ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΣΤΙΤΟΥΤΟ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ

Σχετικά έγγραφα
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΊΑ ΠΙΘΑΝΟΤΉΤΩΝ

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΊΑ ΠΙΘΑΝΟΤΉΤΩΝ

ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ. Γ' Τάξης Γενικού Λυκείου Θετική και Τεχνολογική Κατεύθυνση

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μαθηματικά. Β μέρος

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΑΠΟΦΑΣΗ

Άλγεβρα και στοιχεία πιθανοτήτων

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΣΤΙΤΟΥΤΟ ΑΛΓΕΒΡΑ. ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α τάξης Γενικού Λυκείου

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΊΑ ΠΙΘΑΝΟΤΉΤΩΝ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΊΑ ΠΙΘΑΝΟΤΉΤΩΝ

Άλγεβρα Α ΕΠΑΛ Εξεταστέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ.

Άλγεβρα και στοιχεία πιθανοτήτων

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μαθηματικά. Β μέρος. Λύσεις των ασκήσεων

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Α ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Α, Β ΤΑΞΕΩΝ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΙΑ ΤΟ ΣΧΟΛΙΚΟ ΕΤΟΣ

ΜΑΘΗΜΑΤΙΚΑ. Β ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θετική και Τεχνολογική Κατεύθυνση

Εξεταστέα ύλη μαθηματικών Α Λυκείου 2017

ΓΕΝΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΔΙΑΓΩΝΙΣΜΑΤΑ ΣΕ ΟΛΗ ΤΗΝ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ

/νσεων /θµιας Εκπ/σης) ΠΡΟΣ: ΚΟΙΝ.:

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ. Για την Γ Τάξη Γενικού Λυκείου Μάθημα Επιλογής ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ

ΑΛΓΕΒΡΑ λύσεις των ασκήσεων

ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ

ΜΑΘΗΜΑΤΙΚΑ I ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΑΛ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΕΡΓΑΛΕΙΑ ΚΑΙ ΠΡΑΚΤΙΚΕΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΗΣ ΠΕΡΙΟΔΙΚΟΤΗΤΑΣ: Ο ρόλος των οπτικών αναπαραστάσεων (OA)

Επαναληπτικό Διαγώνισμα Άλγεβρας Α Λυκείου

1. Άλγεβρα Α τάξης Ημερησίου Επαγγελματικού Λυκείου

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2

Άλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ. Τόμος 6ος 1η ΕΚΔΟΣΗ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθμός Προτεραιότητας: ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού

25 Λυμένα 2 α θέματα Άλγεβρας από την Τράπεζα Θεμάτων. 1 ο GI_A_ALG_2_999

Άλγεβρα και Στοιχεία Πιθανοτήτων

Θέματα. Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες)

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα: Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο:

ΠΡΟΣ: ΚΟΙΝ: Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΚΑΙ ΕΣΠΕΡΙΝΟΥ ΕΠΑ.Λ. ΑΛΓΕΒΡΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ. Δ/νσεις Δ/θμιας Εκπ/σης Γραφεία Σχολικών Συμβούλων Γενικά Λύκεια (μέσω των Δ/νσεων Δ.Ε.

Θ. Ξένος: Άλγεβρα Α' Λυκείου (2η έκδοση) Απαντήσεις και λύσεις των ερωτήσεων & ασκήσεων

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα: Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο:

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου.

Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς. Άλγεβρα Γενικής Παιδείας. I. ιδακτέα ύλη

Αρχαία Ελληνική Γλώσσα και Γραμματεία. Από το βιβλίο «Αρχαίοι Έλληνες Ιστοριογράφοι Α Λυκείου» του ΟΕΔΒ:

Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος

1. Άλγεβρα Α τάξης Ημερησίου Επαγγελματικού Λυκείου

β) Αν επιπλέον το υπόλοιπο της διαίρεσης είναι υ(x) = - 3x + 5, τότε να βρείτε το Δ(x). (Απ. α) 5 ος β) Δ(x) = x 5 5x 4 + 6x 3 + 4x 2 11x + 5)

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β

ΔΙΔΑΚΤΕΑ -ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΣΤΟΙΧΕΙΑ ΑΣΤΡΟΝΟΜΙΑΣ & ΔΙΑΣΤΗΜΙΚΗΣ. Β' Τάξη Γενικού Λυκείου

Σας εύχομαι καλή μελέτη και επιτυχία.

Μαθηματικά Α Τάξης Γυμνασίου

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ / ΥΛΗ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ

Εξεταστέα ύλη Άλγεβρας Α Λυκείου Σχολικό έτος Εξεταστέα ύλη Γεωμετρίας Α Λυκείου Σχολικό έτος

ΘΕΜΑ 2 Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α ) = 3Ρ(Α), Ρ(Β ) = 1/3 και () 3()

Μαθηματικά Γ9 ΓΥΜΝΑΣΙΟΥ


MAΘΗΜΑΤΙΚΑ. κριτήρια αξιολόγησης B ΓΥΜΝΑΣΙΟΥ. Πέτρος Μάρκος

τα βιβλία των επιτυχιών

1. Άλγεβρα. Α τάξης Ηµερησίου Επαγγελµατικού Λυκείου

ΠΡΟΣ: ΚΟΙΝ: ΘΕΜΑ: Καθορισμός και διαχείριση διδακτέας ύλης των Μαθηματικών των Επαγγελματικών Λυκείων, για το σχολικό έτος

2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Α' Γενικού Λυκείου. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

Άλγεβρα Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ. Τόμος 1ος

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Άλγεβρα και στοιχεία πιθανοτήτων

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Καθορισμός και διαχείριση διδακτέας ύλης των Μαθηματικών των Επαγγελματικών Λυκείων, για το σχολικό έτος

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10

Β ΛΥΚΕΙΟΥ ΥΛΗ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2019

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μαθηματικά. Β μέρος

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ A' ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ. ΒΙΒΛΙΟ ΚΑθΗ ΓΗΤΗ Β'ΤΑΞΗ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΙΚΗΣ ΚΑΤΕΥΟΥΝΣΗΣ

Σ. Ασημέλλης. Μαθημαγικά

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

φιλόλογος ΓΛΩΣΣΙΚΗ ΕΠΙΜΕΛΕΙΑ: Λία Μπουσούνη, ΣΧΕΔΙΑΣΗ ΣΧΗΜΑΤΩΝ: Βάσια Καυκαλά, αρχιτέκτων

Transcript:

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΣΤΙΤΟΥΤΟ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α τάξης Γενικού Λυκείου ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ - ΑΘΗΝΑ

ΣΥΓΓΡΑΦΕΙΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας ΟΜΑΔΑ ΑΝΑΜΟΡΦΩΣΗΣ Ανδρεαδάκης Στυλιανός Ομοτ. Καθηγητής Πανεπιστημίου Αθηνών Κατσαργύρης Βασίλειος Καθηγητής Βαρβακείου Πειραματικού Λυκείου Παπασταυρίδης Σταύρος Καθηγητής Πανεπιστημίου Αθηνών Πολύζος Γεώργιος Μόνιμος Πάρεδρος του Π.Ι. Σβέρκος Ανδρέας Καθηγητής 2 ου Πειραματικού Λυκείου Αθηνών ΕΠΟΠΤΕΙΑ ΤΗΣ ΑΝΑΜΟΡΦΩΣΗΣ ΣΤΟ ΠΛΑΙΣΙΟ ΤΟΥ Π. Ι. Σκούρας Αθανάσιος Σύμβουλος του Π. Ι. Πολύζος Γεώργιος Μόνιμος Πάρεδρος του Π. Ι. ΕΠΙΜΕΛΕΙΑ ΤΗΣ ΑΝΑΜΟΡΦΩΜΕΝΗΣ ΕΚΔΟΣΗΣ Ελευθερόπουλος Ιωάννης Καθηγητής Μαθηματικών, Αποσπασμένος στο Π. Ι. Ζώτος Ιωάννης Καθηγητής Μαθηματικών, Αποσπασμένος στο Π. Ι. Καλλιπολίτου Ευρυδίκη Καθηγήτρια Μαθηματικών, Αποσπασμένη στο Π. Ι. ΣΥΓΓΡΑΦΕΙΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας Ομοτ. Καθηγητής Πανεπιστημίου Αθηνών Καθηγητής Βαρβακείου Πειραματικού Λυκείου Καθηγητής Πανεπιστημίου Πάτρας Μόνιμος Πάρεδρος του Π.Ι. Καθηγητής 2 ου Πειραματικού Λυκείου Αθηνών Α ΕΚΔΟΣΗ: 1991 ΕΠΑΝΕΚΔΟΣΕΙΣ ΜΕ ΒΕΛΤΙΩΣΕΙΣ: 1992, 1993, 1994, 1995, 1996, 1997, 1998 Η προσαρμογή του βιβλίου στο νέο αναλυτικό πρόγραμμα έγινε από το Παιδαγωγικό Ινστιτούτο.

ΣΥΓΓΡΑΦΕΙΣ Αδαμόπουλος Λεωνίδας Δαμιανού Χαράλαμπος Σβέρκος Ανδρέας Επ. Σύμβουλος Παιδαγωγικού Ινστιτούτου Αναπλ. Καθηγητής Παν/μίου Αθηνών Σχολικός Σύμβουλος ΚΡΙΤΕΣ: Κουνιάς Στρατής Μακρής Κωνσταντίνος Τσικαλουδάκης Γεώργιος Καθηγητής Παν/μίου Αθηνών Σχολικός Σύμβουλος Καθηγητής Β/θμιας Εκπαίδευσης ΓΛΩΣΣΙΚΗ ΕΠΙΜΕΛΕΙΑ: Μπουσούνη Λία Καθηγήτρια Β/θμιας Εκπαίδευσης ΔΑΚΤΥΛΟΓΡΑΦΗΣΗ: Μπολιώτη Πόπη ΣΧΗΜΑΤΑ: Μπούτσικας Μιχάλης

ΠΡΟΛΟΓΟΣ Το βιβλίο που κρατάτε στα χέρια σας περιλαμβάνει την ύλη της Άλγεβρας και των Πιθανοτήτων που προβλέπεται από το πρόγραμμα σπουδών της Α τάξης του Γενικού Λυκείου. Το βιβλίο αυτό προήλθε από αναμόρφωση της Α έκδοσης (2010) του βιβλίου ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ, του οποίου τη συγγραφική ομάδα αποτελούν οι Σ. Ανδρεαδάκης, Β. Κατσαργύρης, Σ. Παπασταυρίδης, Γ. Πολύζος και Α. Σβέρκος. Προστέθηκαν επίσης δυο ακόμα κεφάλαια: το κεφάλαιο «Πιθανότητες» και το κεφάλαιο «Πρόοδοι». Το κεφάλαιο «Πιθανότητες» είναι μέρος του αντίστοιχου κεφαλαίου από το βιβλίο ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ (2010) του οποίου τη συγγραφική ομάδα αποτελούν οι Λ. Αδαμόπουλος, Χ. Δαμιανού και Α. Σβέρκος. Το κεφάλαιο «Πρόοδοι» είναι μέρος του αντίστοιχου κεφαλαίου από το βιβλίο ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ (2010), του οποίου τη συγγραφική ομάδα αποτελούν οι Σ. Ανδρεαδάκης, Β. Κατσαργύρης, Σ. Παπασταυρίδης, Γ. Πολύζος και Α. Σβέρκος. Το περιεχόμενο του βιβλίου περιλαμβάνει σε γενικές γραμμές τα εξής: Στο 1 Κεφάλαιο γίνεται μια εισαγωγή στη Θεωρία των Πιθανοτήτων. Η απόδειξη των ιδιοτήτων της πιθανότητας ενός ενδεχομένου γίνεται μόνο στην περίπτωση που τα απλά ενδεχόμενα είναι ισοπίθανα. Η Θεωρία των Πιθανοτήτων ασχολείται με καταστάσεις όπου υπάρχει αβεβαιότητα, και αυτό την κάνει ιδιαίτερα σημαντική στις εφαρμογές της καθημερινής ζωής. Στο 2 Κεφάλαιο επαναλαμβάνονται, συμπληρώνονται και επεκτείνονται οι βασικές ιδιότητες των πραγματικών αριθμών. Στο 3 Κεφάλαιο επαναλαμβάνονται, επεκτείνονται και εξετάζονται συστηματικά όσα είναι γνωστά από το Γυμνάσιο για τις εξισώσεις 1 ου και 2 ου βαθμού. Επίσης εξετάζονται εξισώσεις που, για να επιλυθούν, ανάγονται σε 1 ου και 2 ου βαθμού. Στο 4 Κεφάλαιο παρουσιάζονται ανισώσεις 1 ου και 2 ου βαθμού καθώς και ανισώσεις που, για να επιλυθούν, ανάγονται σε 1 ου και 2 ου βαθμού. Στο 5 Κεφάλαιο γίνεται εισαγωγή στην έννοια της ακολουθίας πραγματικών αριθμών, και εξετάζονται η αριθμητική και η γεωμετρική πρόοδος ως ειδικές περιπτώσεις κανονικότητας (pattern) σε ακολουθίες. Στο 6 Κεφάλαιο εισάγεται η έννοια της συνάρτησης. Η συνάρτηση είναι μια θεμελι-

ώδης έννοια που διαπερνά όλους τους κλάδους των Μαθηματικών και έχει κεντρική σημασία για την περαιτέρω ανάπτυξη και εφαρμογή τους. Στο 7 Κεφάλαιο γίνεται μελέτη των συναρτήσεων, και. Η μελέτη της είναι ο κεντρικός στόχος του κεφαλαίου αυτού.

ΠΕΡΙΕΧΟΜΕΝΑ Σελ. ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε1 Το Λεξιλόγιο της Λογικής 9 Ε2 Σύνολα 13 ΚΕΦΑΛΑΙΟ 1 : Πιθανότητες 1.1 Δειγματικός Χώρος-Ενδεχόμενα 20 1.2 Έννοια της Πιθανότητας 29 ΚΕΦΑΛΑΙΟ 2 : Οι Πραγματικοί Αριθμοί 2.1 Οι Πράξεις και οι Ιδιότητές τους 43 2.2 Διάταξη Πραγματικών Αριθμών 54 2.3 Απόλυτη Τιμή Πραγματικών Αριθμών 61 2.4 Ρίζες Πραγματικών Αριθμών 69 ΚΕΦΑΛΑΙΟ 3 : Εξισώσεις 3.1 Εξισώσεις 1 ου Βαθμού 79 3.2 Η Εξίσωση 86 3.3 Εξισώσεις 2 ου Βαθμού 88 ΚΕΦΑΛΑΙΟ 4 : Ανισώσεις 4.1 Ανισώσεις 1 ου Βαθμού 101 4.2 Ανισώσεις 2 ου Βαθμού 106 4.3 Ανισώσεις Γινόμενο & Ανισώσεις Πηλίκο 115 ΚΕΦΑΛΑΙΟ 5 : Πρόοδοι 5.1 Ακολουθίες 121 5.2 Αριθμητική πρόοδος 125 5.3 Γεωμετρική πρόοδος 132 5.4 Ανατοκισμός-Ίσες καταθέσεις 141 ΚΕΦΑΛΑΙΟ 6 : Βασικές Έννοιες των Συναρτήσεων 6.1 Η Έννοια της Συνάρτησης 145 6.2 Γραφική Παράσταση Συνάρτησης 152 6.3 Η Συνάρτηση ƒ(x) = αx + β 159 6.4 Κατακόρυφη-Οριζόντια Μετατόπιση Καμπύλης 168 6.5 Μονοτονία-Ακρότατα-Συμμετρίες Συνάρτησης 175 ΚΕΦΑΛΑΙΟ 7 : Μελέτη Βασικών Συναρτήσεων 7.1 Μελέτη της Συνάρτησης: ƒ(x) = αx 2 188 7.2 Μελέτη της Συνάρτησης: ƒ(x) = α x 194 7.3 Μελέτη της Συνάρτησης: ƒ(x) = αx 2 +βx+γ 199 ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ 207 ΥΠΟΔΕΙΞΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 213