ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μαθηματικά. Β μέρος
|
|
- Οὐλίξης Αντωνιάδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ = 1156 Μαθηματικά Β μέρος Δ=2 δ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας & Πληροφορικής ΙΝΣΤΙΤΟΥΤΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΕΚΔΟΣΕΩΝ «ΔΙΟΦΑΝΤΟΣ»
2 ΜΑΘΗΜΑΤΙΚΑ Γ Τάξης Γενικού Λυκείου Ομάδας Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας & Πληροφορικής Β ΜΈΡΟΣ
3 ΣΤΟΙΧΕΙΑ ΑΡΧΙΚΗΣ ΕΚ ΟΣΗΣ ΣΥΓΓΡΑΦΕΙΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Μέτης Στέφανος Μπρουχούτας Κων/νος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Καθηγητής Πανεπιστημίου Αθηνών Καθηγητής Β/θμιας Εκπαίδευσης Καθηγητής Β/θμιας Εκπαίδευσης Καθηγητής Β/θμιας Εκπαίδευσης Καθηγητής Πανεπιστημίου Αθηνών Καθηγητής Β/θμιας Εκπαίδευσης ΙΣΤΟΡΙΚΑ ΣΗΜΕΙΩΜΑΤΑ Θωμαΐδης Ιωάννης Καθηγητής Β/θμιας Εκπαίδευσης OMAΔΑ ΑΝΑΜΟΡΦΩΣΗΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Μέτης Στέφανος Μπρουχούτας Κων/νος Πολύζος Γεώργιος ΕΠΟΠΤΕΙΑ ΣΤΟ ΠΛΑΙΣΙΟ ΤΟΥ ΠΑΙΔΑΓΩΓΙΚΟΥ ΙΝΣΤΙΤΟΥΤΟΥ Αδαμόπουλος Λεωνίδας Επίτιμος Σύμβουλος του Π.Ι. Δακτυλογράφηση: Σχήματα: Γαρδέρη Ρόζα Μπούτσικας Μιχάλης ΣΤΟΙΧΕΙΑ ΕΠΑΝΕΚ ΟΣΗΣ Η επανέκδοση του παρόντος βιβλίου πραγματοποιήθηκε από το Ινστιτούτο Τεχνολογίας Υπολογιστών & Εκδόσεων «Διόφαντος» μέσω ψηφιακής μακέτας, η οποία δημιουργήθηκε με χρηματοδότηση από το ΕΣΠΑ / ΕΠ «Εκπαίδευση & Διά Βίου Μάθηση» / Πράξη «ΣΤΗΡΙΖΩ». Οι διορθώσεις πραγματοποιήθηκαν κατόπιν έγκρισης του Δ.Σ. του Ινστιτούτου Εκπαιδευτικής Πολιτικής
4 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Γ Τάξης Γενικού Λυκείου Ομάδας Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας & Πληροφορικής Β ΜΈΡΟΣ Ανδρεαδάκης Στυλιανός Καθηγητής Πανεπιστημίου Αθηνών Κατσαργύρης Βασίλειος Καθηγητής Β/θμιας εκπαίδευσης Μέτης Στέφανος Καθηγητής Β/θμιας εκπαίδευσης Μπρουχούτας Κων/νος Καθηγητής Β/θμιας εκπαίδευσης Παπασταυρίδης Σταύρος Καθηγητής Πανεπιστημίου Αθηνών Πολύζος Γεώργιος Καθηγητής Β/θμιας εκπαίδευσης Η συγγραφή και η επιστηµονική επιµέλεια του βιβλίου πραγµατοποιήθηκε υπό την αιγίδα του Παιδαγωγικού Ινστιτούτου ΙΝΣΤΙΤΟΥΤΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΕΚΔΟΣΕΩΝ «ΔΙΟΦΑΝΤΟΣ»
5
6 ΠΡΟΛΟΓΟΣ Το βιβλίο που κρατάτε στα χέρια σας περιλαμβάνει την ύλη των Μαθηματικών, όπως προβλέπεται από το πρόγραμμα σπουδών της Θετικής και Τεχνολογικής Κατεύθυνσης της Γ τάξης του Ενιαίου Λυκείου. Το βιβλίο αυτό προήλθε από αναμόρφωση του βιβλίου των Μαθηματικών της 2ης και της 4ης δέσμης της Γ τάξης του Γενικού Λυκείου και αποτελείται από δύο μέρη. Το πρώτο μέρος, που φέρει τον τίτλο ΑΛΓΕΒΡΑ, αποτελείται από δυο κεφάλαια. Το πρώτο κεφάλαιο αποτελεί μια εισαγωγή στη Θεωρία των Πινάκων, η οποία μεταξύ άλλων είναι ένα εργαλείο για τη μελέτη των Γεωμετρικών Μετασχηματισμών και των Γραμμικών Συστημάτων, τα οποία μελετώνται στο ίδιο κεφάλαιο. Το δεύτερο κεφάλαιο εισάγει στους Μιγαδικούς Αριθμούς, οι οποίοι είναι προέκταση των Πραγματικών Αριθμών. Οι Μιγαδικοί Αριθμοί ανακαλύφθηκαν την περίοδο της Αναγέννησης στην προσπάθεια επίλυσης εξισώσεων τρίτου βαθμού. Όμως, στους αιώνες που ακολούθησαν αποδείχτηκε η μεγάλη σημασία τους για πάρα πολλά προβλήματα της μαθηματικής επιστήμης και των εφαρμογών της. Το κεφάλαιο αυτό έχει ληφθεί από το βιβλίο των Μαθηματικών Θετικής Κατεύθυνσης Β τάξης Ενιαίου Λυκείου των συγγραφέων: Αδαμόπουλου Λ., Βισκαδουράκη Β., Γαβαλά Δ., Πολύζου Γ. και Σβέρκου Α. Tο δεύτερο μέρος, που φέρει τον τίτλο ΑΝΑΛΥΣΗ, αποτελείται από τρία κεφάλαια. Το πρώτο κεφάλαιο σηματοδοτεί ένα νέο ξεκίνημα. Είναι το πέρασμα από τις πεπερασμένες πράξεις στις «άπειρες διαδικασίες». Τα σπέρματα της έννοιας του ορίου υπάρχουν ασφαλώς με πολύ σαφή και συγκεκριμένο τρόπο στα γραπτά του Αρχιμήδη. Η ανάπτυξη, όμως, αυτής της έννοιας έγινε στα χρόνια της Αναγέννησης και έκτοτε κατέχει κεντρική θέση στον κόσμο των μαθηματικών εννοιών. Κατ αρχάς στο κεφάλαιο αυτό παρουσιάζονται βασικές και ήδη γνωστές στους μαθητές έννοιες των συναρτήσεων, καθώς και μερικές ακόμη βασικές έννοιες της Ανάλυσης. Στη συνέχεια εισάγεται η έννοια του ορίου στο x 0, η έννοια του ορίου στο + και στο και δίνονται οι πιο χαρακτηριστικές ιδιότητές του. Τέλος, δίνεται η έννοια της συνέχειας μιας συνάρτησης και παρουσιάζονται οι βασικότερες ιδιότητές της. Στο δεύτερο και τρίτο κεφάλαιο παρουσιάζονται οι έννοιες της παραγώγου και του ολοκληρώματος αντιστοίχως και γίνεται χρήση των εννοιών αυτών σε πολλές εφαρμογές. Η παράγωγος και το ολοκλήρωμα είναι κατά κάποιο τρόπο οι δύο διαφορετικές όψεις του ίδιου νομίσματος. Σε μια έκφρασή τους είναι η κλίση της
7 εφαπτομένης και το εμβαδόν, σε άλλη η ταχύτητα και το μήκος της τροχιάς ενός κινητού κτλ. Αυτό το βιβλίο ως ανθρώπινο δημιούργημα δεν είναι τέλειο. Ο μόνος τρόπος για να έχουμε στα σχολεία μας ύστερα από μερικά χρόνια ένα καλύτερο μέσο διδασκαλίας είναι ο νηφάλιος και ελεύθερος διάλογος, τον οποίο η επιστημονική παράδοση έχει καθιερώσει για αιώνες τώρα. Γι αυτό το λόγο η συγγραφική ομάδα με ιδιαίτερη ικανοποίηση θα δέχεται σχόλια και παρατηρήσεις για το βιβλίο από οποιονδήποτε συνάδελφο, μαθητή ή άλλο πολίτη ενδιαφέρεται για τα ζητήματα της παιδείας. Τα σχόλια και οι παρατηρήσεις μπορούν να αποστέλλονται στο Παιδαγωγικό Ινστιτούτο, Μεσογείων 396, Αγία Παρασκευή. Οι Συγγραφείς
8 ΠΕΡΙΕΧΟΜΕΝΑ Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦΑΛΑΙΟ 1ο: Όριο - συνέχεια συνάρτησης 1.1 Πραγματικοί Αριθμοί Συναρτήσεις Μονότονες συναρτήσεις - Αντίστροφη συνάρτηση Όριο συνάρτησης στο x Ιδιότητες των ορίων Μη πεπερασμένο όριο στο x Όριο συνάρτησης στο άπειρο Συνέχεια συνάρτησης 70 ΚΕΦΑΛΑΙΟ 2ο: Διαφορικός Λογισμός 2.1 Η έννοια της παραγώγου Παραγωγίσιμες συναρτήσεις - Παράγωγος συνάρτηση Κανόνες παραγώγισης Ρυθμός μεταβολής Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού Συνέπειες του Θεωρήματος Μέσης Τιμής Τοπικά ακρότατα συνάρτησης Κυρτότητα - σημεία καμπής συνάρτησης Ασύμπτωτες - Κανόνες De L Hospital Μελέτη και χάραξη της γραφικής παράστασης μιας συνάρτησης 169 ΚΕΦΑΛΑΙΟ 3ο: Ολοκληρωτικός Λογισμός 3.1 Αόριστο ολοκλήρωμα Μέθοδοι ολοκλήρωσης Διαφορικές εξισώσεις Ορισμένο ολοκλήρωμα x Η συνάρτηση F( x) = f ( t) dt α Θεώρημα Μέσης Τιμής Ολοκληρωτικού Λογισμού Εμβαδόν επιπέδου χωρίου 224 ΥΠΟΔΕΙΞΕΙΣ ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 247 Σελ.
9
10 Β ΜΕΡΟΣ ΑΝΑΛΥΣΗ
11
12 1 OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 1.1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμών αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται με τα σημεία ενός άξονα, του άξονα των πραγματικών αριθμών. (Σχ. 1) x x Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή α, όπου α, β β ακέραιοι με β 0. Το σύνολο των ρητών αριθμών συμβολίζεται με Q. Είναι, δηλαδή, α β α,β ακέραιοι με β 0. Υπενθυμίζουμε ότι το σύνολο των ακέραιων αριθμών είναι το = {, 3, 2, 10123,,,,,...}, ενώ το σύνολο των φυσικών αριθμών είναι το Για τα σύνολα N, Z, Q και ισχύει: = {,, 0123,,...}. 3 e π 1 Q. Τα σύνολα N {}, 0 Z { 0}, Q {} 0 και { 0} τα συμβολίζουμε συντομότερα με N *, Z *, Q * και * αντιστοίχως. Q
13 12 1 OΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Πράξεις και διάταξη στο Στο σύνολο των πραγματικών αριθμών ορίστηκαν οι πράξεις της πρόσθεσης και του πολλαπλασιασμού και με τη βοήθειά τους η αφαίρεση και η διαίρεση. Οι ιδιότητες των πράξεων αυτών είναι γνωστές από προηγούμενες τάξεις. Στη συνέχεια ορίστηκε η έννοια της διάταξης, οι σπουδαιότερες ιδιότητες της οποίας είναι οι: 1) Αν α β και β γ, τότε α γ 2) α β α + γ β + γ 3) 4) α β αγ βγ,όταν γ > 0 ενώ. α β αγ βγ,όταν γ < 0 Αν α β και γ δ, τότε α + γ β + δ α β και γ δ Aν και,τότε αγ βδ. α, β, γ, δ > 0 5) Αν α,β 0 και * ν N, τότε ισχύει η ισοδυναμία: α β α ν β ν α 6) 0 ( αβ 0 και β 0) β 7) Αν αβ > 0, τότε ισχύει η ισοδυναμία 1 1 α β. α β Διαστήματα πραγματικών αριθμών Αν α,β με α < β, τότε ονομάζουμε διαστήματα με άκρα τα α, β καθένα από τα παρακάτω σύνολα: ανοικτό διάστημα κλειστό διάστημα κλειστό-ανοικτό διάστημα ανοικτό-κλειστό διάστημα.
14 1 OΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 13 Αν α, τότε ονομάζουμε μη φραγμένα διαστήματα με άκρο το α καθένα από τα παρακάτω σύνολα: Υπό μορφή διαστήματος το σύνολο το συμβολίζουμε με (, + ). Τα σημεία ενός διαστήματος Δ, που είναι διαφορετικά από τα άκρα του, λέγονται εσωτερικά σημεία του Δ. Απόλυτη τιμή πραγματικού αριθμού Η απόλυτη τιμή ενός πραγματικού αριθμού α, που συμβολίζεται με α, ορίζεται ως εξής: α, α = α, αν αν α 0 α < 0 Γεωμετρικά, η απόλυτη τιμή του α παριστάνει την απόσταση του αριθμού α από το μηδέν, ενώ η απόλυτη τιμή του α β παριστάνει την απόσταση των αριθμών α και β. Μερικές από τις βασικές ιδιότητες της απόλυτης τιμής είναι οι εξής: 1) α α = 2) α = α 3) αβ = α β 4) α α = β β 5) α β α + β α + β 6) x x < δ x δ < x < x + δ, δ >
15 14 1 OΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΦΑΡΜΟΓΗ Να γραφούν υπό μορφή διαστήματος ή ένωσης διαστημάτων τα σύνολα: 1 1 i) = x 1 ii) A = x 2 < 1. x x ΛΥΣΗ i) Είναι x x x 0 1 x xx ( 1) 0 και x 0 x < 0 ή x 1. Άρα A = (, 0) [ 1, + ). ii) Είναι < 1 1 < 2 < 1 x x 1 1 < < 3 x Άρα A = 1 3, > x > ΣΥΝΑΡΤΗΣΕΙΣ Η έννοια της πραγματικής συνάρτησης Η έννοια της συνάρτησης είναι γνωστή από προηγούμενες τάξεις. Στην παράγραφο αυτή υπενθυμίζουμε τον ορισμό της πραγματικής συνάρτησης με πεδίο ορισμού ένα υποσύνολο του, επαναλαμβάνουμε γνωστές έννοιες και τέλος ορίζουμε πράξεις μεταξύ των πραγματικών συναρτήσεων.
16 1 OΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 15 ΟΡΙΣΜΟΣ Έστω Α ένα υποσύνολο του. Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία (κανόνα) f, με την οποία κάθε στοιχείο x A αντιστοιχίζεται σε ένα μόνο πραγματικό αριθμό y. Το y ονομάζεται τιμή της f στο x και συμβολίζεται με f(x). Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: f : A x f( x). Το γράμμα x, που παριστάνει οποιοδήποτε στοιχείο του Α λέγεται ανεξάρτητη μεταβλητή, ενώ το γράμμα y, που παριστάνει την τιμή της f στο x, λέγεται εξαρτημένη μεταβλητή. Το πεδίο ορισμού Α της συνάρτησης f συνήθως συμβολίζεται με D f. Το σύνολο που έχει για στοιχεία του τις τιμές της f σε όλα τα x A, λέγεται σύνολο τιμών της f και συμβολίζεται με f (A). Είναι δηλαδή: ΠΡΟΣΟΧΗ f( A) = { y y = f( x) για κάποιο x A}. Στα επόμενα και σε όλη την έκταση του βιβλίου : Θα ασχοληθούμε μόνο με συναρτήσεις που έχουν πεδίο ορισμού διάστημα ή ένωση διαστημάτων. Όταν θα λέμε ότι Η συνάρτηση f είναι ορισμένη σ ένα σύνολο Β, θα εννοούμε ότι το Β είναι υποσύνολο του πεδίου ορισμού της. Στην περίπτωση αυτή με f (B) θα συμβολίζουμε το σύνολο των τιμών της f σε κάθε x B. Είναι δηλαδή: f( B) = { y y = f( x) για κάποιο x B}. Συντομογραφία συνάρτησης Είδαμε παραπάνω ότι για να οριστεί μια συνάρτηση f αρκεί να δοθούν δύο στοιχεία: το πεδίο ορισμού της και η τιμή της, f (x), για κάθε x του πεδίου ορισμού της. Συνήθως, όμως, αναφερόμαστε σε μια συνάρτηση f δίνοντας μόνο τον τύπο με τον οποίο εκφράζεται το f (x). Σε μια τέτοια περίπτωση θα θεωρούμε συμβατικά ότι το πεδίο ορισμού της f είναι το σύνολο όλων των πραγματικών αριθμών x, για τους οποίους το f (x) έχει νόημα. Έτσι, για παράδειγμα, αντί να λέμε δίνεται η συνάρτηση f :(, 2],
ΜΑΘΗΜΑΤΙΚΑ. Γ' Τάξης Γενικού Λυκείου Θετική και Τεχνολογική Κατεύθυνση
ΜΑΘΗΜΑΤΙΚΑ Γ' Τάξης Γενικού Λυκείου Θετική και Τεχνολογική Κατεύθυνση ΣΥΓΓΡΑΦΕΙΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Μέτης Στέφανος Μπρουχούτας Κων/νος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Καθηγητής
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μαθηματικά. Β μέρος
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ 5 + 7 56 Μαθηματικά Β μέρος 8 9 5 Δ δ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας & Πληροφορικής
ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΤΟΙΧΕΙΑ ΑΡΧΙΚΗΣ ΕΚ ΟΣΗΣ Συγγραφική ομάδα: Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας Καθηγητής Πανεπιστημίου Αθηνών Καθηγητής
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΊΑ ΠΙΘΑΝΟΤΉΤΩΝ
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΊΑ ΠΙΘΑΝΟΤΉΤΩΝ Α τάξης Γενικού Λυκείου Η συγγραφή και η επιμέλεια του βιβλίου πραγματοποιήθηκε υπό την αιγίδα του Παιδαγωγικού
Από το βιβλίο «Μαθηματικά» της Γ τάξης Γενικού Λυκείου Θετικής και Τεχνολογικής Κατεύθυνσης των Ανδρεαδάκη Στ., κ.ά., έκδοση Ο.Ε.Δ.Β
Από το βιβλίο «Μαθηματικά» της Γ τάξης Γενικού Λυκείου Θετικής και Τεχνολογικής Κατεύθυνσης των Ανδρεαδάκη Στ., κ.ά., έκδοση Ο.Ε.Δ.Β. 2011. σελ. 15 σελ. 16 σελ. 17 έως 21 σελ. 23 σελ. 24 Όλα ορισμός έντονα
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ Επιμέλεια: Βασίλης Κράνιας wwwe-mathsgr ΑΝΑΛΥΣΗ Τι ονομάζουμε πραγματική συνάρτηση Έστω Α ένα υποσύνολο
ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Συγγραφική ομάδα: Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας Καθηγητής Πανεπιστημίου Αθηνών Καθηγητής μαθηματικών Βαρβακείου
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΥΠOΥΡΓΕIO ΠΑIΔΕIΑΣ ΚΑI ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΔΑΜΟΠΟΥΛΟΣ ΛΕΩΝΙΔΑΣ ΔΑΜΙΑΝΟΥ ΧΑΡΑΛΑΜΠΟΣ ΣΒΕΡΚΟΣ ΑΝΔΡΕΑΣ Η συγγραφή και η επιμέλεια
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μαθηματικά. Β μέρος. Λύσεις των ασκήσεων
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ Μαθηματικά Β μέρος Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας & Πληροφορικής Λύσεις
ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ
ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ Σ. ΑΝΔΡΕΑΔΑΚΗΣ Β. ΚΑΤΣΑΡΓΥΡΗΣ Σ. ΠΑΠΑΣΤΑΥΡΙΔΗΣ Γ. ΠΟΛΥΖΟΣ Α. ΣΒΕΡΚΟΣ ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ
ΜΑΘΗΜΑΤΙΚΑ I ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΑΛ 2010-2011
ΜΑΘΗΜΑΤΙΚΑ I ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΑΛ 2010-2011 ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ ΠΡΩΤΟΒΑΘΜΙΑΣ ΚΑΙ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΤΜΗΜΑ Β Τηλ: 210 344 2478 FAX:
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΣΤΙΤΟΥΤΟ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΣΤΙΤΟΥΤΟ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α τάξης Γενικού Λυκείου ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ - ΑΘΗΝΑ ΣΥΓΓΡΑΦΕΙΣ Ανδρεαδάκης
Εξεταστέα ύλη μαθηματικών Α Λυκείου 2017
Εξεταστέα ύλη μαθηματικών Α Λυκείου 2017 Α Λυκείου Γεωμετρία Κεφάλαιο 3 3.1 Είδη και στοιχεία τριγώνων 3.2 1 ο Κριτήριο ισότητας τριγώνων (εκτός της απόδειξης του θεωρήματος) 3.3 2 ο Κριτήριο ισότητας
ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου
ΑΛΓΕΒΡΑ Α' τάξης Γενικού Λυκείου ΣΥΓΓΡΑΦΕΙΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας ΟΜΑΔΑ ΑΝΑΜΟΡΦΩΣΗΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος
Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου
Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση
Η ΒΟΗΘΗΤΙΚΗ ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΟΙ ΑΝΙΣΟΤΙΚΕΣ ΣΧΕΣΕΙΣ ΣΥΝΕΔΡΙΟ Ε.Μ.Ε. ΤΕΤΑΡΤΗ
Η ΒΟΗΘΗΤΙΚΗ ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΟΙ ΑΝΙΣΟΤΙΚΕΣ ΣΧΕΣΕΙΣ ΣΥΝΕΔΡΙΟ Ε.Μ.Ε. ΤΕΤΑΡΤΗ 7 007 ΑΤΜΑΤΖΙΔΗΣ ΑΘΑΝΑΣΙΟΣ ΚΑΘΗΓΗΤΗΣ Μ.Ε. Όλα ξεκίνησαν όταν μαθητές της Γ Λυκείου Κατεύθυνσης με ρώτησαν με πόσους τρόπους μπορούν
Ερωτήσεις-Απαντήσεις Θεωρίας
1 ΓΙΑΝΝΗΣ ΚΑΡΑΓΙΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΡΟΣ Β 2 ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις
Επιμέλεια Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Το ο Θέμα στις πανελλαδικές εξετάσεις Ερωτήσεις+Απαντήσεις
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΊΑ ΠΙΘΑΝΟΤΉΤΩΝ
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΊΑ ΠΙΘΑΝΟΤΉΤΩΝ Α τάξης Γενικού Λυκείου Η συγγραφή και η επιμέλεια του βιβλίου πραγματοποιήθηκε υπό την αιγίδα του Παιδαγωγικού
ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ
Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σχολικό Έτος: 016-017 Μαθηματικός Περιηγητής:
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΟΜΑΔΕΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ : ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΛΟΓΟΣ Σε κάθε ενότητα αυτού του βιβλίου θα βρείτε : Βασική θεωρία με τη μορφή ερωτήσεων Μεθοδολογίες και σχόλια
Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή
ΣΥΝΑΡΤΗΣΕΙΣ (ΕΙΣΑΓΩΓΗ)-ΘΕΩΡΕΙΑ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμώv αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται
Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ
Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Γενική Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικός Περιηγητής 1 ΠΕΡΙΕΧΟΜΕΝΑ 1. Διδακτέα-εξεταστέα
Η θεωρία στα Μαθηματικά Προσανατολισμού: Θετικών Σπουδών και Σπουδών Οικονομίας -Πληροφορικής. Ορισμοί Ιδιότητες - Προτάσεις Θεωρήματα Αποδείξεις
Η θεωρία στα Μαθηματικά Προσανατολισμού: Θετικών Σπουδών Σπουδών Οικονομίας -Πληροφορικής Ορισμοί Ιδιότητες - Προτάσεις Θεωρήματα Αποδείξεις Επιμέλεια: Μπάμπης Στεργίου / Παπαμικρούλης Δημήτρης (αποκλειστικά
Εξεταστέα ύλη Άλγεβρας Α Λυκείου Σχολικό έτος Εξεταστέα ύλη Γεωμετρίας Α Λυκείου Σχολικό έτος
Εξεταστέα ύλη Άλγεβρας Α Λυκείου Σχολικό έτος 2015-2016 Κεφάλαιο 1ο Παράγραφοι: 1.1, 1.2 Κεφάλαιο 2ο Παράγραφοι: 2.3, 2.4 Κεφάλαιο 3ο Παράγραφοι: 3.1, 3.3 Κεφάλαιο 4ο Παράγραφοι: 4.1, 4.2 Κεφάλαιο 6ο Παράγραφοι:
ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ
Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σχολικό Έτος: 016-017 Μαθηματικός Περιηγητής:
ΜΑΘΗΜΑΤΙΚΑ. Β ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θετική και Τεχνολογική Κατεύθυνση
ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θετική και Τεχνολογική Κατεύθυνση ΣΤΟΙΧΕΙΑ ΑΡΧΙΚΗΣ ΕΚ ΟΣΗΣ ΣΥΓΓΡΑΦΕΙΣ: Αδαμόπουλος Λεωνίδας Βισκαδουράκης Βασίλειος Γαβαλάς Δημήτριος Πολύζος Γεώργιος Σβέρκος Ανδρέας
Μεθοδική Επανα λήψή. Επιμέλεια Κων/νος Παπασταματίου. Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες. Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.
Μεθοδική Επανα λήψή Θεωρία - Λεξιλόγιο Βασικές Μεθοδολογίες Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 Βόλος Τηλ. 4 598 Επιμέλεια Κων/νος Παπασταματίου Περιεχόμενα Συνοπτική Θεωρία με Ερωτήσεις Απαντήσεις...
Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :
Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την
ΣΥΝΑΡΤΗΣΕΙΣ Γενικές έννοιες
ΣΥΝΑΡΤΗΣΕΙΣ Γενικές έννοιες Συνάρτηση Συνάρτηση ονομάζουμε μια διαδικασία (κανόνα) f, με την οποία κάθε στοιχείο ενός συνόλου Α (πεδίο ορισμού) αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. ΜΕΡΟΣ Α : Άλγεβρα. Κεφάλαιο 2 ο (Προτείνεται να διατεθούν 12 διδακτικές ώρες) Ειδικότερα:
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:. -. (Προτείνεται να διατεθούν 5 διδακτικές ώρες).3 (Προτείνεται να διατεθούν
Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί
ΚΕΦΑΛΑΙΟ ο :Μιγαδικοί Αριθµοί. Ποιο σύνολο ονοµάζεται σύνολο των µιγαδικών αριθµών ;. Tι ονοµάζεται µιγαδικός αριθµός; Ποιο είναι το πραγµατικό και ποιο το φανταστικό του µέρος ; 3. Tι ονοµάζεται εικόνα
ΟΙ ΑΝΙΣΟΤΗΤΕΣ ΩΣ ΔΕΔΟΜΕΝΟ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΑΝΑΛΥΣΗΣ
ΟΙ ΑΝΙΣΟΤΗΤΕΣ ΩΣ ΔΕΔΟΜΕΝΟ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΑΝΑΛΥΣΗΣ Είναι γνωστό ότι η απόδειξη ανισοτήτων είναι ένα ζήτημα που παρουσιάζει ιδιαίτερες δυσκολίες για τους μαθητές. Οι δυσκολίες αυτές συνδέονται τόσο με το
20 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ - ΟΡΙΣΜΟΙ
ΕΚΔΣΕΙΣ ΚΕΛΑΦΑ 19 Μιγαδικός αριθμός λέγεται η έκφραση α + i, με α, ΙR. Φανταστικός αριθμός λέγεται η έκφραση i, με ΙR. Αν z = α + i, α, ΙR, το α λέγεται πραγματικό μέρος του z. Αν z = α + i, α, ΙR, το
Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ
Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής ΕΝΟΤΗΤΑ
ΣΗΜΕΙΩΣΕΙΣ. f (x) =, x 0, (1), x. lim f (x) = lim = +. x
ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 2: ΑΣΥΜΠΤΩΤΕΣ - ΚΑΝΟΝΕΣ DE L HOSPITAL - ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ [Κεφ. 2.9: Ασύμπτωτες Κανόνες de l Hospital Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ ΑΣΥΜΠΤΩΤΕΣ-ΚΑΝΟΝΑΣ
ΝΙΚΟΣ ΤΑΣΟΣ. Θετικής-Τεχνολογικής Κατεύθυνσης
ΝΙΚΟΣ ΤΑΣΟΣ Mα θ η μ α τ ι κ ά Γ Λυ κ ε ί ο υ Θετικής-Τεχνολογικής Κατεύθυνσης Β Τό μ ο ς στον Αλέξη, το Σπύρο, τον Ηλία και το Λούη, στην παντοτινή φιλία Πρό λ ο γ ο ς Το βιβλίο αυτό έχει σκοπό και στόχο
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α A. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα. Αν F είναι μια παράγουσα της στο, τότε να αποδείξετε ότι:
ΦΡΟΝΤΙΣΤΗΡΙΑ «ΠΡΟΟΔΟΣ» ΚΥΡΙΑΚΗ 22 ΝΟΕΜΒΡΙΟΥ 2015 ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» Γ ΛΥΚΕΙΟΥ
ΦΡΟΝΤΙΣΤΗΡΙΑ «ΠΡΟΟΔΟΣ» ΚΥΡΙΑΚΗ ΝΟΕΜΒΡΙΟΥ 5 ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο A. Να δώσετε τον ορισμό της συνέχειας μιας συνάρτησης στο πεδίο ορισμού της. ( Μονάδες)
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ - ΠΑΠΑΔΟΠΟΥΛΟΣ ΜΑΡΙΝΟΣ ΠΕΡΙΕΧΟΜΕΝΑ. Τίτλος Θεματικές Ενότητες Σελίδες. Δυο λόγια προς τους μαθητές.
ΠΕΡΙΕΧΟΜΕΝΑ Τίτλος Θεματικές Ενότητες Σελίδες Προλογικό Σημείωμα Δυο λόγια προς τους μαθητές. ΚΕΦΑΛΑΙΟ 1 ο Όρια Συνέχεια Συνάρτησης 1-177 Μέρος 1 ο ΣΥΝΑΡΤΗΣΕΙΣ 1-85 Μάθημα 1 Έννοια συνάρτησης Πεδίο ορισμού
Τεστ Θεωρίας Στα Μαθηματικά Προσανατολισμού Γ Λυκείου
Τεστ Θεωρίας Στα Μαθηματικά Προσανατολισμού Γ Λυκείου Επιμέλεια Κων/νος Παπασταματίου Μαθηματικός Φροντιστήριο Μ.Ε. "ΑΙΧΜΗ" Κ. Καρτάλη 28 Βόλος τηλ. 242 32598 Φροντιστήριο Μ. Ε. «ΑΙΧΜΗ» Μαθηματικά Προσανατολισμού
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Σ. Ανδρεαδάκης Β. Κατσαργύρης Σ. Παπασταυρίδης Γ. Πολύζος Α. Σβέρκος Η συγγραφή και η επιμέλεια του βιβλίου πραγματοποιήθηκε υπό την αιγίδα
Φίλε μαθητή, Το βιβλίο αυτό, που κρατάς στα χέρια σου προέκυψε τελικά μέσα από την εμπειρία και διδακτική διαδικασία πολλών χρόνων στον Εκπαιδευτικό Όμιλο Άλφα. Είναι το αποτέλεσμα συγγραφής πολλών καθηγητών
Διαγώνισμα Προσομοίωσης Εξετάσεων 2017
Ένα διαγώνισμα προετοιμασίας για τους μαθητές της Γ Λυκείου στα Μαθηματικά Προσανατολισμού Διαγώνισμα Προσομοίωσης Εξετάσεων 7 Μαθηματικά Προσανατολισμού Γ Λυκείου Κων/νος Παπασταματίου Μαθηματικός Φροντιστήριο
ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. 0, αν x
Γ' ΛΥΚΕΙΟΥ-ΤΕΧΝΟΛΟΓΙΚΩΝ/ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΩΡΙΑ. Πότε δύο συναρτήσεις και g είναι ίσες;. Πότε μία συνάρτηση με πεδίο ορισμού Α λέγεται " " ; 3. Πότε μία συνάρτηση λέγεται συνεχής στο σημείο o του πεδίου
Συγκεκριμένα: ΜΕΡΟΣ Β : Ανάλυση. Κεφάλαιο 1ο (Προτείνεται να διατεθούν 37 διδακτικές ώρες) Ειδικότερα:
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----
ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2
ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2. ΜΑΘΗΜΑΤΙΚΩΝ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ
Φίλη μαθήτρια, φίλε μαθητή,
Φίλη μαθήτρια, φίλε μαθητή, Το βιβλίο αυτό, όπως και το πρώτο τεύχος, είναι εναρμονισμένο με την πρόσφατα καθορισμένη ύλη και απευθύνεται στους μαθητές της Γ Λυκείου που έχουν επιλέξει τον προσανατολισμό
ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ
ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμών αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται
Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14
Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες
ΠΡΟΤΑΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΙΣΜΟΙ ΣΤΟ ΚΕΦΑΛΑΙΟ ΤΩΝ ΠΑΡΑΓΩΓΩΝ
ΠΡΟΤΑΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΙΣΜΟΙ ΣΤΟ ΚΕΦΑΛΑΙΟ ΤΩΝ ΠΑΡΑΓΩΓΩΝ Του Δημητρίου Α. Ντρίζου Σχολικού Συμβούλου Μαθηματικών Στο κείμενο που ακολουθεί διατυπώνουμε μια σειρά προτάσεων, καθεμιά από τις ο- ποίες, αφού
ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα
ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ο δείγμα ΘΕΜΑ ο Α. Έστω μία συνάρτηση f συνεχής σε ένα διάστημα α,β. Αν G είναι μία παράγουσα της f στο α,β τότε να αποδείξετε ότι
ΠΡΟΛΟΓΟΣ. Επίσης. Ολες οι ασκήσεις ανα κεφάλαιο του Μαίου. Κλείνει με τις λύσεις όλων των θεμάτων του Μαίου
ΠΡΟΛΟΓΟΣ Το παρόν τεύχος δημιουργήθηκε για να διευκολύνει τους μαθητές στην ΆΜΕΣΗ κατανόηση των απαιτήσεων των πανελληνίων εξετάσεων δίνοντας τους τα θέματα των 4 χρόνων των κανονικών εξετάσεων του Μαίου
Η ΒΟΗΘΗΤΙΚΗ ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΟΙ ΑΝΙΣΟΤΙΚΕΣ ΣΧΕΣΕΙΣ
Η ΒΟΗΘΗΤΙΚΗ ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΟΙ ΑΝΙΣΟΤΙΚΕΣ ΣΧΕΣΕΙΣ ΑΤΜΑΤΖΙ ΗΣ ΑΘΑΝΑΣΙΟΣ ΚΑΘΗΓΗΤΗΣ Μ.Ε email:atmatzidis@sch.gr ιεύθυνση δικτυακού τόπου users.sch.gr/atmatzidis 1 ΗΑΡΧΗ Όλα ξεκίνησαν όταν µαθητές της Γ Λυκείου
ΘΕΩΡΙΑ 1ΟΥ ΚΕΦΑΛΑΙΟΥ (χωρίς αποδείξεις) ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ- ΣΥΝΕΧΕΙΑ 1. Να δώσετε τον ορισμό της συνάρτησης
ΘΕΩΡΙΑ ΟΥ ΚΕΦΑΛΑΙΟΥ (χωρίς αποδείξεις ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ- ΣΥΝΕΧΕΙΑ. Να δώσετε τον ορισμό της συνάρτησης Συνάρτηση από το σύνολο Α στο Β λέγεται μια διαδικασία με την οποία κάθε στοιχείο x του Α, αντιστοιχίζεται
ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 5/5/6 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α. Τι ορίζουμε ως εφαπτομένη (όχι κατακόρυφη) της γραφικής παράστασης C
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΚΑΙ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 8 ΜΑΪΟΥ 6 ΘΕΜΑ Α Α. Θεωρία, βλ. σχολικό βιβλίο
ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ
ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΡΙΣΜΟΙ ΑΠΟΔΕΙΞΕΙΣ ΕΡΩΤΗΣΕΙΣ : ΣΩΣΤΟ ΛΑΘΟΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ : ΜΙΓΑΔΙΚΟΙ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 10 Ιουνίου 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις)
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα Ιουνίου 9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α Αα) Ορισμός σχολικού βιβλίου σελ 5 Έστω Α ένα υποσύνολο
Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016
Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 16 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [α,β]. Αν η f είναι συνεχής στο [α,β]
ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 5/5/6 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α Τι ορίζουμε ως εφαπτομένη (όχι κατακόρυφη) της γραφικής παράστασης C f
Μαθηματικά κατεύθυνσης Γ Λυκείου. Όλη η θεωρία και οι ασκήσεις των πανελλαδικών εξετάσεων. Στέλιος Μιχαήλογλου Δημήτρης Πατσιμάς
Μαθηματικά κατεύθυνσης Γ Λυκείου Όλη η θεωρία και οι ασκήσεις των πανελλαδικών εξετάσεων Στέλιος Μιχαήλογλου Δημήτρης Πατσιμάς wwwaskisopolisgr Η θεωρία των πανελλαδικών εξετάσεων [] [] Ορισμοί ) Πότε
ΣΗΜΕΙΩΣΕΙΣ. η τιμή της συνάρτησης είναι μεγαλύτερη από την τιμή της σε κάθε γειτονικό σημείο του x. . Γενικά έχουμε τον ακόλουθο ορισμό:
ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 9: ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ FERMAT [Ενότητες Η Έννοια του Τοπικού Ακροτάτου Προσδιορισμός των τοπικών Ακροτάτων πλην του Θεωρήματος Εύρεση Τοπικών Ακροτάτων
(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο
Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -4- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής» Γ Λυκείου, /4/6 ΘΕΜΑ ο Α Πότε λέμε ότι μία συνάρτηση
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΣΤΟΙΧΕΙΑ ΕΠΑΝΕΚ ΟΣΗΣ Η επανέκδοση του παρόντος βιβλίου πραγματοποιήθηκε από το Ινστιτούτο Τεχνολογίας Υπολογιστών & Εκδόσεων «Διόφαντος» μέσω ψηφιακής
Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Μαθηματικά Ενότητα 2: Διαφορικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ
ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ. Mια συνάρτηση λέμε ότι είναι παραγωγίσιμη σε ένα σημείο του πεδίου ορισμού ( της, αν υπάρει το lim και είναι πραγματικός αριθμός. Το όριο αυτό λέγεται παράγωγος της στο και συμβολίζεται
ΜΑΘΗΜΑΤΙΚΑ - ΠΛΗΡΟΦΟΡΙΚΗ
ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ - ΠΛΗΡΟΦΟΡΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Α. Θεωρία (Θεώρημα σελίδα 5 σχολικού βιβλίου) Α. Α) ΨΕΥΔΗΣ Β) Θα δώσουμε ένα αντιπαράδειγμα Έστω η συνάρτηση
Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr
VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ
1, x > 0 η οποία είναι συνεχής και παραγωγίσιμη σε κάθε ένα από τα διαστήματα (, 0) και (0, + ) του πεδίου ορισμού της D f = R.
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΥΛΗ: Όρια Συνέχεια Διαφορικός Λογισμός Ορισμένο Ολοκλήρωμα ΗΜΕΡΟΜΗΝΙΑ: 4 Μαρτίου 8 Θερινά Τμήματα Απαντήσεις ΘΕΜΑ Α Α. Σχολικό Βιβλίο Σελίδα 33. (Μονάδες 5) Α. Σχολικό
Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016
Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 16 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ
Γ ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----
Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17
Περιεχόμενα Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 ΚΕΦΑΛΑΙΟ 1. Το σύνολο των πραγματικών αριθμών... 19 1.1 Σύνολα αριθμών... 19 1.2 Αλγεβρική δομή του R... 20 1.2.1 Ιδιότητες πρόσθεσης...
ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ
ΤΟ ΘΕΜΑ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Ο Α1. Έστω η συνάρτηση f ( x,,1. Nα αποδείξετε ότι η f είναι παραγωγίσιμη στο. v v 1 και ισχύει : x vx A2. Να διατυπώσετε και να ερμηνεύσετε γεωμετρικά το Θεώρημα Bolzano.
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΕΡΟΣ Α
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----
ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΒΑΣΙΚΕΣ ΙΔΙΟΤΗΤΕΣ, ΟΡΙΟ, ΣΥΝΕΧΕΙΑ ΚΑΙ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
τα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com.
Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com. A. Οι κανόνες De L Hospital και η αρχική συνάρτηση κάνουν πιο εύκολη τη λύση των προβλημάτων με το Θ. Rolle. B. Η αλγεβρική
ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. /νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180
ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [a, b] είναι όριο?
ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση α) Το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [, ] είναι όριο? β) Για να βρούμε το ορισμένο ολοκλήρωμα μιας συνεχούς συνάρτησης f σε ένα διάστημα [, ] πρέπει
Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α
ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση f παραγωγίσιµη σ ένα διάστηµα (α, β), µε εξαίρεση ίσως ένα σηµείο του, στο
ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Διαχείριση διδακτέας - εξεταστέας ύλης των Μαθηματικών Γ τάξης Ημερήσιου για το σχολικό έτος
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----
ΑΥΤΟΜΑΤΙΣΤΕΣ ΦΥΣΙΚΗ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2013-2014 ΔΕΥΤΕΡΑ 12-15 ΑΙΘ.ΖΑ115-116
ΑΥΤΟΜΑΤΙΣΤΕΣ ΦΥΣΙΚΗ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2013-2014 ΔΕΥΤΕΡΑ 12-15 ΑΙΘ.ΖΑ115-116 1 ΕΙΣΑΓΩΓΙΚΟ-ΠΑΡΑΓΩΓΟΙ Ορισμός παραγώγου συνάρτησης σε σημείο Μια συνάρτηση f (X) λέμε ότι είναι παραγωγίσιμη σ ένα σημείο του
, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ]
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 6-7 ΜΑΘΗΜΑ / ΤΑΞΗ : ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Μαθηματικά Προσανατολισμού Γ' Λυκείου Θέμα Α Α. Αν οι συναρτήσεις, g είναι παραγωγίσιμες στο, να αποδείξετε ότι και
ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ
ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ27 Μέρος Β του σχολικού βιβλίου] ΣΗΜΕΙΩΣΕΙΣ Εύρεση
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Παύλος Βασιλείου
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Παύλος Βασιλείου Σε όλους αυτούς που παλεύουν για έναν καλύτερο κόσμο ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΑΡΤΗΣΕΙΣ -ΟΡΙΟ
Το βιβλίο αυτό αποτελεί τον πρώτο τόμο των Μαθηματικών Γʹ Λυκείου για τις
wwwzitigr Πρόλογος Το βιβλίο αυτό αποτελεί τον πρώτο τόμο των Μαθηματικών Γʹ Λυκείου για τις ομάδες προσανατολισμού: ç Θετικών σπουδών ç Οικονομίας και Πληροφορικής Αναπτύσσονται διεξοδικά τα κεφάλαια:
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 Ε_3.Μλ3ΘΤ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ
ΠΡΟΣ : ΠΡΟΣ : Γ ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----
ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
1 ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Πότε µια συνάρτηση f σε ένα διάστηµα του πεδίου ορισµού της λέγεται γνησίως αύξουσα και πότε γνησίως φθίνουσα; 2. Να αποδείξετε ότι η παράγωγος
ΠΡΟΤΑΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΙΣΜΟΙ ΣΤΟ ΚΕΦΑΛΑΙΟ ΤΩΝ ΠΑΡΑΓΩΓΩΝ
ΠΡΟΤΑΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΙΣΜΟΙ ΣΤΟ ΚΕΦΑΛΑΙΟ ΤΩΝ ΠΑΡΑΓΩΓΩΝ Του ΔΗΜΗΤΡΗ ΝΤΡΙΖΟΥ Σχολικού Συμβούλου Μαθηματικών Τρικάλων και Καρδίτσας Στο Σημείωμα αυτό διατυπώνουμε μια σειρά μαθηματικών προτάσεων, καθεμιά
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α Άσκηση i. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα Δ. Αν F είναι μια παράγουσα της στο Δ, τότε να αποδείξετε ότι: όλες οι συναρτήσεις της
ΠΑΡΟΡΑΜΑΤΑ ΣΤΟ ΒΙΒΛΙΟ ΤΟΥ Η. ΡΟΥΣΑΛΗ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. ΤΟ 3ο ΚΑΙ ΤΟ 4ο ΘΕΜΑ (ΕΚΔΟΣΕΙΣ ΠΑΤΑΚΗ)
ΠΑΡΟΡΑΜΑΤΑ ΣΤΟ ΒΙΒΛΙΟ ΤΟΥ Η. ΡΟΥΣΑΛΗ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΟ ο ΚΑΙ ΤΟ 4ο ΘΕΜΑ (ΕΚΔΟΣΕΙΣ ΠΑΤΑΚΗ) Στις επισυναπτόμενες σελίδες του παραπάνω βιβλίου έχουν γίνει από τον συγγραφέα
ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ
ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. 2013-2014 ΣΤΑΤΙΣΤΙΚΗ 1. Τι ονομάζουμε: i. πληθυσμό και μέγεθος πληθυσμού; (σελ. 59) ii. μεταβλητή; (σελ.59-60) 2. Ποιες μεταβλητές ονομάζονται ποσοτικές; (σελ.60)
2.2 ΠΑΡΑΓΩΓΙΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ-ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ
ΠΑΡΑΓΩΓΙΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ-ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΟΡΙΣΜΟΙ Πότε μια συνάρτηση λέγεται : α Παραγωγίσιμη στο σύνολο Α β Παραγωγίσιμη στο ανοικτό διάστημα αβ γ Παραγωγίσιμη στο κλειστό διάστημα [ αβ ] Β δ Τι ονομάζουμε
Λύσεις θεμάτων προσομοίωσης 1-Πανελλαδικές Εξετάσεις 2016
Λύσεις θεμάτων προσομοίωσης -Πανελλαδικές Εξετάσεις 06 Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 06 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής»
Σημειώσεις Μαθηματικών 2
Σημειώσεις Μαθηματικών 2 Συναρτήσεις - 4 Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 4 Παράγωγος Συνάρτησης 4.1 Έννοια Παραγώγου Ορισμός f(x) f(x 0 ) Μια συνάρτηση f ονομάζεται παραγωγίσιμη στο x 0 Df αν υπάρχει
5o Επαναληπτικό Διαγώνισμα 2016
5o Επαναληπτικό Διαγώνισμα 6 Διάρκεια: 3 ώρες ΘΕΜΑ A Α Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ Να αποδείξετε ότι αν η f είναι συνεχής στο Δ και f για κάθε εσωτερικό σημείο του Δ, να αποδείξετε