ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων
|
|
- Ξέρξης Παπανδρέου
- 9 χρόνια πριν
- Προβολές:
Transcript
1 ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων
2
3 Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο της λογικής... 7 Σύνολα Ενότητα Α: Πιθανότητες Α.1 ( 1.1) Δειγματικός χώρος - Ενδεχόμενα... 1 Α. ( 1.) Έννοια της πιθανότητας Ενότητα Β: Οι πραγματικοί αριθμοί Β.1 (.1) Οι πράξεις και οι ιδιότητές τους - Δυνάμεις Β. (.) Διάταξη πραγματικών αριθμών Β.3 (.3) Απόλυτη τιμή πραγματικού αριθμού B.4 (.4) Ρίζες πραγματικών αριθμών Ενότητα Γ: Εξισώσεις Γ.1 ( 3.1) Εξισώσεις 1ου βαθμού Γ. ( 3.) Η εξίσωση x v = α Γ.3 ( 3.3) Εξισώσεις ου βαθμού Ενότητα Δ: Ανισώσεις Δ.1 ( 4.1) Ανισώσεις 1ου βαθμού Δ. ( 4.) Ανισώσεις ου βαθμού... 9 Δ.3 ( 4.3) Ανισώσεις γινόμενο - Ανισώσεις πηλίκο... 45
4 Ενότητα Ε: Πρόοδοι Ε.1 ( 5.) Αριθμητική πρόοδος Ε. ( 5.3) Γεωμετρική πρόοδος E.3 ( 5.4) Ανατοκισμός - Ίσες καταθέσεις Ενότητα ΣΤ: Βασικές έννοιες των συναρτήσεων ΣΤ.1 ( 6.1) Η έννοια της συνάρτησης ΣΤ. ( 6.) Γραφική παράσταση συνάρτησης ΣΤ.3 ( 6.3) Η συνάρτηση f(x) = αx+β ΣΤ.4 ( 6.4) Κατακόρυφη - Οριζόντια μετατόπιση καμπύλης ΣΤ.5 ( 6.5) Μελέτη συνάρτησης Ενότητα Z: Μελέτη βασικών συναρτήσεων Ζ.1 ( 7.1) Μελέτη της συνάρτησης f x αx Ζ. ( 7.) Μελέτη της συνάρτησης f x Ζ.3 ( 7.3) Μελέτη της συνάρτησης α χ f x αx βx γ, α Θέματα εξετάσεων
5 Eισαγωγικό Κεφάλαιο Σύνολα Το λεξιλόγιο της λογικής
6
7 Το λεξιλόγιο της λογικής 9. Συνεπαγωγή Αν Ρ και Q είναι δύο ισχυρισμοί, τέτοιοι ώστε όταν αληθεύει ο Ρ να αληθεύει και ο Q, τότε λέμε ότι ο Ρ συνεπάγεται τον Q και συμβολίζεται με Ρ Q. Ο ισχυρισμός Ρ λέγεται υπόθεση και ο Q συμπέρασμα της συνεπαγωγής. Για παράδειγμα, αν θεωρήσουμε τους θετικούς αριθμούς α, β τότε συνεπάγεται ότι το άθροισμα τους είναι θετικός αριθμός, δηλαδή αν (α > 0 και β > 0) α + β >0 Ισοδυναμία ή διπλή συνεπαγωγή Αν Ρ και Q είναι δύο ισχυρισμοί, τέτοιοι ώστε, ο Ρ συνεπάγεται τον Q και αντιστρόφως ο Q συνεπάγεται τον Ρ, τότε λέμε ότι ο Ρ είναι ισοδύναμος με τον Q και συμβολίζεται με Ρ Q. Πολλές φορές ο συμβολισμός Ρ Q διαβάζεται Ρ αν και μόνο Q. (Πολλές φορές ο συμβολισμός Ρ Q διαβάζεται Ρ αν και μόνο αν Q ). Για παράδειγμα, αν θεωρήσουμε δύο αριθμούς α, β τέτοιους ώστε α = β τότε ισχύει η ισοδυναμία α = β α + γ = β + γ O σύνδεσμος ή (διάζευξη) Αν Ρ και Q είναι δύο ισχυρισμοί, τότε ο ισχυρισμός Ρ ή Q αληθεύει μόνο όταν ένας τουλάχιστον από τους δύο ισχυρισμούς αληθεύει. Για παράδειγμα η εξίσωση x(x + ) = 0 αληθεύει αν και μονο αν ένας από τους παράγοντες x και x + είναι ίσος με το μηδέν, δηλαδή αν και μόνο αν ισχύει η διάζευξη x = 0 ή x + = 0 Ο σύνδεσμος και (σύζευξη) Αν Ρ και Q είναι δύο ισχυρισμοί, τότε ο ισχυρισμός Ρ και Q αληθεύει μόνο όταν και οι δύο ισχυρισμοί αληθεύουν. Για παράδειγμα η ισότητα x + y = 0 αληθεύει αν και μόνο αν και οι δύο μεταβλητές x και y είναι ίσες με το μηδέν, δηλαδή αν και μόνο αν ισχύει η σύζευξη x = 0 και y = 0.
8 10. Το λεξιλόγιο της λογικής Ερωτήσεις κατανόησης - Ασκήσεις για Λύση 1) ) 3) 4) 5) 6) α 5 0 α 5 3x 3x x 1 α 3 α 9 α 16 α 4 α 4 α 16 0 α 0 α 4 7) α β α β 8) α β 0 α, β θετικοί αριθμοί 9) α = β και γ 0 α γ β γ 10) α < - και β < -3 α β 6 11) Σε τρίγωνο ΑΒΓ ισχύει ΑΒ = ΒΓ ˆΓ Αˆ 1) Αν ˆω αμβλεία γωνία ημω > 0 και συνω > 0 13) x 4 και x < 0 x = -
9 Σύνολα 11. Απαραίτητες γνώσεις Θεωρίας Θεωρία 1. α) Τι ονομάζεται σύνολο; β) Τι σημαίνουν τα σύμβολα, ; γ) Αναφέρατε παραδείγματα συνόλων. Απάντηση: α) Σύνολο ονομάζεται κάθε συλλογή αντικειμένων, που προέρχονται από την εμπειρία μας ή τη διανόησή μας, είναι καλά ορισμένα και διακρίνονται το ένα από το άλλο. Τα αντικείμενα αυτά, που αποτελούν το σύνολο, ονομάζονται στοιχεία ή μέλη του συνόλου. ΠΡΟΣΟΧΗ! Σε ένα καλώς ορισμένο σύνολο, τα στοιχεία του εμφανίζονται μόνο μία φορά. β) Για να δηλώσουμε ότι το x είναι στοιχείο του Α, γράφουμε x A και διαβάζουμε το x ανήκει στο Α, ενώ για να δηλώσουμε ότι το x δεν είναι στοιχείο του συνόλου Α, γράφουμε x A. γ) Παραδείγματα συνόλων: Ν: Το σύνολο των φυσικών αριθμών Ζ: Το σύνολο των ακεραίων αριθμών Q: Το σύνολο των ρητών αριθμών R: Το σύνολο των πραγματικών αριθμών
10 1. Σύνολα Θεωρία. Πώς παριστάνεται ένα σύνολο; Απάντηση: Για να παραστήσουμε ένα σύνολο χρησιμοποιούμε τους εξής τρόπους: i) Με αναγραφή Γράφουμε τα στοιχεία του συνόλου, μεταξύ δύο αγκίστρων, από μία φορά το καθένα χωρίζοντάς τα με κόμμα. π.χ. A {3,5,7 }, B {1,,3,..., 0}, { 5,10,15,...} ii) Με περιγραφή Περιγράφουμε τα στοιχεία του συνόλου με μία χαρακτηριστική ιδιότητα: Ι = { x Ω/x έχει την ιδιότητα Ι } Παράδειγμα: A {x N / x 5} Το σύνολο Α, είναι το σύνολο των φυσικών αριθμών που περιέχονται ανάμεσα στο και το 5. Δηλαδή, με αναγραφή Α={3,4} Θεωρία 3. α) Πότε ένα σύνολο Α λέγεται υποσύνολο ενός συνόλου Β; β) Ποιες ιδιότητες ισχύουν για το σύμβολο ; Απάντηση: α) Ένα σύνολο Α λέγεται υποσύνολο ενός συνόλου Β, όταν κάθε στοιχείο του Α είναι και στοιχείο το Β. Στην περίπτωση αυτή γράφουμε A B. Για παράδειγμα στα σύνολα που γνωρίζουμε, ισχύει: N Z Q R β) Οι ιδιότητες που ισχύουν για το σύμβολο είναι: i) A A, για κάθε σύνολο Α, (ανακλαστικη ) ii) A B και Β Γ, τότε Α Γ, (μεταβατικη ) iii) A B και Β A, τότε Α B, (αντισυμμετρική) Θεωρία 4. Πότε δύο σύνολα Α, Β είναι ίσα; Απάντηση: Δύο σύνολα Α και Β είναι ίσα, όταν έχουν τα ίδια ακριβώς στοιχεία. Στην περίπτωση αυτή, γράφουμε: Α = Β. Ισχύει ότι Α = Β A B και Β Α. Οπότε σύμφωνα με τα παραπάνω, για να δείξουμε ότι Α = Β, αρκεί να δείξουμε ότι κάθε στοιχείο του Α είναι και στοιχείο του Β και αντίστροφα, κάθε στοιχείο του Β είναι και στοιχείο του Α.
11 Σύνολα 13. Θεωρία 5. Ποιο σύνολο ονομάζεται κενό; Απάντηση: Κενό σύνολο ονομάζεται το σύνολο που δεν έχει καθόλου στοιχεία. Συμβολίζεται με ή{}. Δεχόμαστε ότι το κενό σύνολο είναι υποσύνολο κάθε συνόλου και είναι μοναδικό. Παράδειγμα: A {x N/ x 1 0}. Το σύνολο Α δεν έχει κανένα στοιχείο γιατί η λύση της εξίσωσης x + 1 = 0 x = 1 στο Ν. Θεωρία 6. Τι είναι διάγραμμα Venn; Απάντηση: Διάγραμμα Venn είναι μία εποπτική παρουσίαση των συνόλων που γίνεται με κλειστές γραμμές. Κάθε φορά που εργαζόμαστε με σύνολα, τα σύνολα αυτά θεωρούνται υποσύνολα ενός συνόλου που λέγεται βασικό σύνολο και συμβολίζεται με Ω. Το βασικό σύνολο σε διάγραμμα Venn συμβολίζεται με το εσωτερικό ενός ορθογωνίου: Κάθε υποσύνολο ενός βασικού συνόλου, παριστάνεται με το εσωτερικό μιας κλειστής καμ π ύ λ η ς : Όταν, B A η παράσταση σε διάγραμμα Venn γίνεται ως εξής:
12 14. Σύνολα Θεωρία 7. Τι ονομάζουμε: α) ένωση δύο συνόλων β) τομή δύο συνόλων γ) συμπλήρωμα ενός συνόλου Απάντηση: α) Ένωση δύο συνόλων Α,Β ονομάζουμε το σύνολο που αποτελείται από όλα τα στοιχεία των Α, Β. Συμβολίζουμε A B, και ισχύει: A B {x Ω/x Aήx B} β) Τομή δύο συνόλων Α,Β λέγεται το σύνολο που αποτελείται από τα κοινά τους στοιχεία Συμβολίζουμε A B και ισχύει: A B {x Ω/x A και x B} γ) Έστω Ω το βασικό σύνολο και Α ένα οποιοδήποτε σύνολο. Συμπλήρωμα του Α ονομάζουμε το σύνολο, που περιέχει εκείνα τα στοιχεία του Ω που δεν ανήκουν στο Α και συμβολίζεται Α. Δηλαδή: A {x Ω / x A} Σημείωση: Στα παραπάνω διαγράμματα Venn το μπλέ τμήμα δείχνει το σύνολο που αναφερόμαστε.
13 Σύνολα 15. Ερωτήσεις κατανόησης - Λυμένα Παραδείγματα Παράδειγμα 1 Να χαρακτηρίσετε ως Σωστό ή Λάθος τα παρακάτω: i) Δίνεται το σύνολο Α={1,,3,α,β} α) α A, β) 4 A, γ) {1,} A, δ) β A ii) {4}=4 iii) 4 {4} iv) { } v) Ω vi) Ω Απάντηση: i) (α) Σωστό: α είναι στοιχείο του Α. (β) Λάθος: 4 Α (γ) Λάθος: { 1, } Α. (δ) Λάθος: β είναι στοιχείο του Α, δηλαδή β Α. ii) Λάθος: Ένα σύνολο δεν είναι ίσο με αριθμό. iii) Σωστό: O αριθμός 4 είναι στοιχείο του συνόλου {4}. iv) Λάθος: Το κενό σύνολο δεν περιέχει κανένα στοιχείο. Το σύνολο { περιέχει ένα στοιχείο, το v) Σωστό: Το συμπλήρωμα του είναι το βασικό σύνολο Ω. vi) Σωστό: Το συμπλήρωμα του βασικού συνόλου Ω είναι το. Παράδειγμα Έστω Ω = {1,,3,4,5,6}, Α = {1,,3} και B = {3,4,5}. Να επιλέξετε τη σωστή απάντηση. i) α. Α Β, β. Β Ω, γ. Β Α iii) α. Α Β {3} ii) α. Α Β 1,,4,5 β.α Β 3 γ. Α Β {6} γ. Α Β 1,,3,4,5 δ.α Β 6 iv) α. Α {3,4,5} γ. Α β. Α Β {1,,3,4,5} δ. Α Β β. Α {4,5,6} δ. Α {1,,3} Απάντηση: i) Óù óôü ôï (â): Το Ω είναι βασικό σύνολο οπότε Β Ω. ii) Σωστό το (γ): Η ένωση δύο συνόλων αποτελείται από τα κοινά και μη κοινά στοιχεία τους, μια φορά το καθένα. iii) Σωστό τα (α): Η τομή δυο συνόλων αποτελείται μόνο από τα κοινά στοιχεία. iv) Σωστό τα (β): Το Α περιέχει τα στοιχεία του Ω που δεν ανήκουν στο Α.
14 16. Σύνολα Παράδειγμα 3 Να γράψετε με αναγραφή των στοιχείων τους τα σύνολα. Α x N / x 6 B x N / x 1 Γ i) ii) iii) x R / x 1-1 Λύση: i) Είναι < x 6 και επειδή x Ν προκύπτει ότι x = 3 ή 4 ή 5 ή 6. Άρα: Α = {3,4,5,6}. ii) Έχουμε x 1 x 1 ή x 1 x 1 ή x 3 Επειδή x Ν η λύση x = 3 δεν είναι στοιχείο του Β. Άρα Β = {1}. iii) Επειδή x 1 0 δεν υπάρχει x R ώστε να ισχύει x 1 1 Άρα Γ =. Παράδειγμα 4 Να γραφούν με περιγραφή τα σύνολα: i) A,-1,0,1, ii) B 1, Λύση: i) Το Α γράφεται: A {x Z / x } ή μπορεί να γραφεί: Α = {x R / (x + )(x + 1)x(x 1)(x ) = 0} / ή μπορεί να γρα- ii) Το Β γράφεται: B x N 1 x φεί: B x R / x 1 x 0 Σημείωση: Παρατηρούμε ότι όταν έχουμε ένα σύνολο με αναγραφή δε γράφεται με έναν μόνο τρόπο ως σύνολο με περιγραφή. Το αντίστροφο δεν ισχύει. Παράδειγμα 5 Να εξετάσετε αν A B όπου: A {x R / x 1 0} B {x N / x- 1} Λύση: Το σύνολο Α είναι το αφού η εξίσωση x + 1 = 0 δεν αληθεύει για κανένα x R. Για το σύνολο Β έχουμε: x 1 1 x 1 1 x 3. Άρα: Β = {}. Επειδή το είναι υποσύνολο κάθε συνόλου έχουμε A B. Παράδειγμα 6 Αν A B, B Γ, Γ Α να αποδείξετε ότι Α = Β = Γ. Απόδειξη: Αφού A B και B Γ τότε Α Γ (1) Όμως έχουμε Γ Α () Από (1), () προκύπτει Α = Γ (3) Επίσης A B, B Γ οπότε A B, B Α λόγω της (3), άρα και Α = Β (4) Από (3), (4) έχουμε: Α = Β = Γ
15 Σύνολα 17. Ερωτήσεις κατανόησης - Ασκήσεις για Λύση 1. Nα χαρακτηρίσετε ως Σωστή (Σ) ή Λάθος (Λ) τις παρακάτω προτάσεις: i) {0,,4,...}={x /x ν, ν N} ii) Aν A B τότε Α Β Β iii) ( ) Ω iv) (Ω ) = v) {0}. Ομοίως για τις προτάσεις: i) {1,} {1,,3} ii) Aν A B τότε Α Β Β iii) {1,,3} iv) x {x} v) {{}} 3. Ομοίως για τις προτάσεις: i) {1,,3}={3,,1} ii) Aν x - 1 = 0 τότε το σύνολο των λύσεων της εξίσωσης είναι Α={ 1,1} iii) Aν x ακέραιος και x 1 ότε το σύνολο των λύσεων της ανίσωσης είναι Α={ 1,0,1} iv) Aν Ω={1,,3,...,10}, Α={1,,3,4}, Β={5,6,...,10} τότε: A B A B A B A B 4. Να επιλέξετε το γράμμα της σωστής απάντησης: i) Αν Α={1,,3}, Β={3,4} τότε το σύνολο Α Β είναι ίσο με: α) {1,,3} β) {3,4} γ) {1,,3,3,4} δ) {1,,3,4} ii) Η τομή των συνόλων των λύσεων των εξισώσεων x + 1 = 0 και x 1 = 0 είναι ίση με: α) β) {1} γ) { 1} δ) {0}
16 18. Σύνολα iii) Το σύνολο των λύσεων της εξίσωσης x(x -4)(x +4)(x 3 +8)=0 είναι ίσο με: α) Α={0,} β) Α={-,0,) γ) A={-,0) δ) Α={-,0, 3 } iv) Το σύνολο Α={ x R (x 1) 3 0 } σε μορφή διαστήματος ή ένωσης διαστημάτων είναι: α) (-,1 3) (1 3, ) β) (1 3,1 3) γ) ( 3, 3 ) δ) ( 1 3, 1 3 ) 5. Στα παρακάτω διαγράμματα Venn ποιο σύνολο παριστάνει το σκιασμένο τμήμα; i) ii) α) A B, β) A B γ) A B δ) A B α) A B, β) A B γ) (A B ) (Β Α ) δ) (A B ) A iii) iv) α) A B Γ, β) A B Γ γ) (A B) (B Ã) δ) (A B) Γ α) (A B) β) (A B) γ) A (B Γ) δ) A Ω 6. Να παρασταθούν με αναγραφή τα σύνολα: α) Α= {x N/x ψηφίο του αριθμού 1334} β)β= {x Z/ x 3} γ)γ= {x N /1 x 4}
17 Σύνολα Ομοίως τα σύνολα: α) Α= {x Z/x 9} 4 β) Β= {x Z/ x 7x 0} γ) Γ= {x N / x 1} 8. Να παρασταθούν με περιγραφή τα σύνολα: α) Α= {, 1,0,1,} β) Β= {,} γ) Γ={0,1,,3} 9. Ποιο από τα παρακάτω σύνολα είναι ; α) Α= {x R / x 3 και x 8} β) Β= {x R / x 3 ή x 8} 3 5x x 1 13x γ) Γ= {x R / } 3 6 x x x δ) Δ= {x R / 5 5 ( 1 )} Δίνονται τα σύνολα: Α={0,1,,3} Β={, 1,0,1,,3,4}. Να βρεθούν: α) Η σχέση του συνόλου Α με το σύνολο Β. β) Τα A B, A B γ) Το συμπλήρωμα του Α ως προς το σύνολο αναφοράς Β 11. Να βρεθούν όλα τα υποσύνολα του συνόλου Α={1,,3} 1. Να προσδιορισθεί ο α, ώστε να είναι ίσα τα σύνολα Α={1,α ), Β={α,1}
18
ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.
ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη
Διαβάστε περισσότεραΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ. Η συνεπαγωγή. Η Ισοδυναμία ή διπλή συνεπαγωγή. Ο σύνδεσμος «ή» Ο σύνδεσμος «και»
Η συνεπαγωγή ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ Αν P και Q είναι δύο ισχυρισμοί, τέτοιοι ώστε, όταν αληθεύει ο P να αληθεύει και ο Q, τότε λέμε ότι: «ο P συνεπάγεται τον Q» και γράφουμε P Q. Παράδειγμα: x=3 x 2 =9. Ο
Διαβάστε περισσότεραΑς θεωρήσουμε δύο πραγματικούς αριθμούς. Είναι γνωστό ότι:,. Αυτό σημαίνει ότι: «=», «
.1 Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη διατύπωση μαθηματικών εννοιών, προτάσεων
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότεραΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΊΑ ΠΙΘΑΝΟΤΉΤΩΝ
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΊΑ ΠΙΘΑΝΟΤΉΤΩΝ Α τάξης Γενικού Λυκείου Η συγγραφή και η επιμέλεια του βιβλίου πραγματοποιήθηκε υπό την αιγίδα του Παιδαγωγικού
Διαβάστε περισσότεραΗ έννοια του συνόλου. Εισαγωγικό κεφάλαιο 27
Εισαγωγικό κεφάλαιο 27 Η έννοια του συνόλου Σύνολο είναι κάθε συλλογή αντικειμένων, που προέρχονται από την εμπειρία μας ή τη διανόησή μας, είναι καλά ορισμένα και διακρίνονται το ένα από το άλλο. Αυτός
Διαβάστε περισσότεραΣΤ ΕΝΟΤΗΤΑ. Βασικές έννοιες των συναρτήσεων. ΣΤ.1 (6.1 παρ/φος σχολικού βιβλίου) ΣΤ.2 (6.2 παρ/φος σχολικού βιβλίου)
ΣΤ ΕΝΟΤΗΤΑ Βασικές έννοιες των συναρτήσεων ΣΤ. (6. παρ/φος σχολικού βιβλίου) Η έννοια της συνάρτησης ΣΤ. (6. παρ/φος σχολικού βιβλίου) Γραφική παράσταση συνάρτησης ΣΤ.3 (6.3 παρ/φος σχολικού βιβλίου) Η
Διαβάστε περισσότεραΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΊΑ ΠΙΘΑΝΟΤΉΤΩΝ
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΊΑ ΠΙΘΑΝΟΤΉΤΩΝ Α τάξης Γενικού Λυκείου Η συγγραφή και η επιμέλεια του βιβλίου πραγματοποιήθηκε υπό την αιγίδα του Παιδαγωγικού
Διαβάστε περισσότεραΣ αυτή την παράγραφο θα γνωρίσουμε τέσσερις βασικές έννοιες της λογικής, οι οποίες θα μας φανούν χρήσιμες στα επόμενα κεφάλαια του βιβλίου.
Σ αυτή την παράγραφο θα γνωρίσουμε τέσσερις βασικές έννοιες της λογικής, οι οποίες θα μας φανούν χρήσιμες στα επόμενα κεφάλαια του βιβλίου. Η προσέγγιση των εννοιών αυτών θα γίνει με τη βοήθεια απλών παραδειγμάτων,
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά
Διαβάστε περισσότεραΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 0 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη
Διαβάστε περισσότεραΑ Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ
Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΛΑΙΟ 1 ο ΠΙΘΑΝΟΤΗΤΕΣ 1. Για οποιαδήποτε ενδεχόμενα Α, Β ενός δειγματικού χώρου Ω ισχύει η σχέση ( ) ( ) ( ).. Ισχύει ότι P( A B) P( A
Διαβάστε περισσότεραΑπό το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46
ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Ε.1 I. 1. α 2 = 9 α = 3 ψ p: α 2 = 9, q: α = 3 Σύνολο αλήθειας της p: Α = {-3,3}, Σύνολο αλήθειας της q: B = {3} A B 2. α 2 = α α = 1 ψ p: α 2 = α, q: α = 1 Σύνολο
Διαβάστε περισσότεραΛΟΓΙΚΗ - ΣΥΝΟΛΑ ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ
ΛΟΓΙΚΗ - ΣΥΝΟΛ ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Η συνεπαγωγή ν P και Q είναι δύο ισχυρισμοί τέτοιοι ώστε όταν αληθεύει ο P να αληθεύει και ο Q τότε λέμε ότι το P συνεπάγεται το Q και γράφουμε P Q Π.χ, όταν α=β
Διαβάστε περισσότεραΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 15
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 5 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη
Διαβάστε περισσότερα2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Α' Γενικού Λυκείου. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ
ΘΕΜΑ A ΑΛΓΕΒΡΑ Α' Γενικού Λυκείου Σάββατο 1 Απριλίου 018 ιάρκεια Εξέτασης: ώρες ΘΕΜΑΤΑ Πεδίο ορισμού μιας συνάρτησης f (x) από ένα σύνολο Α σε ένα σύνολο Β ονομάζουμε το σύνολο Α, στο οποίο φαίνονται οι
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΑ. 6ο ΓΕΛ ΛΑΜΙΑΣ ΧΡΙΣΤΟΣ ΤΡΙΑΝΤΑΦΥΛΛΟΥ ΜΑΘΗΜΑΤΙΚΟΣ
ΣΥΝΟΛ 6ο ΓΕΛ ΛΜΙΣ ΧΡΙΣΤΟΣ ΤΡΙΝΤΦΥΛΛΟΥ ΜΘΗΜΤΙΚΟΣ ΣΥΝΟΛ Στοιχεία θεωρίας Σύνολο είναι μια συλλογή από αντικείμενα. Το σύνολο όλων των ελληνικών ποδοσφαιρικών ομάδων. Το σύνολο όλων των χωρών της Ευρώπης.
Διαβάστε περισσότεραΆλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται δύναμη α ν με βάση τον πραγματικό αριθμό α και εκθέτη το φυσικό αριθμό >1; H δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα φυσικό αριθμό ν, συμβολίζεται
Διαβάστε περισσότεραAλγεβρα A λυκείου α Τομος
Aλγ ε β ρ α A Λυ κ ε ί ο υ Α Τό μ ο ς Κάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα Σειρά: Γενικό Λύκειο, Θετικές Επιστήμες Άλγεβρα Α Λυκείου, Α Τόμος Παναγιώτης Γριμανέλλης Στοιχειοθεσία-σελιδοποίηση,
Διαβάστε περισσότεραΟρισμένες σελίδες του βιβλίου
Ορισμένες σελίδες του βιβλίου 7. Θεωρούμε το σύνολο αναφοράς 0,,. Να οριστούν τα σύνολα: Α. των τριψηφίων αριθμών που σχηματίζουν τα στοιχεία του Ω. Β. των τριψηφίων αριθμών με διαφορετικά ψηφία Γ. των
Διαβάστε περισσότεραΑ Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα
Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό
Διαβάστε περισσότεραΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ
1. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στόχος Να γνωρίζουν οι μαθητές: να αξιοποιούν το σύμβολο της συνεπαγωγής και της ισοδυναμίας να αξιοποιούν τους συνδέσμους «ή», «και» ΕΙΣΑΓΩΓΗ Η συννενόηση μεταξύ των ανθρώπων
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1
Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες
Διαβάστε περισσότεραii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας
. Δίνεται η εξίσωση, (). i) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει μία τουλάχιστον πραγματική ρίζα. ii) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει δύο ίσες πραγματικές ρίζες. iii) Να βρεθεί ο
Διαβάστε περισσότερα5.1 ΣΥΝΟΛΑ. 2. Παράσταση συνόλου. 3. Εποπτική παράσταση συνόλου : Γίνεται µε το διάγραµµα Venn, δηλαδή µε
1 5.1 ΣΥΝΟΛΑ ΘΕΩΡΙΑ 1. Ορισµός του συνόλου Σύνολο λέγεται κάθε συλλογή πραγµατικών ή φανταστικών αντικειµένων, που είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο. Τα παραπάνω αντικείµενα λέγονται
Διαβάστε περισσότεραΣυναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις
Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Ορισμός: Έστω Α, Β R. Πραγματική συνάρτηση πραγματικής μεταβλητής από το σύνολο Α στο σύνολο Β ονομάζουμε την διαδικασία κατά την οποία κάθε στοιχείο του συνόλου
Διαβάστε περισσότεραΤο σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι.
1 E. ΣΥΝΟΛΑ ΘΕΩΡΙΑ 1. Ορισµός του συνόλου Σύνολο λέγεται κάθε συλλογή πραγµατικών ή φανταστικών αντικειµένων, που είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο. Τα παραπάνω αντικείµενα λέγονται
Διαβάστε περισσότεραΓΕΝΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΔΙΑΓΩΝΙΣΜΑΤΑ ΣΕ ΟΛΗ ΤΗΝ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ
ΓΕΝΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΔΙΑΓΩΝΙΣΜΑΤΑ ΣΕ ΟΛΗ ΤΗΝ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ο Γενικό Επαναληπτικό Διαγώνισμα ΘΕΜΑ ο Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλλα σας δίπλα στο γράμμα
Διαβάστε περισσότεραΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,
Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι
Διαβάστε περισσότεραΘέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ
Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος 013-014, Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός
Διαβάστε περισσότεραΦεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)
Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ
Διαβάστε περισσότεραK15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων
K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Στοιχεία προτασιακής λογικής Περιεχόμενα
Διαβάστε περισσότεραΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω.
ΘΕΜΑ ΘΕΜΑ Έστω α, β πραγµατικοί αριθµοί για τους οποίους ισχύουν: α β = 4 και αβ + αβ = 0 α) Να αποδείξετε ότι: α + β = 5. (Μονάδες 0) β) Να κατασκευάσετε εξίσωση ου βαθµού µε ρίζες τους αριθµούς α, β
Διαβάστε περισσότεραΕισαγωγικά Παραδείγματα: Παρατηρήσεις:
1 Εισαγωγικά Η έννοια του συνόλου είναι πρωταρχική στα Μαθηματικά, δεν μπορεί δηλ. να οριστεί από άλλες έννοιες. Γενικά, μπορούμε να πούμε ότι σύνολο είναι μια συλλογή αντικειμένων. υτά λέμε ότι περιέχονται
Διαβάστε περισσότερα2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ο ΓΕΛ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β ΛΥΚΕΙΟΥ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ -4 ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Επιμέλεια: ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
Διαβάστε περισσότεραΘΕΩΡΙΑ ΣΥΝΟΛΩΝ. x Σ και. x Σ και διαβάζουµε «το x δεν ανήκει στο Σ». ΕΙΣΑΓΩΓΗ :
ΕΙΣΑΓΩΓΗ : ΘΕΩΡΙΑ ΣΥΝΟΛΩΝ Η έννοια του συνόλου στα µαθηµατικά είναι έννοια πρωταρχική και έτσι δεν ορίζεται αυστηρά µαθηµατικά. Μπορούµε όµως επεξηγηµατικά αντί ορισµού να πούµε: Σύνολο, είναι µια συλλογή
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_3.ΜλΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α A.. Α.. Α.3. ΘΕΜΑ Β Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ηµεροµηνία: Κυριακή Απριλίου
Διαβάστε περισσότεραΑπό το Γυμνάσιο στο Λύκειο Δειγματικός χώρος Ενδεχόμενα Εύρεση δειγματικού χώρου... 46
ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11 2. Σύνολα..............................................................
Διαβάστε περισσότερα5. 1 ΣΥΝΟΛΑ. Η έννοια του συνόλου
ΜΕΡΟΣ Α 5.1 ΣΥΝΟΛΑ 359 5. 1 ΣΥΝΟΛΑ Η έννοια του συνόλου Ονομάζουμε σύνολο στα Μαθηματικά κάθε ομάδα αντικειμένων τα οποία διακρίνονται μεταξύ τους με απόλυτη σαφήνεια Κάθε αντικείμενο που περιέχεται σε
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου
Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται
Διαβάστε περισσότεραΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΑΛΓΕΒΡΑ ΘΕΜΑ A Α1. Να αποδείξετε ότι: αβ α β (Μονάδες 15) A. Χαρακτηρίστε ως Σωστό (Σ) ή Λάθος (Λ) τις ακόλουθες προτάσεις: 1. Η εξίσωση
Διαβάστε περισσότεραΜ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ
Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής ΕΝΟΤΗΤΑ
Διαβάστε περισσότεραρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο
ρ πε α εμ των α ματ ών 2014 Γ Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης
ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ
Διαβάστε περισσότεραΕπαναληπτικό Διαγώνισμα Άλγεβρας Α Λυκείου
Επαναληπτικό Διαγώνισμα Άλγεβρας Α Λυκείου Θέμα Α. Αν x, x οι ρίζες της δευτεροβάθμιας εξίσωσης αx +βx+γ=, α να αποδείξετε ότι S P. (6 μονάδες) Β. Ελέγξατε αν κάθε μία από τις παρακάτω σχέσεις είναι σωστή
Διαβάστε περισσότεραΘέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ
Α. Πότε μια αλγεβρική παράσταση λέγεται μονώνυμο και από ποια μέρη αποτελείται; Β. Πότε δύο μονώνυμα λέγονται όμοια;. Τι λέγεται πολυώνυμο; Θέμα ο Α. Να διατυπώσετε την πρόταση που είναι γνωστή ως θεώρημα
Διαβάστε περισσότεραΤάξη A Μάθημα: Άλγεβρα
Τάξη A Μάθημα: Άλγεβρα Ερωτήσεις Θεωρίας Θέματα Εξετάσεων Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Α. Θεωρία - Αποδείξεις.. Σελ. Β. Θεωρία-Ορισμοί. Σελ.16 Γ. Ερωτήσεις Σωστού Λάθους...
Διαβάστε περισσότεραΒρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com
Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.Σύνολα Σύνολο είναι μια ολότητα από σαφώς καθορισμένα και διακεκριμένα αντικείμενα. Τα φωνήεντα
Διαβάστε περισσότεραΑ Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Συνοπτική Θεωρία Ασκήσεις της Τράπεζας Θεμάτων Ερωτήσεις Σωστού-Λάθους Διαγωνίσματα Επιμέλεια: Συντακτική ομάδα mathp.gr Συντονισμός
Διαβάστε περισσότερα1 ΘΕΩΡΙΑΣ...με απάντηση
1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις
Επιμέλεια Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Το ο Θέμα στις πανελλαδικές εξετάσεις Ερωτήσεις+Απαντήσεις
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε
Διαβάστε περισσότερα1.Σύνολα. 2. Υποσύνολα
1.Σύνολα Σύνολο είναι μια ολότητα από σαφώς καθορισμένα και διακεκριμένα αντικείμενα. Τα φωνήεντα του ελληνικού αλφαβήτου θεωρούμενα ως μια ολότητα αποτελούν ένα σύνολο, το σύνολο των φωνηέντων του ελληνικού
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων
Γεώργιος Α. Κόλλιας - μαθηματικός Περιέχονται 50 συνδυαστικές ασκήσεις επανάληψης και θέματα εξετάσεων. Δεν συμπεριλαμβάνεται το κεφάλαιο των πιθανοτήτων, της γεωμετρικής προόδου, της μονοτονίας συνάρτησης,
Διαβάστε περισσότερα1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.
Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότεραΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ
ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από
Διαβάστε περισσότερα( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Άσκηση 1102 Δίνονται δύο ενδεχόμενα ενός δειγματικού χώρου Ω και οι πιθανότητες α) Να υπολογίσετε την (Μονάδες 9) β) i) Να υπολογίσετε με διάγραμμα Venn και να γράψετε στη γλώσσα των συνόλων το ενδεχόμενο:
Διαβάστε περισσότεραΓΕ.Λ ΕΞΑΠΛΑΤΑΝΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ : ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ. 1 ) Αν Α και Β είναι δύο ασυμβίβαστα ενδεχόμενα ενός δειγματικού χώρου
ΓΕΛ ΕΞΑΠΛΑΤΑΝΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ : 013-014 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Ο - Α ( απόδειξη θεωρήματος) 1 ) Αν Α και Β είναι δύο ασυμβίβαστα ενδεχόμενα ενός δειγματικού χώρου Ω, τότε να αποδείξετε
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0.
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα
Διαβάστε περισσότεραΤο βιβλίο αυτό είναι γραμμένο με βάση την αναμορφωμένη έκδοση του σχολικού
www.ziti.gr Πρόλογος Το βιβλίο αυτό είναι γραμμένο με βάση την αναμορφωμένη έκδοση του σχολικού βιβλίου Άλγεβρας της Αʹ τάξης του Γενικού Λυκείου, που θα διδάσκεται από το σχολικό έτος 00-0. Είναι ένα
Διαβάστε περισσότερα(α > β και γ > δ)=> αγ > βδ. τύπο S. άνισες. Δίνεται η συνάρτηση f με τύπο f( χ )= y j x »/ Ç + 3. παρακάτω προτάσεις: ΜΟΝΑΔΕΣ 2x5=10
ΓΕ.Λ. ΛΙΒΑΔΕΙΑΣ ΖΗΤΗΜΑ A ΑΊ. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 05 ΛΙΒΑΔΕΙΑ 4 ΜΑΪΟΥ 05 ΤΑΞΗ Α ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) κάθε μία
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα Συγγραφή: Ομάδα Υποστήριξης Μαθηματικών
Διαβάστε περισσότεραΕρωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου
Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα
Διαβάστε περισσότεραOΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ
Ο ΚΕΦΑΛΑΙΟ : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΥΝΑΡΤΗΣΕΙΣ Έστω Α ένα υποσύνολο του Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α ; Απάντηση : ΕΣΠ Β Έστω
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες
Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων
Διαβάστε περισσότεραΘ. Ξένος: Άλγεβρα Α' Λυκείου (2η έκδοση) Απαντήσεις και λύσεις των ερωτήσεων & ασκήσεων
Σχολικό βιβλίο Άλγεβρα Α' Λυκείου Απαντήσεις και λύσεις των ερωτήσεων & ασκήσεων Θ. Ξένος: Άλγεβρα Α' Λυκείου (η έκδοση) Απαντήσεις και λύσεις των ερωτήσεων & ασκήσεων Μπορείτε να αντιγράψετε το παρόν
Διαβάστε περισσότεραΆλγεβρα Α Λυκείου Κεφάλαιο 2ο. οι πράξεις και οι ιδιότητές τους
οι πράξεις και οι ιδιότητές τους Μερικές ακόμη ταυτότητες (επιπλέον από τις αξιοσημείωτες που βρίσκονται στο σχολικό βιβλίο) ) Διαφορά δυνάμεων με ίδιο εκθέτη: ειδικά αν ο εκθέτης ν είναι άρτιος υπάρχει
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΑ ΣΥΝΟΛΑ. 1. Να εκφράσετε ως πράξεις μεταξύ των Α και Β, τα σύνολα που αντιστοιχούν στα χρωματισμένα μέρη των παρακάτω διαγραμμάτων Venn.
ΑΣΚΗΣΕΙΣ ΣΤΑ ΣΥΝΟΛΑ 1 Να εκφράσετε ως πράξεις μεταξύ των Α και Β, τα σύνολα που αντιστοιχούν στα χρωματισμένα μέρη των παρακάτω διαγραμμάτων Venn 2 Δίνεται το παρακάτω διάγραμμα Venn Να παραστήσετε με
Διαβάστε περισσότεραΚεφάλαιο 1 o Εξισώσεις - Ανισώσεις
2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση
Διαβάστε περισσότεραΖ ΕΝΟΤΗΤΑ. Μελέτη βασικών συναρτήσεων. Ζ.1 (7.1 παρ/φος σχολικού βιβλίου) Ζ.2 (7.2 παρ/φος σχολικού βιβλίου) Ζ.3 (7.3 παρ/φος σχολικού βιβλίου) 2
Ζ ΕΝΟΤΗΤΑ Μελέτη βασικών συναρτήσεων Ζ.1 (7.1 παρ/φος σχολικού βιβλίου) Μελέτη της συνάρτησης f(x) = αx Ζ. (7. παρ/φος σχολικού βιβλίου) Μελέτη της συνάρτησης f x α x Ζ.3 (7.3 παρ/φος σχολικού βιβλίου)
Διαβάστε περισσότερα6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ
ΟΡΙΣΜΟΣ 6. ΣΥΝΑΡΤΗΣΕΙΣ 6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ Ονομάζουμε συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β μια διαδικασία (κανόνα) f, με την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε ένα ακριβώς
Διαβάστε περισσότεραΚ Ε Φ Α Λ Α Ι Ο 2 ο : Ο ι Π ρ α γ μ α τ ι κ ο ί Α ρ ι θ μ ο ί. 2.1 Οι Πράξεις και οι Ιδιότητές τους. 2.2 Διάταξη Πραγματικών Αριθμών
Άλγεβρα Α Λυκείου, Κεφάλαιο ο ΘΕΩΡΙΑ-ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ ΑΠΟΔΕΙΞΕΙΣ ΠΡΟΤΑΣΕΩΝ-ΑΣΚΗΣΕΙΣ ΤΡΑΠΕΖΑΣ ΥΠΟΥΡΓΕΙΟΥ Κ Ε Φ Α Λ Α Ι Ο ο : Ο ι Π ρ α γ μ α τ ι κ ο ί Α ρ ι θ μ ο ί. Οι Πράξεις και οι Ιδιότητές
Διαβάστε περισσότερα6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ
6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ ΣΥΝΑΡΤΗΣΗΣ Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β λέγεται μια διαδικασία (κανόνας), με την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε ακριβώς ένα στοιχείο
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ
1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..
Διαβάστε περισσότεραΕρωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...
Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα
Διαβάστε περισσότεραΡητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή
ΣΥΝΑΡΤΗΣΕΙΣ (ΕΙΣΑΓΩΓΗ)-ΘΕΩΡΕΙΑ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμώv αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται
Διαβάστε περισσότεραx y z xy yz zx, να αποδείξετε ότι x=y=z.
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦ. ο A. Ταυτότητες, ιδιότητες δυνάμεων, διάταξη.1 Να παραγοντοποιήσετε τις παρακάτω παραστάσεις: 1. 15a x 15a y 5a x 5a y. a x a x a x a x 3 3 4 3 3 3 3. x 4xy 16 4 y
Διαβάστε περισσότεραΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ
ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού
Διαβάστε περισσότεραΟ μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:
Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Να αναγνωρίζει πότε μια αλγεβρική παράσταση της πραγματικής μεταβλητής x, είναι πολυώνυμο και να διακρίνει τα στοιχεία του: όροι, συντελεστές, σταθερός
Διαβάστε περισσότεραΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα
ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ 1 ο δείγμα Α. Θεωρία Α) Πότε ένα πολύγωνο λέγεται κανονικό; Β) Να δώσετε τον ορισμό της εγγεγραμμένης γωνίας σε κύκλο (Ο, ρ). (Να γίνει σχήμα) Γ) Ποια
Διαβάστε περισσότεραΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ 01-013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θέμα 1 ο Α. Έστω a ένας πραγματικός αριθμός. Να δώσετε τον ορισμό της απόλυτης
Διαβάστε περισσότεραΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ A ΛΥΚΕΙΟΥ ΕΠΑΛ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ A ΛΥΚΕΙΟΥ ΕΠΑΛ www.askisopolis.gr 3 4 .5381 Ένα κουτί περιέχει άσπρες, κόκκινες και πράσινες μπάλες. Οι άσπρες είναι 0, οι κόκκινες είναι 7, ενώ όλες οι μπάλες μαζί είναι
Διαβάστε περισσότεραΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,
Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι
Διαβάστε περισσότερα= { 3, 2, 1, 0,1, 2,3, }
ΣΤΟΙΧΕΙ ΠΟ ΤΗ ΘΕΡΙ ΣΥΝΟΛΝ Η ΕΝΝΟΙ ΤΟΥ ΣΥΝΟΛΟΥ ΣΤΟΙΧΕΙ ΠΟ ΤΗ ΘΕΡΙ ΣΥΝΟΛΝ «Σύνολο είναι κάθε συλλογή αντικειµένων, που προέρχονται από την εµπειρία ή την διανόηση µας, είναι καλά ορισµένα και διακρίνονται
Διαβάστε περισσότεραβ. Να βρείτε την πιθανότητα πραγματοποίησης καθενός από τα δύο ενδεχόμενα του ερωτήματος α).
1.: Έννοια της Πιθανότητας Κεφάλαιο 1ο: Πιθανότητες ΑΣΚΗΣΗ 1 (_497) Ένα τηλεοπτικό παιχνίδι παίζεται με ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι συμμετέχουν 3 άντρες: ο Δημήτρης (Δ), ο Κώστας (Κ), ο
Διαβάστε περισσότεραΕπαναληπτικές Ασκήσεις
Επαναληπτικές Ασκήσεις Έστω ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου ( x ) α Να γράψετε την ταυτότητα της διαίρεσης β Να βρείτε τα 0 και Ρ γ Αν το πολυώνυμο ( x) είναι x να βρείτε: x + x είναι 3x
Διαβάστε περισσότεραlnx ln x ln l x 1. = (0,1) (1,7].
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα
Διαβάστε περισσότερα4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ
14 4 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ Ας υποθέσουμε ότι θέλουμε να βρούμε το πηλίκο και το υπόλοιπο της διαίρεσης του με τον Σύμφωνα με το γνωστό αλγόριθμο της διαίρεσης, το πηλίκο θα είναι ένας ακέραιος κ, τέτοιος,
Διαβάστε περισσότεραΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΘΕΩΡΙΑ. Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες:
ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: Γ ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Τι λέγεται ταυτότητα; Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες: Γ. Να αποδείξετε
Διαβάστε περισσότεραΣημεία Προσοχής στην Παράγραφο Ε2.
Σημεία Προσοχής στην Παράγραφο Ε2. 1. Ίσα Σύνολα Δεν αρκεί δύο σύνολα να έχουν τον ίδιο αριθμό στοιχέιων για να είναι ίσα. Πρέπει να έχουν ακριβώς τα ίδια στοιχεία. ΠΑΡΑΔΕΙΓΜΑ Έχουμε τα σύνολα Α={1,α,5}
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ
ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμών αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται
Διαβάστε περισσότεραΣτέλιος Μιχαήλογλου - Δημήτρης Πατσιμάς
Μεθοδική Επανάληψη www.askisopolis.gr Στέλιος Μιχαήλογλου - Δημήτρης Πατσιμάς Ε. Σύνολα i. Τι είναι το σύνολο; ii. Ποιοι είναι οι βασικοί τρόποι παράστασης συνόλων και τι γνωρίζετε γι αυτούς; iii. Πότε
Διαβάστε περισσότεραΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ
5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση
Διαβάστε περισσότερα. Όλες οι συναρτήσεις δεν μπορούν να παρασταθούν στο καρτεσιανό επίπεδο όπως για παράδειγμα η συνάρτηση του Dirichlet:
Κεφάλαιο: Συναρτήσεις Γραφική παράσταση συνάρτησης Γράφημα μιας συνάρτησης ( ) ονομάζουμε το σύνολο των σημείων G( ) (, ( ) ) / A που είναι υποσύνολο του. Το γράφημα αυτό { } συνήθως παριστάνεται πάνω
Διαβάστε περισσότεραΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ
ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ. Δύο ομάδες Ο, Ο παίζουν μεταξύ τους σε μια σχολική ποδοσφαιρική συνάντηση (οι αγώνες δεν τελειώνουν ποτέ με ισοπαλία). Νικήτρια θεωρείται η ομάδα που θα νικήσει
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ
ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ i) Να αποδείξετε την ταυτότητα α β γ αββγγα α β βγ γα ii) Να αποδείξετε ότι για όλους τους αβγ,, ισχύει Πότε ισχύει ισότητα; α β γ αβ βγ γα Λέμε ότι μια τριάδα θετικών ακεραίων β,
Διαβάστε περισσότεραΣας εύχομαι καλή μελέτη και επιτυχία.
ΠΡΟΛΟΓΟΣ Το βιβλίο αυτό αποτελεί συνέχεια του Α τεύχους και απευθύνεται κυρίως στους μαθητές της Α Λυκείου, αλλά και στους καθηγητές που διδάσκουν το μάθημα «Άλγεβρα και στοιχεία πιθανοτήτων» της Α Λυκείου.
Διαβάστε περισσότερα