.161) Week 2 of 2008-1.127-0.278 0.259 (0.422)*** (0.155)* (0.142)* Week 3 of 2008-0.477-0.034 0.111 (0.506) (0.141) (0.153) Week 4 of 2008-1.031 0.341 0.291 (0.944) (0.193)* (0.181) Week 5 of 2008-0.648-0.080 0.250 (0.705) (0.167) (0.220) Week 6 of 2008-1.073-0.196 0.086 (0.992) (0.175) (0.167) -3.878-1.856-1.997 (1.223)*** (0.442)*** (0.632)*** -0.290-0.105-1.043 (1.102) (0.352) (0.384)*** -1.057-0.413-1.069 (1.182) (0.338) (0.374)*** 0.723-0.438-0.475 (1.173) (0.265)* (0.293) -1.325-0.557-0.578 (1.029) (0.265)** (0.318)* 0.055-0.197-0.556 (1.311) (0.282) (0.289)* FIXED EFFECTS No No No No No No No No No Observations (firm-day) 15831 15831 15831 Adjusted R-squared 0.01 0.68 0.86 Notes: Table reports results from regressions of Number of Sales during the week (Column(1)); Number of days during the week the firm exported (Column(2)); Average Weight per sale (Column(3)) on weeks in 2008 and these weeks interacted with the location being affected by conflict. ***, **, * denote statistical significance at the 1, 5 and 10 percentage-level respectively. Robust standard errors are reported in parenthesis.

Table 8: Exports in the medium term, by Region of Conflict Dependent Variable = Log (1 + weekly exports of firm f [in kgs]) Main Effects Interactions with Conflict Status Week 1 of 2008 Week 2 of 2008 Week 3 of 2008 Week 4 of 2008 Week 5 of 2008 Week 6 of 2008 Week 7 of 2008 Week 8 of 2008 Week 9 of 2008 Week 10 of 2008 Week 11 of 2008 Week 12 of 2008 Week 13 of 2008 Week 14 of 2008 Week 15 of 2008 Week 16 of 2008 Week 17 of 2008 Week 18 of 2008 Week 19 of 2008 Week 20 of 2008 Week 21 of 2008 FIXED EFFECTS week * conflict location firm season Observations (firm-day) Adjusted R-squared SAMPLE Weekly Aggregated Data Excluding 4 largest firms Notes: Coefficients in column 1 and 2 are from the same regression. Column 2 contains the interactions with conflict status. Conflict status takes on a value of one after the onset of violence in that location and keeps that value thereafter. ***, **, * denote statistical significance at the 1, 5 and 10 percentage-level respectively. Robust Standard Errors in Parentheses.

Notes: Authors' own calculation based on a survey of firms in Kenya

Table A1: Location of Firms Province Town Conflict =1, Non-conflict=0 Central Juja 0 Central Kiambu 0 Central Kikuyu 1 Central Limuru 1 Central Nyeri 0 Central Thika 0 Eastern Athi River 0 Eastern Timau 0 Nairobi Nairobi 0 Rift Valley Elburgon 1 Rift Valley Eldoret 1 Rift Valley Kericho 1 Rift Valley Kitale 1 Rift Valley Naivasha 1 Rift Valley Nakuru 1 Rift Valley Nanyuki 0 Rift Valley Nyahururu 0